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Abstract: Aiming at the problem that the fully homomorphic encryption scheme based on single
identity cannot satisfy the homomorphic operation of ciphertext under different identities, as well
as the inefficiency of trapdoor function and the complexity of sampling algorithm, an improved
lattice MIBFHE scheme was proposed. Firstly, we combined MP12 trapdoor function with dual LWE
algorithm to construct a new IBE scheme under the standard model, and prove that the scheme is IND-
sID-CPA security under the selective identity. Secondly, we used the eigenvector method to eliminate
the evaluation key, and transform the above efficient IBE scheme into a single identity IBFHE scheme
to satisfy the homomorphic operation. Finally, we improved the ciphertext extension method of
CM15 and constructed a new Link-mask system that supports the transformation of IBFHE scheme
under the standard model, and then, converted the above IBFHE scheme into MIBFHE scheme
based on this system. The comparative analysis results showed that the efficiency of this scheme is
improved compared with similar schemes in the trapdoor generation and preimage sampling, and
the dimension of lattice and ciphertext size are significantly shortened.

Keywords: lattice; full homomorphic encryption; multi-identity encryption; LWE problem

1. Introduction

With the continuous development of cloud computing, cloud computing faces the
security problem of how to ensure data privacy in the process of implementing applications.
In 1978, Rivest et al. [1] proposed the idea of homomorphic encryption to protect data
security. Homomorphic encryption has special properties that it can perform effective
operations on ciphertext without decryption in the phase of processing data ciphertext,
which is equivalent to encrypting the plaintext after corresponding operations. Therefore,
how to construct a scheme with homomorphic properties became a difficult problem
for cryptographers. Until 2009, Gentry [2] proposed the first FHE (full homomorphic
encryption) scheme based on ideal lattice. Since then, FHE became a research hotspot in
the field of cryptography. Cryptographers proposed a series of FHE schemes based on
different theoretical foundations, including integer-based FHE schemes (such as [DGHV10]
scheme [3]), RLWE-based (Ring Learning with Errors, RLWE) FHE schemes (such as
[BV11a] scheme [4]), LWE-based FHE schemes (such as [BV11b, BGV12] scheme [5,6]) and
FHE scheme with eigenvector (such as [GSW13] scheme [7]).

As an important extension of the public key encryption systems, FHE needs to consider
the problem of identity authentication in the cloud computing environment. The general
method is to introduce public key certificates for authentication. However, the existence
of public key certificates brought additional costs to the entire cryptosystem in all aspects
such as computing, storage, communication and management. Additionally, the existing
FHE systems generally have the problem of large public key size.

In 1984, Shamir [8] first proposed the IBE (identity-based encryption) scheme. Its
central idea is to generate a public key from the user’s unique identity (such as e-mail
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address, mobile phone number, etc.) and public parameters, so that there is no need to issue
an additional public key for each user. The user’s secret key can be generated by the trusted
third party center (Key Generate Center, KGC) using the identity and the system’s master
secret key. It eliminates the additional overhead associated with public key certificates
and can manage keys more efficiently. Therefore, scholars began to study how to combine
homomorphic encryption and identity-based encryption to construct the scheme of IBFHE
(identity-based full homomorphic encryption), which has the advantages of FHE and IBE
at the same time. It can not only perform access control and homomorphic operation on
identity ciphertext, but also effectively manage the key. In 2010, Naccache [9] first proposed
the open issue of how to construct identity-based full homomorphic encryption scheme
at the CRYPTO’2010 conference. In 2013, Gentry et al. [7] constructed the first IBFHE
scheme based on the LWE problem with the method of eigenvectors, and also proposed a
transformation mechanism that can transform the IBE scheme satisfying the corresponding
conditions into the related IBFHE scheme, which solved the above open problem to some
extent. However, it is only applicable to single-identity encryption scenarios. It can
only perform homomorphic operations on ciphertext encrypted under the same identity,
and cannot perform homomorphic operations on ciphertext encrypted based on different
identities. However, in many real-world scenarios, homomorphic-encrypted ciphertexts
are usually encrypted under different identities.

In 2014, Clear and McGoldrick [10] constructed a multi-identity based full homomorphic
encryption (MIBFHE) scheme. However, the construction largely depended on indistinguish-
able obfuscation [11]. Since it is difficult to realize indistinguishable obfuscation at present, the
current efficiency is very low, and the security of the scheme cannot be based on a recognized
computational problem. In 2015, Clear and McGoldrick [12] extended the FHE scheme con-
structed by Gentry et al. [7] to the first MIBFHE scheme based on the standard LWE problem
(this scheme is called CM15 scheme), but the process of ciphertext expansion is complex and
the noise growth is too fast. In 2019, TU et al. [13] made use of the transformation mecha-
nism of [12] and combined with the hierarchical identity-based encryption scheme proposed
by Cash et al. [14] to construct a hierarchical multi-identity full homomorphic encryption
scheme. In the same year, Shen et al. [15] proposed a hierarchical multi-identity fully homo-
morphic encryption scheme based on the multi-key scheme of Mukherjee et al. [16]. In 2020,
Pal and Dutta [17] constructed a multi-identity multi-attribute MIBFHE scheme with chosen
ciphertext security on the basis of multi-key full homomorphism, but their extension process
uses Witness Pseudorandom Function (WPRF), which is a non-standard assumption. In 2021,
Shen et al. [18] constructed a compressible multi-key and multi-identity fully homomorphic
encryption based on the compressible FHE scheme proposed by Gentry et al. [19]. In 2022,
Liu et al. [20] constructed a hierarchical multi-hop MIBFHE scheme based on the IBE scheme
proposed by Gentry et al. [21] and the hierarchical multi-hop multi-key FHE scheme proposed
by Peikert et al. [22].

The trapdoor generation of the above scheme is quite complex and too inefficient
in terms of both operation and output’s quality, which is not suitable for practice. It
mainly used the trapdoor generation algorithm of [23,24], which involves the calculation
of complex HNF (Hermite Normal Forms) and matrix inversion operations. Although
the dimension and quality of its output are asymptotically optimal, the hidden constant
factor is quite large. In addition, the preimage sampling algorithm of [21] needs to perform
high-precision real number orthogonalization iterative operation during the sampling
process, resulting in high complexity of the preimage sampling.

In 2012, Micciancio et al. [25] proposed a new trapdoor generation algorithm and
corresponding preimage sampling algorithm (this scheme is called MP12 scheme). Com-
pared with the structure of [23,24], it is essentially equivalent to one-time multiplication
operation of two random matrices, which does not involve the calculation of complex HNF
and matrix inversion operations. Its terms are chosen independently in the appropriate
probability distribution, so it is more efficient. At the same time, Micciancio also pointed
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out that MP12 trapdoor can be used to optimize all lattice-based IBE schemes, but no
specific scheme is given.

Our Contribution. In view of the above problems, in order to make the lattice MIBFHE
scheme more practical, solving the problem of inefficient trapdoor generation must be
considered. In this paper, we proposed an improved scheme using the transformation
mechanism of [12]. First, based on the trapdoor function designed by Micciancio et al. [25]
and the IBE scheme of Agrawal et al. [26], we proposed a new IBE scheme under the
standard model, and proved that the scheme is IND-sID-CPA security under selective
identity. Then, based on the above efficient IBE scheme and the eigenvector method
proposed by Gentry et al. [7], which eliminate the evaluation key, the IBE scheme in
this paper is transformed into a single-identity IBFHE scheme that satisfies homomorphic
operation. Finally, a Link–Mask system was reconstructed based on the ciphertext extension
method of [12], and IBFHE was converted into MIBFHE using the reconstructed extended
ciphertext method and the masking scheme.

Organization. The second chapter introduces some notation we need to use throughout
the paper, and reviews important definitions, including the trapdoor generation algorithm
and LWE hardness problem. The third chapter firstly constructs an efficient IBE scheme,
and proves the correctness and security of the IBE scheme. The parameter setting of
the scheme and the parameter comparison of other schemes are introduced. The fourth
chapter introduces how to use the approximate eigenvector to transform the IBE scheme
constructed in the third chapter into the IBFHE scheme, and proves the correctness and
security of the scheme. The fifth chapter uses the Link–Mask algorithm constructed in this
paper to transform the IBFHE scheme in the fourth chapter into MIBFHE scheme, and also
gives the correctness and security proof of the scheme, as well as the efficiency comparison
analysis of the scheme. The sixth chapter is a summary.

