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Abstract: The environment perception algorithm in autonomous driving is trained in the source
domain, leading to domain drift and reduced detection accuracy in the target domain due to shifts
in background feature distribution. To address this issue, a domain adaptive object detection algo-
rithm based on feature uncertainty is proposed, which can improve the detection performance of
object detection algorithms in unlabeled data. Firstly, a local alignment module based on channel
information is proposed, which can obtain the model’s uncertainty about different domain data
based on the feature channels obtained through the feature extraction network, achieving adaptive
dynamic local alignment. Secondly, an instance-level alignment module guided by local feature
uncertainty is proposed, which can obtain the corresponding instance-level uncertainty through
ROI mapping. To improve the domain invariance of bounding box regression, a multi-class, multi-
regression instance-level uncertainty alignment module is proposed, which can achieve spatial
decoupling of classification and regression tasks, further improving the model’s domain adaptive
ability. Finally, the effectiveness of the proposed algorithm is validated on Cityscapes, KITTI, and
real vehicle data.

Keywords: object detection; domain adaptation; uncertainty

1. Introduction

Automatic driving vehicles require the accurate detection of surrounding objects to
enable appropriate planning from subsequent decision-making algorithms. In recent years,
deep-learning-based object detection algorithms [1–9] have achieved remarkable results,
and many publicly available datasets have been used to evaluate algorithm performance.
These models often rely on supervised training on large-scale datasets with ground truth
annotations. However, compared to actual driving environments, the scenes contained
in the datasets are mostly under good weather conditions. Training a detector based on
such data (source domain) would result in the model learning only limited feature repre-
sentations. When the scene changes, the pre-trained detector would suffer from a sharp
decline in performance on data with different distributions (target domain). Therefore,
improving the scene adaptation ability of the detector is an indispensable research topic in
future automatic driving technology. Real-world traffic scenes present various difficulties
in achieving accurate object detection due to different weather conditions, background
styles, and target types. For example, rainy and foggy conditions can cause object occlusion,
increased texture granularity, and blurred contours, making it difficult for the feature
extraction layer of convolutional neural networks to obtain effective feature information,
resulting in output bounding box offset and classification errors [10–12].

There are two different methods to solve this problem. The direct method involves
continuously collecting data from various scenarios and obtaining corresponding labels
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through manual annotation. This approach is an attempt to combat infinite possibilities
with limited resources and is not a sustainable route. Another method is to adopt domain
adaptation to obtain domain-invariant features from unlabeled data or guide the model
to learn features of the target domain [13]. The purpose of domain adaptation is to use
both labeled source domain data and unlabeled target domain data to train the model. This
process is usually subject to two mutually adversarial constraints, guiding the model to
reduce the difference in feature distribution between domains. In most domain adaptation-
based object detection methods, additional domain discriminators are added after the
feature extraction stage and detection head to solve the domain drift problem through
adversarial learning. However, directly applying domain discriminators on the feature
maps obtained from the feature extraction layer for local alignment can cause changes to
the already aligned features, which, in turn, affects the detection accuracy. For autonomous
driving scenarios, changes in target features due to environmental variations are often local.
As shown in Figure 1a, both foggy and clear images contain the same object. Although the
targets in the foggy images appear blurry, most of their features are similar to those in the
normal images. This means that the model should focus on aligning regions with significant
feature changes. Therefore, we propose a feature uncertainty-based local alignment module,
Feature Uncertainty Alignment (FUA), that can adaptively achieve feature alignment based
on the local blurriness of an image. Figure 1b displays two feature channel entropy maps
from different domains, where each pixel value represents the entropy of all channels
at that location. A higher channel entropy indicates that the position contains richer
feature information, which is advantageous for target detection. Conversely, when feature
information is insufficient, the model needs to learn new feature representations to adapt
to the target domain.
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The methods based on adversarial learning have been widely developed in the fields
of classification [14–19] and segmentation [20–23]. However, unlike classification and
segmentation tasks, the commonly used global alignment methods ignore the decoupling
of bounding box regression and object classification in object detection. When optimizing
two different subtasks together, conflicts in the optimization space inevitably arise. A
study [24] pointed out that the reason for this problem is that the decision boundaries in
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regression space and classification space are significantly different and proposed a domain
adaptive module that utilizes auxiliary classifiers and locators to decouple the behavior
inconsistency between the two tasks, thus improving the classification and localization
ability of the detector. Based on this, this paper proposes a new instance-level uncertainty
alignment (IUA) module guided by the aforementioned feature channel entropy. Moreover,
a scale-independent entropy loss function is established for the domain adaptive loss of
bounding box regression.