2. Preliminaries

Notation. There are some notations that we will use throughout this paper. We denote Z/qZ
as Zq and its elements are in the range of (−q/2, q/2]. We use bold uppercase letters (e.g., A, B)
to represent matrices, and bold lowercase letters (e.g., a, b) to represent vectors. All vectors in
this paper are default column vectors. For a vector a = (a1, a2, . . . , an) ∈ Zn

q , ai denotes the
i-th component scalar. For a matrix A ∈ Zn×m

q , A[i, j] denotes the i-th row and the j-th column

element of A. Let denote the Euclidean norm of a vector a as ‖a‖ =
√

∑ a2
i and s1(R) represent

the maximum singular value of matrix R. We denote [A|B] as the concatenation of two matrices.
Let n denote the security parameter. We define [n] = {1, 2, . . . , n} for any positive

integer n. Let negl(n) denote a negligible function that grows slower than n−c for any
constant c > 0 and any sufficiently large value of n. We say that an event happens with
overwhelming probability if it happens with probability at least 1 − negl(n) for some
negligible negl(·). Let ω(·) denotes the degree of asymptotic when f (n) = ω(g(n)).
That is lim

n→∞
f (n)
g(n) = ∞ for any positive integer c and a positive integer d satisfy n > d,

0 ≤ c · g(n) < f (n).

2.1. Relevant Definitions of Lattice

Definition 1. (Lattice) Let {b1, b2, . . . , bm} ∈ Rn be m linearly independent vectors on the
n-dimensional Euclidean space Rn. Set B = {b1|b2|. . .|bm} ∈ Rn×m, and lattice Λ(B) can be
expressed linearly by the integer coefficients of all these vectors of b1, b2, . . . , bm, as defined follows:

Λ(B) =

{
y ∈ Rn : ∃s ∈ Zm, y = Bs =

m

∑
i=1

sibi

}

where the linear independent vector {b1, b2, . . . , bm} which is a basis of the lattice form a
lattice space, with dimension n and rank m, for m > n. When n = m, the Λ(B) is a full-rank
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lattice, the scheme is usually constructed with the full-rank lattice. Here, we are interested
in integer lattices, i.e., when s is contained in Zm.

Definition 2. (q-Module Lattice) For n, m, q ∈ Z, where q is prime, A ∈ Zn×m
q and

u = Zn
q , define:

Λq(A) =
{

y ∈ Zm
q : ∃s ∈ Zn

q , AT · s = y(mod q)
}

Λ⊥q (A) =
{

x ∈ Zm
q : Ax = 0(mod q)

}
Λu

q (A) =
{

x ∈ Zm
q : Ax = u(mod q)

}
where Λu

q (A) is the coset of Λ⊥q (A). Λu
q (A) is a shift of Λ⊥q (A) which satisfies

t + Λ⊥q (A) = Λu
q (A), for t ∈ Λu

q (A).

2.2. Discrete Gaussian Distribution

Definition 3. (Gaussian-Shaped Function [27]) For any real number σ > 0, any vector c ∈ Rn,
and the standard deviation σ, where ∀x ∈ Rn. Gaussian-shaped function is defined as

ρσ,c(x) = exp
(
−π ‖ x− c ‖2

σ2

)

Definition 4. (Discrete Gaussian Distribution [27]) Let lattice Λ ∈ Rn×m, for any real number
σ > 0, any vector c ∈ Rn, the standard deviation σ, where ∀x ∈ Λ. The discrete Gaussian
distribution with distribution center c is defined as

DΛ,σ,c(x) =
ρσ,c(x)
ρσ,c(Λ)

=
ρσ,c(x)

∑v∈Λ ρσ,c(v)

For convenience, we abbreviate ρσ,0 and DΛ,σ,0 as ρσ and DΛ,σ . When σ = 0 , we use
ρ to express ρ1. Distribution DΛ,σ,c is usually defined over the lattice Λ = Λ⊥q (A) for a
matrix A ∈ Zn×m

q or over a coset Λ = t + Λ⊥q (A) , where t ∈ Zm .

2.3. LWE Hardness Problem

The security of all our structures is reduced to the LWE problem, which was first
defined by Regev [27] in 2005. It proved to be a non-deterministic polynomial (NP) problem
with polynomial complexity.

Definition 5. (LWE Hardness Problem [27]) Consider a positive integer n, a prime q, a noise
distribution χ over Zq, and uniformly random secret key s ∈ Zn

q . An
(
Zq, n, χ

)
− LWE problem

include accessing an unspecified challenge oracleO , that is, the oracle can be a noisy pseudo-random
sampler Os with some constant random secret key s ∈ Zn

q , or it can be a truly random sampler O$.
The behaviors of the two kinds of samplers are as follows.

Os: outputs sample of the form (ui, vi) = (ui, 〈ui, s〉+ xi) ∈ Zn
q ×Zq, where s ∈ Zn

q is
a randomly uniform and invariant secret vector, ui ∈ Zn

q is a randomly uniformly selected
vector, and xi ∈ Zq is fresh sample from χ.

O$: outputs truly uniform random samples from Zn
q ×Zq.

The
(
Zq, n, χ

)
−LWE problem allows repeated queries to the challenge oracleO. For a

random s ∈ Zn
q , if LWE− adv[A] =

∣∣Pr
[
AOs = 1

]
− Pr

[
AO$ = 1

]
is non-negligible, we say

that algorithm A can solve the
(
Zq, n, χ

)
− LWE problem, where LWE− adv[A].represents

the advantage of algorithm A in solving the
(
Zq, n, χ

)
− LWE problem.
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Regev [27] showed that for some noise distributions χ, denoted Ψα. The LWE problem
is as difficult as the worst-case SIVP and GapSVP under quantum reduction (see also [28]).

Definition 6. ([27]) Consider a positive integer n, a real parameter α = α(n) ∈ (0, 1), and a
prime q. Denote Ψα as the normal distribution on Zq with the mean 0 as the Gaussian center and
the standard deviation α√

2π
, whose corresponding discrete distribution is Ψα.

Lemma 1. ([27]) Consider positive integer n, q and α ∈ (0, 1), if there is an efficient, possibly
quantum, algorithm to solve the

(
Zq, n, Ψα

)
− LWE problem for αq > 2

√
n, then in the worst case,

there is an efficient polynomial quantum algorithm to solve the SIVP and the GapSVP problems
with an approximate factor of Õ(n/α).

2.4. Preimage Matrix

Lemma 2. ([25]) Consider an odd prime q and a positive integer n, m, m′. For any m ≥ n log q,
there exists a fixed efficiently computable preimage matrix M ∈ Zn×m

q and an efficiently computable
deterministic “short preimage” function M−1(·) : Zq→n×m′ ·Zm×m′

q that satisfies the following
conditions. For any m′, when matrix A ∈ Zn×m′

q is input, the function M−1(A) outputs a

bit-matrix M−1(A) ∈ {0, 1}m×m′ such that MM−1(A) = A.

We can regard M as a special matrix. For those familiar with GSW13 [7] encryption,
multiplication M is the BitDecomp−1 operation, and the function M−1(·) is called BitDecomp.
Note that M−1(·) itself is not a matrix, but rather an efficiently computable function.

Let x, y be vectors of some dimension n over Zq. Let k = dlog qe and w = nk.
Let BitDecomp(x) be the w-dimension vector x′ = (x1,0, . . . , x1,k−1, . . . , xn,0, . . . , xn,k−1),
where xi,j is the j-th bit in xi’s binary representation. bits ordered least significant to
most significant. Let BitDecomp−1(x′) =

(
∑ 2j · x1,j, . . . , ∑ 2j · xn,j

)
=x be the inverse of

BitDecomp, but well-defined even when the input is not a 0/1 vector. Let Flatten(x′) =

BitDecomp
(

BitDecomp−1(x′)
)

, a w-dimension vector with 0/1 coefficients. BitDecomp(A),

BitDecomp−1(A), or Flatten(A) be the matrix formed by applying the operation to each column
of A separately. Finally, let Powersof2(y) =

(
y1, 2y1, . . . , 2k−1y1, . . . , yn, 2yn, . . . , 2k−1yn

)
.

Has the following properties:

(1) 〈BitDecomp(x)〉, Powersof2(y) = 〈x, y〉.
(2) 〈x′, Powersof2(y)〉 = 〈BitDecomp−1(x′), y〉 = 〈Flatten(x′), Powersof2(y)〉.

2.5. Trapdoor Function and Trapdoor Generation Algorithm

Definition 7. (MP12 Trapdoor [25]) For any integer n > 1, q ≥ 2, m = O(nlogq), k = dlog qe,
m = m − nk, w = nk, m ≥ w ≥ n. Set matrices A ∈ Zn×m and G ∈ Zn×w

q , and the

corresponding G-trapdoor matrix of A is R ∈ Zm×w, which satisfies A
[

R
Ink

]
= HG, where

H ∈ Zn×n
q is an invertible matrix, and H is called label of the trapdoor. The trapdoor’s quality

depends on the maximum singular value s1(R).

Lemma 3. (Trapdoor Generation Algorithm [25]) For n ≥ 1,q ≥ 2,m = O(nlogq) ≈
2nlogq,m = m− nk,w = nk,k = dlogqe, modulus q = q(n), invertible matrix H→ Zn×n

q , con-

struct a gadget matrix G = In ⊗ gT ∈ Zn×nk, where gT =
[
1, 21, 22, . . . , 2k−1

]
∈ Zk

q. Randomly

choose uniform matrix A ∈ Zn×m
q . There exists a trapdoor generation algorithm TrapGen(1n, 1m, q),

outputs matrix A =
[
A
∣∣HG−AR

]
∈ Zn×m

q and its trapdoor matrix R ∈ Zm×w where A is
statistically indistinguishable from Zn×m

q and the size of trapdoor is s1(R) ≤
√

mω
(√

logn
)
.
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Lemma 4. (Sampling Algorithm [25]) As same as the parameter of Lemma 3, let u ∈ Zn
q be

an n-dimensional random vector, Gaussian parameter σ ≥ s1(R)·ω
(√

logn
)
, and there exists

a PPT (probability polynomial time) algorithm SampleD(A, R, u, σ), output a vector t ∈ Zm
q

closing to the discrete Gaussian distribution D·uq (A),σω(
√

logn), satisfying A·t = u mod q, where

Pr
[
t← D·uq (A),σω(

√
logn) : t > σ

√
m
]
≤ negl(n).

3. Identity-Based Encryption Scheme

In order to construct a more efficient IBFHE scheme, we first need to construct an IBE
scheme with better performance. Next, we improve the IBE scheme of Agrawal et al. [26]
based on the MP12 trapdoor generation algorithm and sampling algorithm to make the
parameters of the scheme more compact.

3.1. Construction

The basic parameter definition of the scheme: Let n as security parameter, q = q(n)
as modulus, m = O(n log q), randomly uniform matrix A ∈ Zn×m

q and its corresponding
trapdoor R ∈ Zm×w, where m = m − nk, w = nk, k = dlog qe, m′ = m + 1; Construct a
gadget matrix G = In ⊗ gT ∈ Zn×w for gT =

[
1, 21, 22, . . . , 2k−1

]
∈ Zk

q and In is an n× n

identity matrix; encoding function with FRD (full-rank differences) H : Zn
q → Zn×n

q .

- IBE.Setup(1n) : Input the security parameter n and generate the basic parameter
q = q(n), m = O(n log q). Randomly and uniformly choose a matrix A ∈ Zn×m

q and an
n-dimensional vector u ∈ Zn

q . Run the trapdoor generation algorithm TrapGen(1n, 1m, q)
to generate matrix A =

[
A
∣∣−AR

]
∈ Zn×m

q and its trapdoor matrix R ∈ Zm×w. Output
master public key MPK = (A, u) and master secret key MSK = R.

- IBE.Extract(MPK, MSK, id) : Input the master public key MPK, master secret key
MSK, and user’s identity vector id ∈ Zn

q . Using FRD encoding function H : Zn
q → Zn×n

q ,
map each user’s id to an invertible matrix Hid ∈ Zn×n

q . Let Aid = A + [0|HidG] =[
A
∣∣HidG−AR

]
∈ Zn×m

q , run the sampling algorithm SampleD(Aid, R, u, σ) to gener-
ate secret key tid ∈ Zm

q corresponding to each user’s id, satisfying Aidtid = u mod q.

Set A
′
id = [u

∣∣∣Aid] ∈ Zn×m′
q . Output secret key sid = (1,−tid) ∈ Zm′

q , satisfying

A
′
idsid = 0 mod q.

- IBE.Enc(MPK, id, b) : Input the master public key MPK, user’s identity vector id ∈ Zn
q

and encrypted plaintext message b ∈ {0, 1}. Let µ =
(
b q

2 , 0, . . . , 0
)
∈ Zm′

q . Randomly

choose a uniform vector y $← {0, 1}n and an error vector e $← χm′
Ψα

according to the

LWE error distribution. Output ciphertext vector cid = A
′T
idy + µ + e ∈ Zm′

q .
- IBE.Dec(MPK, sid, cid) : Input the master public key MPK, user’s secret key sid and

ciphertext cid to decrypt. Compute b′ = sT
id · cid ∈ Zq. If ‖b′−

∣∣ q
2

∣∣‖ <∣∣ q
4

∣∣, output b = 1;
If ‖b′‖ <

∣∣ q
4

∣∣, output b = 0.

3.2. Correctness and Parameters

Theorem 1. ([21]) When m ≥ 2nlogq, α ≤
(
σ
√

m + 1·ω
(√

logn
))−1, q ≥ 5σ(m + 1), the IBE

scheme constructed in Section 3.1 is successfully decrypted with great probability.

Proof. It can be obtained from the decryption formula

sT
id · cid = sT

id

(
A
′T
idy + µ + e

)
= sT

idA
′T
idy +

〈
sT

id, µ
〉
+
〈
sT

id, e
〉

= b
⌊ q

2
⌋
+ sT

id, e
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According to [21], when α ≤
(
σ
√

m + 1·ω
(√

log n
))−1

, q ≥ 5σ(m + 1) can satisfy〈
sT

id, e
〉
≤ q

5 with a great probability. Due to
〈
sT

id, e
〉
≤ q

5 < q
4 , when

〈
sT

id, e
〉
< q

4 , if b = 1,
then ‖

〈
sT

id, cid
〉
− q

2‖ <
q
4 ; If b = 0, then ‖

〈
sT

id, cid
〉
‖ < q

4 , obviously the decryption algorithm
can successfully decrypt with great probability.

According to the above analysis and Lemma 1, when α and q reach the extreme

value, respectively, there is α·q = 5
√

m+1
ω
(√

log n
) >

5
√

2n log q

ω
(√

log n
) > 2

√
n, satisfying the secu-

rity requirements of LWE problem, that is αq > 2
√

n. To meet the above requirements,
set scheme parameter (m, q, σ, α): m = 2n log q, q = m

3
2
√

nω(log n), σ =
√

mω(log n),

α <
(

mω
(

log2 n
))−1

.�

3.3. Security Reduction

Theorem 2. When m ≥ 2n log q, if the
(
Zq, n, Ψα

)
− LWE hardness assumption holds, the basic

IBE scheme given in this section is IND-sID-CPA (Indistinguishable from Random, Select-Identity,
Chosen-Plaintext Attachment) security.

Proof. For the IBE scheme proposed in this paper, we use a series of IND-sID-CPA security
games proposed by Agrawal et al. [26] under the standard model to prove the security. The
security model is established by a sequence game between adversary A and challenger
C.The steps are as follows:

Game0 Game0 is a standard original IND-sID-CPA game between adversary A and
challenger C.

Game1 Let id∗ be the identity of adversary A who plans to attack. Compared with
Game0, the challenger changes the way to generate matrix A, and randomly generates
A =

[
A
∣∣−Hid∗G−AR

]
. From lemma 3, we can see that GenTrap algorithm in Game0

generates matrix A =
[
A
∣∣HidG−AR

]
. From the Left over Hash lemma [29], distribu-

tion
(
A, AR

)
and distribution

(
A, B

)
are statistically indistinguishable, for B ∈ Zn×w

q .
Therefore, in the view of adversary A, the matrix in Game0 and in Game1 are statis-
tically indistinguishable, and adversary A cannot distinguish Game0 and Game1 with
negligible advantages.