Specifically, the contributions of this paper are as follows:
(1) An object detection method based on feature uncertainty domain adaptation

(FUDA) is proposed to address the problem of domain shift caused by environmental
changes in autonomous driving object detection algorithms. By utilizing unlabeled target
domain data to learn domain-invariant features, FUDA reduces cross-domain differences
and improves the detection performance of the detector in different scenarios.

(2) To address the problem of feature degradation in the source domain caused by local
domain alignment in current domain adaptation methods, a feature uncertainty-based local
alignment module (FUA) is proposed, which can dynamically align features in low-entropy
and high-entropy regions to improve the domain invariance in the extracted features by
the backbone network in the target domain.

(3) An instance uncertainty alignment module (IUA) is proposed to address the
problem of unstable alignment of bounding box regression in the target domain caused by
existing global alignment methods. IUA guides the weight allocation of global alignment
based on local uncertainty, which improves the accuracy of regression and classification in
the target domain.

2. Related works
2.1. Adversarial Learning-Based Methods for Domain Adaptation

The widely adopted method in domain adaptation is to enable the model to learn
domain-invariant features, where the features obtained from same-class objects from two
different domains are similar. To achieve this goal, a classification task is coupled with
an adversarial learning approach proposed in [13]. Specifically, a domain discriminator
module is added after the output of the feature extraction layer, which is used to distin-
guish whether the current feature map comes from the source or target domain. During
backpropagation, the gradient reversal layer is utilized to pass the opposite gradient, re-
ducing the upper bound of the feature space, which requires the obtained features to meet
the requirements of the classification task while also deceiving the domain discriminator.
Inspired by this work, a study [25] attempted to apply this method in the field of object
detection and proposed to add a domain discriminator in each stage of the two-stage
detector, achieving local and global alignment through a gradient reversal layer. During
backpropagation, both source and target domain data are used to calculate the domain
discriminator loss, while the detection loss is obtained only from the source domain data
and corresponding ground truth labels. A study [26] pointed out that the deep layers of
the feature extraction layer tend to capture global information, and direct strong alignment
is not the best choice. Therefore, they proposed to implement strong alignment only in
the shallow layers of the backbone and weak alignment in the deeper layers. Meanwhile,
the focal loss is introduced to distinguish the difficulty of recognizing targets, allocating
different alignment weights. Many subsequent works [27–29] follow the above scheme and
make improvements, but these methods calculate the domain difference using the entire
feature map, causing the model to pay too much attention to task-irrelevant parts. To solve
this problem, reference [30] utilized the ROIs generated by the RPN as the focus center
and clustered the ROIs using the K-means algorithm. Different weights are assigned to the
discriminator according to the selected regions. In addition to guiding attention through
RPN, there are also works [31] that partition the importance of different regions by adding
a semantic segmentation module. However, for rainy and foggy weather conditions in
the autonomous driving scene, RPN or segmentation networks cannot provide perfect
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attention guidance. Therefore, in this paper, an uncertainty alignment module is proposed
by calculating the entropy of the feature channel based on the different sensitivity of each
channel to different regions in the feature extraction layer.

2.2. Methods Based on Image-to-Image Translation

Domain shift occurs when there is a difference in feature distribution between the
source and target domains, caused by the fact that the input to the feature extraction layer
is two visually distinct styles of images. Therefore, some works attempted to reduce the
difference from the input end. A study [32] utilized Cycle-GAN [33] to learn a mapping
function between the source and target domain images and added an image translation
module in the input stage to improve the style consistency of the two images and improve
the detection performance of the model in the target domain. Similarly, a study [34]
proposed a progressive adaptation strategy that can enable a trained Cycle-GAN to achieve
mutual mapping between the target and source domains, thereby reducing the feature
difference between domains. Reference [35] points out the contradiction between feature
discriminability and transferability in detectors. By generating synthetic samples of the
target domain through a model translation module and then reweighting the data space
based on importance, negative transfer issues are avoided. These methods are all searching
for a perfect mapping function to transform images between different domains, allowing
the detector to adapt to the target domain detection task without the need for retraining.
However, this mapping function is not easy to obtain, and the detector has difficulty
learning domain-invariant features.