Game2 The difference between Game2 and Game1 is that Challenger C changes the
corresponding way to query id 6= id∗ secret key. Game2 uses GenTrap algorithm to generate
matrix G and lattice Λ⊥q (G) trapdoor matrix RG. Keeping the form of A =

[
A
∣∣−Hid∗G−AR

]
in Game1. According to the definition of FRD encoding function, (Hid −Hid∗) is nonsingular.
Challenger C can respond to the secret key query of adversaryA through the trapdoor matrix
RG to sample the preimage. Run sampling algorithm tid ← SampleD(Aid, RG, u, σ) and
output secret key sid = (1,−tid) to adversary A. If id = id∗, then (Hid −Hid∗) is a singular
matrix, and the game ends. The distribution D·uq (Aid),σω(

√
log n) of sid in Game2 and sid in

Game1 are statistically indistinguishable, so adversary A cannot distinguish Game1 and
Game2 with negligible advantages.

Game3 The difference between Game3 and Game2 is that the challenge ciphertext is
always selected as a random independent element of Zm′

q in the ciphertext space, so the
advantage of adversary A is zero.

For PPT adversaryA, it is still necessary to prove that the adversary cannot distinguish
Game2 and Game3 in computation through the hardness of the LWE problem. Assuming
adversary A has non-negligible advantage in distinguishing Game2 and Game3, we use
adversary A to construct an LWE algorithm E . Recall from definition 5 that an LWE
problem instance is provided as a sampling O which can be either truly random O$ or
noise pseudo-random Os. Challenger C uses the adversary A to distinguish the two. The
steps are as follows:

Instance Challenger C requests from O and receives m + 1 samples (ui, vi) ∈ Zn
q ×Zq,

for i = 0, 1, . . . , m + 1.
Target AdversaryA declares to challenger C the target identity of the planned attack id∗.
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Setup Challenger C sets MPK according to the target identity id∗.

(1) Challenger C uses the known samples to construct matrix A = (u1, u2, . . . , um) ∈ Zn×m
q .

(2) Take u0 as a common random vector u = u0 ∈ Zn
q .

(3) Select R← Dm×w from the distributionD and construct the matrix A1 = −Hid∗G−AR.
(4) Send the common parameter

{
u, A, A1

}
to the adversary A.

From Left over Hash lemma [29], for an adversaryA, matrix A1 is uniformly indistinguishable.
Queries1 Similar to Game2, Challenger C responds to each secret key query of adversaryA.
Challenge The adversary submits challenge plaintext b∗ ∈ {0, 1} to challenger C, and

challenger C outputs challenge ciphertext c∗id for target identity id∗:

(1) Let v∗ = (v1, . . . , vm)
T ∈ Zm

q .
(2) Hide plaintext message b∗ through constructing c∗0 = v0 + b∗ q

2 .

(3) Let c∗1 =

[
v∗

−RTv∗ + e′

]
∈ Zm

q ,for e′ Ψα← Zw
q .

(4) Select random bit r $← {0, 1}. When r = 0, send c∗ =
(
c∗0 , c∗1

)
to the adversary A;

when r = 1, randomly and uniformly select cid ∈ Zm′
q to pass to the adversary A.

Attention: When O = Os, the distribution of c∗ is indistinguishable from the chal-
lenge ciphertext in Game2. From the definition of the LWE problem, we can know that
v∗ = ATs + e Aid∗ =

[
A
∣∣(Hid∗ −Hid∗)G−AR

]
=
[
A
∣∣−AR

]
.Thus

c∗1 =

[
v∗

−RTv∗ + e′

]
=

[
ATs + e

−RT
(

ATs + e
)
+ e′

]
= AT

id∗s +
[

e
−RTe + e′

]

The right side of the equation is the challenge ciphertext c1 in Game 2; c∗0 = uT
0 s+ e′′ + b∗

∣∣ q
2

∣∣
is the challenge ciphertext c0 in Game2, for e′′ Ψα← Zq. Thus c∗ is a valid ciphertext of b∗

corresponding to identity id∗.
When O = O$, v0 ∈ Zq and v∗ ∈ Zm

q are then uniformly selected. According to the
Left over Hash lemma [29], −RTv∗ obeys the discrete random distribution, so the RTv∗ + e′

also obeys the discrete random distribution. Therefore, the distribution of challenge
ciphertext c∗ is indistinguishable from Game3, and is randomly selected by the challenger
C from Zm′

q . Queries2 The adversary A can continue to query the secret key in the same
way as Queries1.

Guess The adversaryA distinguishes whether the ciphertext is a random independent
vector on Zm′

q or a valid ciphertext of plaintext message b∗, and the challenger C answers
whether the samples in the LWE problem are from Os or O$ according to the guess results.

In summary, when O = Os, the view of the adversary A is the same as Game2; when
O = O$, adversary A has the same view as Game3. Because the advantage of algorithm E
in solving the LWE problem is the same as that of adversary A in distinguishing Game2
and Game3, and because there is no PPT algorithm that can effectively solve the LWE
problem; thus, the scheme is IND-sID-CPA secure, and the proof is over. �

3.4. Efficiency Analysis of IBE Scheme

We compared the parameters of the proposed IBE scheme with the ABB-IBE scheme
proposed by Agrawal et al. [26] with the same security as this scheme. See Table 1 for
comparison results.
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Table 1. Comparison of main parameters of IBE scheme.

Scheme Dimension Ciphertext Public Key Secret Key Gaussian Parameter

[26] 6n log q 2m + 1 n× (3m + 1) m×m mω(log n)
Ours-IBE 2n log q m + 1 n× (m + 1) (m×m)/4

√
mω(log n)

From the analysis in Table 1, it can be seen that the main efficiency parameters of
the IBE scheme in this paper were significantly optimized. Compared with the ABB10-
IBE trapdoor generation algorithm based on [23], this scheme uses the MP12 trapdoor
generation algorithm to reduce the lattice security dimension from 6n log q to 2n log q, and
the size of the master secret keys is selected from a short vector in a reasonable Gaussian
distribution, so the scale of the public parameters, key size, and ciphertext size of this
scheme are reduced.

4. Identity-Based Full Homomorphic Encryption Scheme

Based on the efficient IBE scheme proposed above, a new identity-based fully homo-
morphic encryption scheme was further constructed. We used the gadget matrix to replace
Powersoft2, BitDecomp and Flatten to obtain new encryption and decryption forms. At the
same time, we use the “approximate eigenvector” technology to eliminate the evaluation
key in homomorphic encryption to obtain a more concise identity-based full homomorphic
encryption scheme.

4.1. Construction

The basic parameter definition of the scheme: Let n as security parameter, L represents
the maximum depth of homomorphic calculation allowed for the circuit, q = q(n, L) is a
sufficiently large prime, and m, m′, m, w, k and FRD encoding function H are the same as
the definitions in the above IBE encryption scheme. Define N = (m + 1)k. We construct
another gadget matrix M = Im′ ⊗ gT ∈ Zm′×N , where gT =

[
1, 21, 22, . . . , 2k−1

]
∈ Zk

q and

Im′ is a m′ ×m′ identity matrix. According to Lemma 2, for any matrix A ∈ Zm′×N
q , there

exists a function M−1(·) such that M−1(A) ∈ {0, 1}N×N , satisfying MM−1(A) = A.

- IBFHE.Setup
(
1n, 1L) : Input the security parameter n and the maximum depth L that

the circuit allows homomorphic operations. Run the IBE.Setup algorithm to generate
matrix A =

[
A
∣∣−AR

]
∈ Zn×m

q . Output the master public key MPK = (A, u) and the
master secret key MSK = R.

- IBFHE.Extract(MPK, MSK, id) : Input the master public key MPK, master secret key
MSK, and user’s identity vector id ∈ Zn

q . Run the IBE.Extract algorithm to generate

matrix A
′
id = [u

∣∣∣Aid] ∈ Zn×m′
q . Output secret key sid = (1,−tid) ∈ Zm′

q , satisfying

A
′
idsid = 0 mod q.

- IBFHE.Enc(MPK, id, µ) : Input the master public key MPK, user’s identity vector id ∈
Zn

q and encrypted plaintext message µ ∈ {0, 1}. Randomly choose uniform vectors

yi
$← {0, 1}n and error vectors ei

$← χm′
Ψα

according to the LWE error distribution. N

vectors yi are connected to form the matrix Y = [y1, . . . , yN ] ∈ Zn×N , and N vectors ei

are connected to form the matrix E = [e1, . . . , eN ] ∈ Zm′×N
q , where i ∈ [N]. Output the

ciphertext matrix C = A
′T
idY + µM + E ∈ Zm′×N

q .
- IBFHE.Eval(MPK, f , (C1, . . . , Ct)) : Input the master public key MPK, Boolean cir-

cuit f , and ciphertext C1, . . . , Ct which are the different ciphertext of the same id
with secret key sid. Output the operation ciphertext C = f (C1, . . . , Ct), where the
homomorphic addition is CAdd = C1 + C2 and the homomorphic multiplication is
CMult = C1M−1(C2). According to the definitions of addition and multiplication, the
homomorphic NAND gate operation is defined as CNAND = M− C1M−1(C2).
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- IBFHE.Dec(MPK, sid, C) : Input the master public key MPK, user’s secret key sid

and ciphertext C to decrypt. Set the vector ω =
[∣∣ q

2

∣∣, 0, . . . , 0
]
∈ Zm′

q .Compute

µ′ = sT
id·C·M

−1(ω) and output
⌊

2µ′

q

⌋
.

4.2. Correctness and Parameters

Theorem 3. When q =
√

Nnm
3
2 ω(logn),σ =

√
mω(logn),α <

(√
Nmω

(
log2n

)
)
)−1

, the
IBFHE scheme constructed in Section 4.1 is successfully decrypted with great probability.

Proof. For the initial ciphertext C ∈ Zm′×N
q and secret key sid ∈ Zm′

q of the id, there are

sT
id·C = sT

id

(
A
′T
idY + µM + E

)
= sT

idA
′T
idY + µsT

idM + sT
idE

= µsT
idM + sT

idE
= µsT

idM + e′

(1)

It can be obtained from Equation (1) and decryption formula

µ′ = sT
id·C·M

−1(ω)
=
(
µsT

idM + e′
)
M−1(ω)

= µsT
idω + e′M−1(ω)

= µ
⌊ q

2
⌋
+ E′

In order to enable the decryption effective, it is necessary to ensure the ciphertext’s

noise ‖ E′ ‖∞≤
√

N
(
qσ
√

mαω
(√

log n
))

< q
5 , where α <

(√
Nσ
√

m + 1ω
(√

log n
))−1

,

that is 2µ′

q =
2µb q

2c+2‖E′‖
q < µ + 2

5 , satisfying 2bµ′c
q = µ. The ciphertext can be suc-

cessfully decrypted. To meet the above requirements, set scheme parameters (m, q, σ, α):

m = 2n log q, q =
√

Nnm
3
2 ω(log n), σ =

√
mω(log n), α <

(√
Nmω

(
log2 n

)
)
)−1

. �

4.3. Homomorphic Property

Definition 8. Let C ∈ Zm′×N
q be the ciphertext matrix corresponding to plaintext µ of the identity

id, and the secret key is s ∈ Zm′
q . If sTC = µsTM + e where ‖e‖∞ ≤ β, C is called the β-noise

ciphertext of plaintext µ.

Proof. Let C1 and C2 be the ciphertexts of identity id corresponding to plaintexts µ1 and
µ2 respectively, namely sTC1 = µ1sTM + e1, sTC2 = µ2sTM + e2, where µ1, µ2 ∈ {0, 1},
‖e1‖∞ ≤ β1, ‖e2‖∞ ≤ β2.

(1) Homomorphic addition: CAdd = C1 +C2, satisfy sTCAdd = sT(C1 +C2) = (u1 + µ2)sTM+
e+, where e+ = e1 + e2. Obviously CAdd is β1 + β2 noise ciphertext, that is, after one-time
homomorphic addition, the error increases by two times the factor.

(2) Homomorphic multiplication: CMult = C1M−1(C2), satisfy sTCMult = sTC1M−1(C2) =

(µ1µ2)sTM + e×, where e× = e1M−1(C2) + µ1e2. Obviously ‖ e× ‖∞≤
(√

Nβ1 + β2

)
,

CMult is
(√

Nβ1 + β2

)
noise ciphertext. The same calculation is also applicable to

NAND gates. �

4.4. Security Reduction

Theorem 4. If the
(
Zq, n, Ψα

)
− LWE hardness assumption holds, the IBFHE scheme given in

this section is IND-sID-CPA secure.
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Proof. The security of the IBFHE scheme proposed in this section can be proved based on
the IBE scheme constructed in the previous section, because the homomorphic IBFHE.Eval
algorithm in the IBFHE scheme is public and has no effect on the security of the scheme.
Under the LWE assumption, let C = A

′T
idY + µM + E ∈ Zm′×N

q be the ciphertext obtained
by encrypting the plaintext message 0 in the IBFHE scheme, which can be regarded as the
concatenation of the N ciphertexts of a bit 0 in the IBE scheme. It can be seen from theorem
2 that C and any random uniform matrices in Zm′×N

q are indistinguishable. Therefore,
according to the definition of the IND-sID-CPA security model, the IBFHE scheme proposed
in this section is IND-sID-CPA security. �

5. Multi-Identity Based Full Homomorphic Encryption Scheme
5.1. Link-Mask Scheme

Based on the above IBFHE scheme, we constructed an efficient multi-identity fully ho-
momorphic encryption scheme by using the extended ciphertext method and the masking
scheme, which is denoted as mIBFHE.

Firstly, we introduce the general method of converting single identity IBFHE scheme
into multi identity scheme. For the convenience of description, we describe our scheme as
a simple example. Assuming that there are two parties (D = 2), any polynomial number
of parties D can be extended by this method.

Let C1 and C2 be the ciphertexts of the plaintext messages µ1 and µ2 corresponding
to the parties’ identities id1 and id2 in the IBFHE scheme, respectively, and the iden-
tities id1 and id2 correspond to the secret keys s1 and s2, respectively, which satisfy
sT

1 C1 = µ1sT
1 M + e1, sT

2 C2 = µ2sT
2 M + e2. By extending ciphertext C1, C2 ∈ Zm′×N

q ac-

cording to the number of parties D to “extended” ciphertext Ĉ1, Ĉ2 ∈ Z2m
′×2N

q , those satisfy[
sT

1 , sT
2

]
Ĉ1 = µ1

[
sT

1 , sT
2

][M 0
0 M

]
+ small error

[
sT

1 , sT
2

]
Ĉ2 = µ2

[
sT

1 , sT
2

][M 0
0 M

]
+ small error

In this paper, the general method of converting single-identity IBFHE scheme into
multi-identity mIBFHE scheme is to convert the encrypted ciphertext matrix under single
identity into a Dm′ × DN-dimensional general extended matrix, and the scale of extended
ciphertext is expanded by D2. In this way, ciphertexts Ĉ1 and Ĉ corresponding to different
identities id can be input into the same Boolean circuit f ∈ C for homomorphic operation.

In order to perform the above ciphertext expansion, we need to construct a masking
scheme: this scheme allows each party (D1, D2) to independently generate key pairs, which
are (s1, pk1), (s2, pk2) respectively. D1 Run the IBFHE.Enc algorithm to encrypt plaintext
message µ1 under pk1, and then use pk2 and its own randomness to extend its ciphertext. In
the ciphertext expansion step, D1 runs the masking algorithm twice (the number of parties)
to use pk1, pk2 to create matrices X j

1, X2
1, where j ∈ [2], sT

1 X1
1 ≈ 0, sT

2
(
C1 − X2

1
)
≈ µ1M, and

sT
2 X2

1 ≈ 0. Then, we randomly chose a matrix Q and set a matrix Q2 such that sT
2 Q2 ≈ sT

1 Q.
Therefore, the final multi-identity extended ciphertext form of D1 is

Ĉ1 =

[
C1

1 Q
0 C2

1

]
where C1 is a single identity IBFHE ciphertext of D1, C1

1 = C1 − X1
1 and C2

1 = C1 − X2
1 +

X2
1 −Q2. There is
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[
sT

1 , sT
2
]
Ĉ1 =

[
sT

1 , sT
2
][ C1

1 Q
0 C2

1

]
=
[
sT

1 C1
1, sT

1 Q + sT
2 C2

1

]
≈ µ1

[
sT

1 , sT
2
][ M 0

0 M

]
Similarly, the ciphertext C2 is extended to Ĉ2, which can perform homomorphic

operations on ciphertext Ĉ1 and Ĉ2 encrypted under different identities.
Before constructing a specific masking scheme, we need to reconstruct the ciphertext

extension of CM15 on the basis of [30]. The operation is as follows.
Link–Mask. Let Y ∈ {0, 1}n×N be a 0-1 matrix, and V(x,t) be a IBFHE ciphertext

of Y[x, t] (x-th row and t-th column of Y, x ∈ [n], t ∈ [N]) under (pk, sk) = (A, s). Let
(pk′, sk′) = (A′, s′) be another IBFHE key pair. There exists a polynomial-time determinis-
tic algorithm Link–Mask

(
pk′,

(
V1,1, . . . , Vn,N)), input pk′ and encryptions V(x,t), return a

matrix X ∈ Zm′×N
q , satisfying sTX = sTA′TY+ e, where ‖e‖∞ ≤ n(m + 1)2β. The algorithm

is as follows (Algorithm 1).