2.3. Methods Based on Teacher–Student Model

Knowledge distillation is a commonly used method in semi-supervised learning. By
adding perturbations to unlabeled samples and computing the consistency loss between the
teacher and student models, it can improve the cross-domain robustness of the model [36].
Based on this, [37] proposed an unbiased average teacher model to deal with domain
adaptation problems in object detection. This method trains a Cycle-GAN module to
learn the image mapping between the source and target domains and then creates a
target domain image that resembles the source domain and a source domain image that
resembles the target domain. Knowledge distillation is achieved by matching the model
predictions of the source-like target images with the original target domain images, and the
teacher model’s parameters are updated using the exponential moving average method.
A study [38] also introduced an uncertainty module on top of the average teacher model
to provide dynamically weighted parameters for the consistency loss. However, these
methods globally unify the consistency difference between the student and teacher models,
and their performance is easily affected by the added perturbations.

3. Domain Adaptation Object Detection Based on Feature Uncertainty

This paper proposes a domain adaptive object detection algorithm based on feature
uncertainty. As shown in Figure 2, images from the source or target domain are downsam-
pled, and semantic information is extracted using a backbone network. Similar to [25,26],
FUA, a local image-level alignment method is employed, and a domain adaptive branch is
added to reduce the distribution difference between the source and target domain features.
However, the proposed FUA module calculates the channel entropy of the features to
obtain the uncertainty of the current backbone for different regions. This result guides
the domain adaptive module to focus more on areas with greater uncertainty. For global
instance-level alignment, an IUA module is proposed, which contains multiple regres-
sion and classification outputs. The proposed regression entropy loss and classification
entropy loss are used to obtain the adaptation of the detection head to the current feature
map. Meanwhile, the introduced uncertainty map of FUA further guides the target of
instance-level feature alignment.
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3.1. Problem Definition

Following the common representation of domain adaptation methods, the image from
the source domain is represented as XS =

{
x1

S, x2
S, . . . , xi

S}, i = 1, 2, . . . , nS, the label
from the source domain is represented as YS =

{
y1

S, y2
S, . . . , yi

S}, i = 1, 2, . . . , nS, and the
image from the target domain is represented as XT =

{
x1

T , x2
T , . . . , xi

T}, i = 1, 2, . . . , nT .
For the target detection task, the feature extraction network F extracts features from the
input image to obtain a feature map, which is then fed to the RPN network R to generate
numerous Region of Interest (ROI) proposals. Finally, the detection head H, consisting of
multiple fully connected layers, produces the final object locations and classifications. The
training loss in the source domain can be formulated as:

Ldet=
1

nS

nS

∑
i=1

H(R(F(xi
S)), yi

S) (1)

For target domain data, similar loss objectives cannot be established due to the lack of
labels YT =

{
y1

T , y2
T , . . . , yi

T}. Therefore, existing methods [25,26,29] attempt to add an
additional local image-level domain discriminator Dimg to guide argmin

∣∣F(xi
S)− F(xi

T)
∣∣,

which enables the network to produce similar feature maps for images from different
domains. The local image-level domain discriminator Dimg can distinguish whether the
current feature is from the source domain or the target domain and achieve domain
adaptation through adversarial training by using the gradient reversal layer (GRL). The
training objective can be represented as:

Limg=
1

nS

nS

∑
i=1

Dimg(F(xi
S)), liS) +

1
nT

nT

∑
i=1

Dimg(F(xi
T)), liT) (2)

where liS and liT represent the classification labels for source and target domains, respec-
tively, with 0 and 1. Similarly, the domain adaptive training objective for the detection head
H can be expressed as:

Lins=
1

nS

nS

∑
i=1

Dins(H(R(F(xi
S))), liS) +

1
nT

nT

∑
i=1

Dins(H(R(F(xi
T))), liT) (3)
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where Dins refers to instance-level domain discriminator. The final total loss can be ex-
pressed as:

L = Ldet + Limg + Lins (4)

However, directly aligning the features may result in misalignment of the already
aligned features. To address this issue, this paper proposes an uncertain alignment module
based on feature channel entropy. In addition, existing methods are not suitable for
the problem of target position and classification output in object detection algorithms.
Therefore, an instance-level uncertainty alignment module based on multiple classifiers
and regressors is proposed.

3.2. FUA

As shown in Figure 2, the feature maps of the source domain image XS and the target
domain image XT obtained through the feature extraction network are input into a local
discriminator Dimg. This local discriminator needs to classify each pixel of the feature map
and give the probability that the pixel is from the target domain. Conversely, the goal
of local image-level alignment is to keep the source domain feature F(xi

S) and the target
domain feature F(xi

T) obtained through the feature extraction network consistent so that
the local discriminator Dimg cannot identify whether the feature comes from the source
domain or the target domain. To achieve this mutual adversarial goal, a gradient reversal
layer (GRL) is added between the feature extraction network and the local discriminator,
which acts as identity mapping during forward propagation and is used to reverse the
gradient during backward propagation.

After being affected by rain and fog noise, not every region in the source domain
image experiences significant feature distribution shift. Through training in the source
domain, the feature extraction network can learn the unique feature representation of the
source domain, resulting in more informative feature maps. The amount of information
obtained in different regions with varying degrees of uncertainty also varies, which reflects
the degree of domain shift between different regions in the image. To characterize these
differences in the degree of shift, a feature channel entropy calculation method is proposed:

EC = −∑
r

OC
r,u,v · log(OC

r,u,v) (5)

[OC
1,u,v, OC

2,u,v, . . . , OC
R,u,v] = Softmax(fr,u,v)

fr,u,v = [ f1,u,v, f2,u,v, . . . , fR,u,v]
(6)

where fr,u,v refers to the feature value at rth (u, v) of feature map, r ∈ [1, R], u ∈ [1, U],
v ∈ [1, V]. In Figure 3, the feature channel entropy of the feature vector at each pixel
position in the feature map represents the uncertainty of the corresponding features in the
original image’s receptive field. After training on the source domain, the feature extraction
network will extract more effective information, resulting in more differentiation between
the elements of the feature vector and a larger result for the feature channel entropy.
Conversely, in the absence of training on target domain data, the feature channel entropy
will be smaller due to the blurring of texture information in the entire image caused by
rainy or foggy weather.
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After calculating the feature channel entropy for each feature vector in the feature
map of size (R × U × V) using Equation (5), a (1 × U × V) feature uncertainty map is
obtained. This represents the uncertainty level of the current feature extraction network for
different regions of the original image. Therefore, the local image-level domain adaptive
loss function is given by:

Limg = ∑
u,v
EC·[LD

img(pu,v, lS
u,v) + LD

img(pu,v, lT
u,v)] (7)

where lu,v
S and lu,v

T are 0 and 1, respectively, referring to the classification label of the
source domain and target domain, LD

img refers to the cross-entropy loss of the local image-
level domain discriminator Dimg and is defined as

LD
img(pu,v, lu,v) = −lu,v log(pu,v)− (1− lu,v) log(1− pu,v) (8)

where pu,v refers to the domain classification result at the pixel location (u, v) of the feature
map. By using Equation (8), a domain classification prediction map of size (1 × U × V)
can be obtained. By incorporating image-level feature uncertainty into domain adaptive
training through Equation (7), the feature extraction module can pay more attention to
areas with larger domain gaps and reduce the weight of areas that are already well aligned.

3.3. IUA

The alignment at the image level is to deceive the domain discriminator by obtaining
similar feature maps through the feature extraction network. Existing domain adaptation
methods for global alignment [25,26,29] adopt a similar approach to image-level alignment
by adding an instance-level domain discriminator to perform adversarial training on the
classification and position output by the detection head. However, it was pointed out
in [24] that this approach cannot adapt well to the task of object detection, as the learned
transferable features were not decoupled for classification and regression tasks. The reason
is that the classification task is discrete, while the regression task is continuous. From the
training objective of object detection, stable detection results should be obtained for both
source and target domain images. Therefore, we propose an instance-level uncertainty
alignment based on multi-classifiers and multi-regressors, which introduces uncertainty to
guide the instance-level alignment process while achieving the decoupling of classification
and regression spaces.