Algorithm 1 Link–Mask.

Input: pk′ and
{

V(x,t)
}

x∈[n],t∈[N]

Output: X ∈ Zm′×N
q

(1) Define Lx,t ∈ Zm′×N
q , for x ∈ [n], t ∈ [N] by

Lx,t[a, b] =

{
A′T[a, x] t = b
0 other

(2) Output X = ∑n
x=1

N
∑

t=1
V(x,t)M−1(Lx,t) ∈ Zm′×N

q .

Proof. Since V(x,t) is a IBFHE ciphertext of Y[x, t] under (pk, sk) = (A, s), we have
sTV(x,t) = Y[x, t]sTM + ex,t. Hence, it holds that

sTX = sT
n,N

∑
x,t

V(x,t)M−1(Lx,t)

=
n,N

∑
x,t

(
Y[x, t]sTM + ex,t

)
M−1(Lx,t)

=
n,N

∑
x,t

(
Y[x, t]sTLx,t + ex,tM−1(Lx,t)

)
=

n,N

∑
x,t

(
Y[x, t]sTLx,t + e

′
x,t

)
.

= sT
n,N

∑
x,t

Y[x, t]Lx,t +
n,N

∑
x,t

e
′
x,t

where e
′
x,t = ex,tM−1(Lx,t) has a norm ‖e′x,t‖∞ ≤ (m + 1)β.

Now it suffices to show that
n,N
∑
x,t

Y[x, t]Lx,t = A′TY. Note that Lx,t has x-th column of

A′T on the t-th column and 0 elsewhere.
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n
∑

x=1

N
∑

t=1
Y[x, t]Lx,t =

n
∑

x=1

N
∑

t=1


0 · · · Y[x, t]A

′T
[1, x] · · · 0

...

...
0

. . .
...
· · ·

Y[x, t]A
′T
[2, x]

...

Y[x, t]A
′T
[n, x]

· · · 0

· · ·
...

· · · 0



=
N
∑

t=1


0 · · · ∑n

x=1 Y[x, t]A
′T
[1, x] · · · 0

...

...
0

. . .
...
· · ·

∑n
x=1 Y[x, t]A

′T
[2, x]

...

∑n
x=1 Y[x, t]A

′T
[n, x]

· · · 0

· · ·
...

· · · 0



=
N
∑

t=1


0 · · ·

〈
A
′Trow
1 , Ycol

t

〉
· · · 0

...

...
0

. . .
...
· · ·

〈
A
′Trow
2 , Ycol

t

〉
...〈

A
′Trow
n , Ycol

t

〉
· · · 0

· · ·
...

· · · 0

 = A
′T

Y

where A
′Trow
l denotes the l-th row of A′T and Ycol

l denotes the l-th column of Y.
To sum up,

sTX = sT
n,N

∑
x,t

Y[x, t]Lx,t +
n,N

∑
x,t

e
′
x,t = sTA′TY + e

where e =
n,N
∑
x,t

e
′
x,t has norm ‖ e ‖∞≤ n(m + 1)2β. �

5.2. Construction

The basic parameter definition of the scheme: Let n as security parameter, L denote
the maximum depth of homomorphic calculation allowed for the circuit, q = q(n, L) be a
sufficiently large prime, D denote the maximum number of distinct identities supported
by the scheme, m, m′, m, w, k, N = (m + 1)k and FRD encoding function H are the same as
the definitions in the above IBFHE encryption scheme. According to the notation in [16],
the gadget matrix M ∈ Zm′×N is extended to M̂ ∈ ZDm′×DN

q . According to lemma 2,

it is known that for any matrix A ∈ ZDm′×DN
q , there exists a function M̂−1

(·) such that

M̂−1
(A) ∈ {0, 1}DN×DN , satisfying M̂M̂−1

(A) = A.

- mIBFHE.Setup
(
1n, 1L, 1D) : Input the security parameter n, the maximum depth

L that the circuit allows homomorphic operations, and the maximum number of
different identities D supported by the scheme. Run the IBFHE.Setup algorithm and
output the master public key MPK = (A, u) and the master secret key MSK = R.

- mIBFHE.Extract
(

MPK, MSK,
[
idj
]

j∈[D]

)
: Input the master public key MPK, master

secret key MSK, and user’s identity vector
[
idj
]

j∈[D]
∈ Zn

q . Run the IBFHE.Extract
algorithm to generate secret key sid1 , . . . , sidD corresponding to identity id1, . . . , idD and
the related public key A

′
id1

, . . . , A
′
idD

, and construct the joint secret key by horizontally

appending all the secret-keys in sequence ŝ =
[
sid1 , . . . , sidD

]
∈ ZDm′

q . Output the

public key A
′
id1

, . . . , A
′
idN

and the joint secret key vector ŝ.

- mIBFHE.Enc
(

MPK,
[
idj
]

j∈[D]
,
[
A
′
idj

]
j∈[D]

, µ, i
)

: Input the master public key MPK,

the user’s identity vector
[
idj
]

j∈[D]
and its corresponding public key

[
A
′
idj

]
j∈[D]

, the

encrypted plaintext message µ ∈ {0, 1} and the identity i ∈ [D] that needs to be
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extended. Run the algorithm to output the extended ciphertext Ĉi corresponding to
identity idi. The specific operation steps are as follows:

1. Single identity encryption step: Run IBFHE.Enc(MPK, idi, µ) to generate identity

idi single identity IBFHE ciphertext C = A
′T
idY + µM + E. In this step, the party (here

the i-th party) keeps its Y for the next step;
2. Multi-identity ciphertext expansion step: Input a single-identity ciphertext C, the

public keys of the other parties, and a randomness Y selected from IBFHE.Enc. Exe-
cute steps (a)–(d) as follows:

(a)
{

V(x,t)
i,j

}
x∈[n],t∈[N]

←
{

IBFHE.Enc
(
MPK, idj, Y[x, t]

)}
x∈[n],t∈[N]

for j ∈ [D].{
¯
V
(x,t)

i,j

}
x∈[n],t∈[N]

←
{

IBFHE.Enc
(

MPK, idj, Y[x, t]
)}

x∈[n],t∈[N]
for j ∈ [D]\{i},

where Y was chosen in the single identity encryption step and Y is randomly chosen
from {0, 1}n×N.

(b) Compute

X j
i ← Link–Mask

({
V(x,t)

i,j

}
x∈[n],t∈[N]

, A
′
idi

)
, j ∈ [D] .

X j
i ← Link–Mask

{¯
V
(x,t)

i,j

}
x∈[n],t∈[N]

, A
′
idj

, j ∈ [D]\{i} .

(c) Choose Q $← Zm′×N
q . Set the matrix Qh ∈ Zm′×N

q having the last row sidi
Q+ eh

and the rest rows zero, where sidi
is the secret key of the party i, eh is chosen

from χN , ∀h ∈ [D]\{i}.
(d) Define the extended ciphertext matrix Ĉi ∈ ZDm′×DN

q of the initial ciphertext C as

Ĉi



C1
i 0

0 C2
i

· · · 0 0
· · · 0 0

...
...

Q · · ·

...
...

...
Ci

i · · · Q
...

...
0 0

...
...

...
· · · 0 CD

i


Which is concatenated by D2 number of m′ × N sub-matrices. The diagonal
sub-matrices of Ĉi are Cj

i = C− X j
i + X j

i −Qj for j ∈ [D]\{i} and the i-th
diagonal sub-matrix is C− Xi

i . Lastly, Q is on the i-th row and zero matrix
0m′×N is elsewhere.

- mIBFHE.Eval
(

MPK,
(
Ĉ1, . . . , Ĉt

)
, f
)

: Input the master public key MPK, Boolean
circuit f , and the extended ciphertext Ĉ1, . . . , Ĉt which are the ciphertext encrypted
under different identities id. Output the operation ciphertext Ĉ = f

(
Ĉ1, . . . , Ĉt

)
, where

the homomorphic addition is ĈAdd = Ĉ1 + Ĉ2 and the homomorphic multiplication is
ĈMult = Ĉ1M−1(Ĉ2

)
. According to the definitions of addition and multiplication, the

homomorphic NAND operation is defined as ĈNAND = M̂− Ĉ1M̂−1(Ĉ2
)
.