A. Regression inconsistency
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Domain adaptation tasks aim to capture domain inconsistencies across different stages
of the model. As shown in Figure 4, for regression tasks, the coordinate points of the
target bounding boxes lie in continuous space. To represent the inconsistency in the results
obtained from the source and target domains, additional K parallel sub-regressors are
proposed. Each sub-regressor uses the same network structure, and the randomness of each
regressor is achieved through Dropout, resulting in K different sets of regression results.
For objects from the source domain, the results of all sub-regressors should be close to the
ground truth bounding box, with small differences between the coordinate points of the
predicted bounding boxes. Conversely, objects from the target domain introduce more
uncertainty, resulting in relatively large differences between the coordinate points of the
bounding boxes. This difference represents the inconsistency of the model between the two
domains. Therefore, reducing this inconsistency guides the model to adapt to the target
differences between the two domains. A standard-deviation-based inconsistency loss was
proposed in [24], but the standard deviation varies with the scale of the data. Under the
same error ratio, the loss for small targets is smaller than that for large targets. This paper
proposes a domain adaptive regression loss LEn

rgs based on region uncertainty:

Lrgs
En =

1
4

4

∑
i=1

Ergs
i (9)

where Ergs
i refers to the regression entropy of each parameter of the bounding box in

K sub-regressors and represents the inconsistency of regression results, which can be
expressed as:

Ergs
i = −

K

∑
j=1

Prgs
j log(Prgs

j ) (10)

where Prgs
j refers to the uncertainty of bounding box regression, ranging from 0 to 1, which

can be expressed as:

Prgs
j = Softmax(bij/

1
K

K

∑
j=1

bij), i = 1, . . . , 4 (11)

where bij refers to the ith location parameter of bounding box output by jth regressor.

B. Classification inconsistency

In order to capture the inconsistency between domains in the classification task, a simi-
lar approach to obtaining regression inconsistency is adopted by designing an additional N
sub-classifiers. Each sub-classifier independently predicts the target class, which reflects the
uncertainty of the model towards the input image in the classification task. Therefore, the
classification inconsistency is addressed by utilizing an entropy-based domain adaptation
loss. Assuming that there are C classes in the classification task, the classification loss LEn

cls
can be formulated as:

LEn
cls =

C

∑
j=1

Ecls
j (

1
N

N

∑
i=1

oij) (12)

where Ecls
j refers to the classification entropy of jth classification of N sub-classifiers and

represents the inconsistency of classification results, which can be expressed as:

Ecls
j = −

N

∑
i=1

Pcls
i log(Pcls

i ) (13)
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where Pcls
i refers to the uncertainty of ith classification, ranging from 0 to 1, which can be

expressed as:
Pcls

i = Softmax(oij)
oij = [o1j, o2j, . . . , oNj]

(14)

where oij refers to the classification results of all N sub-classifiers in jth classification.
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3.4. Instance-Level Uncertainty Guidance

The uncertainty caused by rainy and foggy weather was discussed in the FUA module,
which also affects the position regression and classification of targets. Therefore, the feature
uncertainty map was introduced into instance-level alignment. Specifically, assuming there
are NROI ROIs, each ROI will obtain a mapping on the feature uncertainty map through
Algorithm 1. Within each mapped region, there will be a different number of feature
channel entropies. These values are pooled by averaging to obtain a representation of the
entire ROI’s uncertainty EP

i , i ∈ [1, NROI ]. This uncertainty guidance can make the model
pay more attention to targets with greater differences in instance-level alignment.

Algorithm 1 Feature Uncertainty Projection

Input: ROIs: bij = [bi1, bi2, bi3, bi4], i = 1, 2 · · ·N
Output: Uncertainty of ROIs: EP

i , i = 1, 2 · · ·N
1 Suppose The scale of downsampling by backbone is K
2 for i = 1 to N by 1 do
3 Calculate the projected box on uncertainty map bP

ij = bij/K

4 Obtain uncertainty of every ROI: EG
i = MeanPool

(
bP

ij

)
5 end for
6 return EP

i
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3.5. Instance-Level Global Discriminator

The instance-level global domain discriminator can help reduce the differences in
texture, size, and viewing angle of target domains. Therefore, a global domain discriminator
is used to determine which domain each target’s feature vector comes from. The train
loss for this process is similar to that of the image-level domain discriminator and can be
expressed as:

LD
global =

NROI

∑
i=1

[−li log(pi)− (1− li) log(1− pi)] (15)

where li is 0 or 1 and refers to the domain label of the source domain and target domain.
The total loss of instance-level alignment can be expressed as:

Lins =
1

NROI

NROI

∑
i=1
EP

i [α1LEn
rgs + α2LEn

cls + α3LD
global ] (16)

where α1, α2, α3 are the weight coefficients for balancing domain adaption loss. Therefore,
the total train loss can be expressed as:

LTotal = η1Ldet + η2Limg + η3Lins (17)

where η1, η2, η3 are the weight coefficients for balancing total loss.