- mIBFHE.Dec
(

MPK, ŝ, Ĉ
)
: Input the master public key MPK, the joint secret key ŝ and

the extended ciphertext Ĉ to be decrypted. Set a vector ω̂ =
[∣∣ q

2

∣∣, 0, . . . , 0
]
∈ ZDm

′

q ,

compute µ′ = ŝT·Ĉ·M̂−1
(ω̂), and output µ =

⌊
2µ′

q

⌋
.
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Correctness. Let Ĉi be the multi-identity ciphertext of a bit µ by i-th user from the
mIBFHE.Enc algorithm:

Ĉi ← mIBFHE.Enc
(

MPK,
[
idj
]

j∈[D]
,
[
A
′
idj

]
j∈[D]

, µ, i
)

where C is a single identity IBFHE ciphertext. For the joint secret key ŝ =
[
sid1 , . . . , sidD

]
∈ ZDm

′

q

and the gadget matrix M̂ ∈ ZDm′×DN
q , if Ĉi satisfies the relation ŝTĈi ≈ µŝTM̂, then we can

naturally generalize the arguments of the scheme in [7]. The correctness of encryption and
evaluation can be realized, and an effective mIBFHE scheme can be obtained.

Now, we are ready to prove the correctness of multi-identity ciphertext. We recall that
for a valid output X from Link–Mask

(
pk
′
,
(
V1,1, . . . , Vn,N)) with respect to a 0-1 matrix Y,

we have sTX = sTA′TY + e for e∞ ≤ n(m + 1)2β. By the definition, we have

ŝTĈi =
[
sT

id1
C1

i + sT
idi

Q, . . . , sT
idi

Ci
i, . . . , sT

idD
CD

i + sT
idi

Q
]

=
[
sT

id1

(
C− X1

i + X1
i −Q1

)
+ sT

idi
Q, . . . , sT

idi

(
C− Xi

i
)

,

. . . , sT
idD

(
C− XD

i + XD
i −QD

)
+ sT

idi
Q
]

Let’s see how the bit message µ is correctly recovered and check the error bound by
using the following properties.

(1) sT
idj

C = sT
idj

(
A
′T
idi

Yi + µM + E
)
= sT

idj
A
′T
idi

Yi + µsT
idj

M + e′, where ‖ e′ ‖∞≤ (m + 1)β ;

(2) sT
idj

X j
i = sT

idj
A
′T
idi

Yi + e”
j , where ‖ e”

j ‖∞≤ n(m + 1)4β;

(3) sT
idi

Xi
i = sT

idi
A
′T
idi

Yi + e”
j = ẽi, where ‖ ẽi ‖∞≤ n

[
(m + 1)4 + m + 1

]
β;

(4) sT
idj

X j
i = sT

idj
A
′T
idj

Y + e”
j = ẽj, where ‖ ẽj ‖∞≤ n

[
(m + 1)4 + m + 1

]
β;

(5) sT
idj

Qj = sT
idi

Q + ej, where ‖ ej ‖∞≤ (m + 1)β;

∴ sT
idj

(
C− X j

i + X j
i −Qj

)
+ sT

idi
Q = µsT

idj
M + êj

sT
idi

(
C− Xi

i
)
= µsT

idi
M + êi

Therefore, we have ŝTĈi = µŝTM̂+ ê where ê = [ê1, . . . , êi, . . . , êD] ∈ ZD×N
q and ‖ê‖∞ ≤[

2n(m + 1)4 + (n + 1)(m + 1)β
]
. In the decryption procedure, this error is multiplied by

√
DN. By our choice of the parameter,

√
DN

[
2n(m + 1)4 + (n + 1)(m + 1)β

]
< q

4 .
Homomorphic property. The homomorphic property of the mIBFHE scheme follows

directly from the IBFHE scheme in the fourth chapter, because the mIBFHE.Eval algorithm
is basically the same as the IBFHE.Eval algorithm except for the dimension expansion, the
matrix M̂ and the randomization function M̂−1

(·). The following is the homomorphism
analysis of the mIBFHE scheme:

Definition 9. Let Ĉ1, Ĉ2 be an extended ciphertext matrix corresponding to plaintext

µ1, µ2, respectively, and the secret key is ŝ ∈ ZDm
′

q , satisfying ŝTĈ1 = µ1ŝTM̂ + ê1,
ŝTĈ2 = µ2ŝTM̂ + ê2, where µ1, µ2 ∈ {0, 1}, ‖ê1‖∞ ≤ β̂1, ‖ê2‖∞ ≤ β̂2.

(1) Homomorphic addition: ĈAdd = Ĉ1 + Ĉ2, satisfy ŝTĈAdd = ŝT(Ĉ1 + Ĉ2
)
= (u1 + µ2)

ŝTM̂ + ê+,where ê+ = ê1 + ê2. Obviously ĈAdd is β̂1 + β̂2 noise ciphertext, that is,
after one-time homomorphic addition, the error increases by 2 times the factor.
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(2) Homomorphic multiplication: ĈMult = Ĉ1M̂−1(Ĉ2
)
, satisfy ŝTĈMult = ŝTĈ1M−1(Ĉ2

)
=

(µ1µ2)ŝTM̂+ ê×, where ê× = ê1M̂−1(Ĉ2
)
+ µ1ê2. Obviously ‖ ê′′ ‖∞≤

(√
DNβ̂1 + β̂2

)
,

ĈMult is
(√

DNβ̂1 + β̂2

)
noise ciphertext. The same calculation is also applicable to

NAND gates.

Multi-identity ciphertext security. If the IBE scheme constructed in this paper is IND-
sID-CPA secure, then the mIBFHE scheme proposed in this paper is also IND-sID-CPA secure.

By using constructive proof, the masking scheme constructed by LinkMask algorithm
is IND-sID-CPA security. From theorem 2, it can be seen that the IBFHE scheme is IND-sID-
CPA security. In summary, the mIBFHE scheme is also IND-sID-CPA security.

5.3. Efficiency Analysis of MIBFHE Scheme

The mIBFHE scheme proposed in this paper is compared with the CM15 scheme
proposed by Clear et al. [12]. The comparison results are shown in Table 2.

Table 2. Comparison of main parameters of mIBFHE scheme.

Scheme Dimension q Size of
^
s Size of

^
C Noise Rate

[12] 6n log q 8ωβ(DN + 1)L ND DN × DN DN + 1

Ours 2n log q 5ωβ
(√

DN + 1
)L m′D Dm′ × DN

√
DN + 1

From the analysis in Table 2, it can be seen that compared with the CM15 scheme based
on the trapdoor generation algorithm in [21], the mIBFHE scheme in this paper used the
MP12 trapdoor generation algorithm and the preimage matrix for encryption. The scheme
is more concise and the encryption algorithm is simpler. Therefore, the main efficiency
parameters of the mIBFHE scheme in this paper are significantly optimized. The lattice
security dimension m is reduced from 6n log q to 2n log q, the size of the joint secret key ŝ is
reduced from ND to m′D, and the size of extended ciphertext is reduced from DN × DN
to m′D× DN.

6. Conclusions

Aiming at the problem that low efficiency of trapdoor function and sampling algorithm
in lattice-based multi-identity fully homomorphic encryption scheme, this paper first
constructed an efficient and transformable IBE scheme based on MP12 trapdoor, which
solves the problem that the trapdoor of IBE scheme is difficult to realize and the preimage
sampling is complex. Based on the LWE hardness problem, it is proved that the scheme is
IND-sID-CPA security under the standard model. Then, the IBE scheme is transformed into
IBFHE scheme by using the approximate eigenvector to eliminate the evaluation key and
the preimage matrix. This IBFHE scheme satisfies the homomorphism operation. Finally,
the constructed masking scheme and the extended ciphertext method are used to transform
the IBFHE scheme into mIBFHE scheme. Compared with similar schemes, our scheme is
more concise and efficient, and the parameters are more compact.