4. Experimental Analysis
4.1. Experimental Settings

During the training phase, each batch of data comprises one randomly selected image
from the source domain and one from the target domain, which are used as inputs for the
model. The source domain data include corresponding labels, whereas the target domain
data do not. The baseline model FasterRCNN adopts ResNet-50 as the feature extraction
layer and adds FPN as the neck layer before RPN. The proposed model is implemented
based on Pytorch and MMDetection and trained and tested on an Ubuntu system with a
single RTX 3090 GPU. The initial learning rate is set to 0.001, and the weight adjustment
parameter is α1 = 0.5, α2 = 0.5, α3 = 1, η1 = 1, η2 = 0.1, η3 = 0.1, updated using the
stochastic gradient descent method with a momentum of 0.9 and a weight decay of 0.0001.

To evaluate the effectiveness of the proposed method, validation was performed on the
Cityscapes foggy, Cityscapes rainy, KITTI rainy, and real-world test datasets. The Cityscapes
dataset consists of 5000 traffic scene images in urban environments, including additional
foggy scenes. The proposed model was trained with normal weather conditions and tested
on foggy scenes to verify the effectiveness of domain adaptation. As the Cityscapes dataset
lacks rainy weather scenes, a rainy noise generation algorithm was employed to generate
the Cityscapes rainy dataset. The KITTI dataset contains 7481 traffic scene images, with
3712 images used for model training and 3769 images for model validation. KITTI is a
commonly used dataset in autonomous driving research, but it only provides data under
normal weather conditions. Therefore, similar to the Cityscapes rainy dataset, the KITTI
rainy dataset was generated using a rainy noise generation algorithm. The established
dataset of Cityscapes rainy and KITTI rainy are shown in the Figure 5.
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4.2. Experimental Results of Cityscapes to Cityscapes Foggy

The impact of fog on images is characterized by significant local noise, which can
randomly cause occlusion and blurring of the targets in some areas. Table 1 presents a
comparison of detection results in Cityscapes foggy. These models only obtained ground
truth labels from the source domain. When the basic FRCNN model was not adaptively
trained for the target domain, only 20.0% of mAP is obtained in foggy scenes. In contrast,
“Target” achieved a result of 42.3% by directly training on labels from foggy data. This result
is only provided as a reference and is not included in the comparison because obtaining
labels from the target domain is not feasible in practice. After adopting different domain
adaptation methods, an obvious improvement in detection performance relative to FRCNN
was observed. The proposed method achieved the highest detection results in multiple
categories and had the highest mAP among all methods presented in Table 1.

Table 1. Experimental results (%) of Cityscapes to Cityscapes Foggy. Bold indicates the highest result.

Methods Person Rider Car Truck Bus Train Motor Bicycle mAP

FRCNN [1] 24.2 28.5 34.6 10.1 25.6 4.0 11.7 20.9 20.0
DA [25] 25.0 31.0 40.5 22.1 35.3 20.2 27.1 20.0 27.6

SWDA [26] 29.9 42.3 43.5 24.5 36.2 32.6 30.0 35.3 34.3
MAF [28] 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34.0
DAM [39] 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6
CST [40] 32.7 44.4 50.1 21.7 45.6 25.4 30.1 36.8 35.9
CDN [41] 35.8 45.7 50.9 30.1 42.5 29.8 30.8 36.5 36.6
CFFA [42] 43.2 37.4 52.1 34.7 34.0 46.9 29.9 30.8 38.6

RPNPA [43] 33.3 45.6 50.5 30.4 43.6 42.0 29.7 36.8 39.0
FUDA (Ours) 43.9 49.1 53.9 28.4 41.8 31.6 28.2 45.0 40.2

Target 36.2 46.5 55.8 34.0 53.1 40.2 36.0 36.4 42.3

Compared with FRCNN, FUDA has the greatest improvement effect in the classifica-
tion of Person, Rider, and Car and Bicycle, and the improvement in the mAP results reached
101%. It is worth noting that after training with the domain adaptation method, the results
of several classifications exceed the results of training directly with the target domain
labels. The reason is that under the constraint of adversarial training, the optimization
objective of the feature extraction layer is opposite to that of the domain discriminator.
In order to deceive the domain discriminator, the feature extraction layer will gradually
make the output feature map uniform with the number of training iterations while meeting
the target detection requirements. In other words, ideally when the feature distributions
from the source and target domains are consistent, the domain discriminator will not be
able to accurately judge the current domain classification. This indicates that the extracted
features are domain-invariant, and the model obtained more generalized and universal
target features.