Author Contributions: Conceptualization, H.F. and R.H.; formal analysis, H.F.; funding acquisition,
R.H.; methodology, H.F.; validation, H.F., R.H. and F.L.; writing—original draft, H.F.; writing—review
& editing, H.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation Project of
China under Grant No. 62062009 and the Guangxi Innovation-driven Development Project under
Grant Nos. AA17204058-17 and AA18118047-7.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 6343 17 of 18

References
1. Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4, 169–180.
2. Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual ACM Symposium on

Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178.
3. Van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully homomorphic encryption over the integers. In Advances in

Cryptology–EUROCRYPT 2010, Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic
Techniques; French Riviera, France, 30 May–3 June 2010, Proceedings 29; Springer: Berlin/Heidelberg, Germany, 2010; pp. 24–43.

4. Brakerski, Z.; Vaikuntanathan, V. Fully homomorphic encryption from ring-LWE and security for key dependent messages. In
Advances in Cryptology–CRYPTO 2011, Proceedings of the 31st Annual Cryptology Conference, Santa Barbara, CA, USA, 14–18
August 2011; Proceedings 31. Springer: Berlin/Heidelberg, Germany, 2011; pp. 505–524.

5. Brakerski, Z.; Vaikuntanathan, V. Efficient Fully Homomorphic Encryption from (Standard) LWE. In Proceedings of the 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science, Palm Springs, CA, USA, 22–25 October 2011; pp. 97–106.

6. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) Fully homomorphic encryption without bootstrapping. In Proceedings of
the 3rd Innovations in Theoretical Computer Science Conference, Berkeley, CA, USA, 31 January–3 February 2012; pp. 309–325.

7. Gentry, C.; Sahai, A.; Waters, B. Homomorphic encryption from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Advances in Cryptology–CRYPTO 2013, Proceedings of the 33rd Annual Cryptology Conference, Santa
Barbara, CA, USA, 18–22 August 2013; Proceedings, Part I.. Springer: Berlin/Heidelberg, Germany, 2013; pp. 75–92.

8. Shamir, A. Identity-based cryptosystems and signature schemes. In Proceedings of the Advances in Cryptology-Crypto’84, Santa
Barbara, CA, USA, 19–22 August 1984; pp. 341–349.

9. Naccache, D. Is Theoretical Cryptography Any Good in Practice [OL]. Invited Talk at Crypto/CHES 2010. Available online:
http://www.iacr.org/workshops/ches/ches2010 (accessed on 18 August 2010).

10. Clear, M.; McGoldrick, C. Bootstrappable identity-based fully homomorphic encryption. In Cryptology and Network Security,
Proceedings of the 13th International Conference, CANS 2014, Heraklion, Greece, 22–24 October 2014; Proceedings 13. Springer
International Publishing: Cham, Switzerland, 2014; pp. 1–19.

11. Garg, S.; Gentry, C.; Halevi, S.; Raykova, M.; Sahai, A.; Waters, B. Candidate Indistinguishability Obfuscation and Functional
Encryption for all Circuits. In Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science
(FOCS), Berkeley, CA, USA, 26–29 October 2013; pp. 40–49.

12. Clear, M.; McGoldrick, C. Multi-identity and multi-key leveled FHE from learning with errors. In Advances in Cryptology—
CRYPTO 2015, Proceedings of the 35th Annual Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2015; Proceedings,
Part II 35. Springer: Berlin/Heidelberg, Germany, 2015; pp. 630–656.

13. TU, G.; Yang, X.; Zhou, T. Efficient identity-based multi-identity fully homomorphic encryption scheme. J. Comput. Appl. 2019,
39, 750.

14. Cash, D.; Hofheinz, D.; Kiltz, E.; Peikert, C. Bonsai trees, or how to delegate a lattice basis. In Proceedings of the 29th Annual
International Conference on Theory and Applications of Cryptographic Techniques, French Riviera, France, 30 May–3 June 2010;
pp. 523–552.

15. Shen, T.; Wang, F.; Chen, K.; Wang, K.; Li, B. Efficient leveled (multi) identity-based fully homomorphic encryption schemes.
IEEE Access 2019, 7, 79299–79310. [CrossRef]

16. Mukherjee, P.; Wichs, D. Two round multiparty computation via multi-key FHE. In Advances in Cryptology–EUROCRYPT 2016,
Proceedings of the 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, 8–12 May 2016; Proceedings, Part II 35. Springer: Berlin/Heidelberg, Germany, 2016; pp. 735–763.

17. Pal, T.; Dutta, R. Chosen-ciphertext secure multi-identity and multi-attribute pure FHE. In Cryptology and Network Security,
Proceedings of the 19th International Conference, CANS 2020, Vienna, Austria, 14–16 December 2020; Proceedings 19. Springer
International Publishing: Cham, Switzerland, 2020; pp. 387–408.

18. Shen, T.; Wang, F.; Chen, K.; Shen, Z.; Zhang, R. Compressible multikey and multi-identity fully homomorphic encryption. Secur.
Commun. Netw. 2021, 2021, 1–14. [CrossRef]

19. Gentry, C.; Halevi, S. Compressible FHE with applications to PIR. In Theory of Cryptography, Proceedings of the 17th International
Conference, TCC 2019, Nuremberg, Germany, 1–5 December 2019; Proceedings, Part II.. Springer International Publishing: Cham,
Switzerland, 2019; pp. 438–464.

20. Liu, W.; Wang, F.; Jin, X.; Chen, K.; Shen, Z. Leveled Multi-Hop Multi-Identity Fully Homomorphic Encryption. Secur. Commun.
Netw. 2022, 2022, 1023439. [CrossRef]

21. Gentry, C.; Peikert, C.; Vaikuntanathan, V. Trapdoors for hard lattices and new cryptographic constructions. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, Columbia, BC, Canada, 17–20 May 2008; pp. 197–206.

22. Peikert, C.; Shiehian, S. Multi-key FHE from LWE, revisited. In Theory of Cryptography, Proceedings of the 14th International
Conference, TCC 2016-B, Beijing, China, 31 October–3 November 2016; Proceedings, Part II.. Springer: Berlin/Heidelberg,
Germany, 2016; pp. 217–238.

23. Ajtai, M. Generating hard instances of the short basis problem. In Automata, Languages and Programming, Proceedings of the
26th International Colloquium, ICALP’99, Prague, Czech Republic, 11–15 July 1999; Proceedings 26. Springer: Berlin/Heidelberg,
Germany, 1999; pp. 1–9.

http://www.iacr.org/workshops/ches/ches2010
https://doi.org/10.1109/ACCESS.2019.2922685
https://doi.org/10.1155/2021/6619476
https://doi.org/10.1155/2022/1023439


Appl. Sci. 2023, 13, 6343 18 of 18

24. Alwen, J.; Peikert, C. Generating Shorter Bases for Hard Random Lattices. In Proceedings of the 26th International Symposium on
Theoretical Aspects of Computer Science STACS 2009, Freiburg, Germany, 26–28 February 2009; IBFI Schloss Dagstuhl: London,
UK, 2009; pp. 75–86.

25. Micciancio, D.; Peikert, C. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. Eurocrypt 2012, 7237, 700–718.
26. Agrawal, S.; Boneh, D.; Boyen, X. Efficient lattice (h) ibe in the standard model. Eurocrypt 2010, 6110, 553–572.
27. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the Thirty-Seventh Annual

ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005; pp. 84–93.
28. Peikert, C. Public-key cryptosystems from the worst-case shortest vector problem. In Proceedings of the Forty-First Annual ACM

Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 333–342.
29. Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM J.

Comput. 2008, 38, 97–139. [CrossRef]
30. Kim, E.; Lee, H.S.; Park, J. Towards round-optimal secure multiparty computations: Multikey FHE without a CRS. In Information

Security and Privacy, Proceedings of the 23rd Australasian Conference, ACISP 2018, Wollongong, NSW, Australia, 11–13 July
2018; Proceedings 23; Springer International Publishing: Cham, Switzerland, 2018; pp. 101–113.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1137/060651380

	Introduction 
	Preliminaries 
	Relevant Definitions of Lattice 
	Discrete Gaussian Distribution 
	LWE Hardness Problem 
	Preimage Matrix 
	Trapdoor Function and Trapdoor Generation Algorithm 

	Identity-Based Encryption Scheme 
	Construction 
	Correctness and Parameters 
	Security Reduction 
	Efficiency Analysis of IBE Scheme 

	Identity-Based Full Homomorphic Encryption Scheme 
	Construction 
	Correctness and Parameters 
	Homomorphic Property 
	Security Reduction 

	Multi-Identity Based Full Homomorphic Encryption Scheme 
	Link-Mask Scheme 
	Construction 
	Efficiency Analysis of MIBFHE Scheme 

	Conclusions 
	References