The precision–recall curve of the proposed model in domain adaptation from Cityscapes
to Cityscapes foggy is presented in Figure 6. Recall is the ratio of the number of correctly
detected objects to all ground truth instances. Precision in Figure 6 indicates the percentage
of correctly detected objects at different recall rates. It can be observed that the proposed
model exhibits a clear advantage in the [0.2–0.6] interval.
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4.3. Experimental Results of Cityscapes to Cityscapes Rainy

The rainy weather introduces more random noise to the entire image compared to
the foggy weather conditions. The experimental results for Cityscapes to Cityscapes rainy
are presented in Table 2. It can be observed that DA, SWDA, and the proposed FUDA all
achieved significant improvements over the baseline FRCNN model. FUDA obtained the
highest detection results in multiple categories, and the mAP of 42.1% was the closest to
the result obtained by directly training on the target domain data, which was 47.9%. The
rainy weather conditions constructed in this study did not cause significant occlusion of
the target objects, resulting in better overall experimental results compared to Cityscapes
Foggy. After training with the FUDA method, the detection performance of FRCNN was
improved by 81.5%.

Table 2. Experimental results (%) of Cityscapes to Cityscapes rainy. Bold indicates the highest result.

Methods Person Rider Car Truck Bus Train Motor Bicycle mAP

FRCNN [1] 22.3 23.8 30.6 15.3 28.9 15.3 18.1 31.6 23.2
DA [25] 31.5 33.1 46.2 29.8 38.5 26.2 31.7 26.1 32.9

SWDA [26] 33.8 46.4 48.3 29.7 38.9 35.2 38.2 31.3 37.7
FUDA (Ours) 38.4 48.2 56.9 35.1 42.8 39.6 35.2 40.3 42.1

Target 44.2 53.8 58.3 41.7 49.6 45.7 42.4 47.2 47.9

4.4. Experimental Results of KITTI to KITTI Rainy

Table 3 presents the experimental results of KITTI to KITTI rainy. All models were
trained on the original KITTI dataset and tested on the constructed KITTI rainy. The
proposed FUDA achieved a remarkable mAP improvement of 51.8% compared to the
baseline model FRCNN without domain adaptation training and a 4.3% improvement
compared to SWDA.

Table 3. The experimental results (%) of KITTI to KITTI rainy. Bold indicates the highest result.

Methods
Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard mAp

FRCNN [1] 58.9 34.7 32.0 33.5 26.3 19.6 43.2 39.4 31.8 35.5
DA [25] 62.7 55.1 40.8 39.6 25.1 24.3 56.2 50.1 48.4 44.7

SWDA [26] 69.1 60.7 51.9 43.1 39.6 31.3 62.4 56.0 50.8 51.7
Ours 73.4 62.8 57.3 40.3 35.3 32.7 68.7 61.3 53.2 53.9
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4.5. Experimental Results of Phycical Testing Platform

As shown in Figure 7, in order to validate the proposed algorithm, we built a physical
testing platform, which includes an 80-beam LiDAR, an RTK positioning system, a stereo
camera, and a set of data acquisition devices. We collected two small-scale datasets in
urban residential areas and urban streets. All sensor data were collected via ROS and
synchronized to the same timestamp. The proposed algorithm was tested on camera data,
which were converted into the format of the COCO dataset.
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The current publicly available datasets provide a lot of convenience for object detection
research, but it is not easy to directly apply this to real-world scenarios. This is because the
scene features, target categories, and weather conditions in public datasets cannot cover
all real-world scenarios. This transfer process is also the problem that domain adaptation
needs to solve. To further verify the effectiveness of the proposed model, we trained the
model only with the labels of the Cityscapes dataset and then added some unlabeled
real-world data as the target domain. Figure 8 shows the detection results of the original
FRCNN without domain adaptation and the proposed FUDA in real-world data. It can be
seen that the proposed method can correctly detect most of the targets, while FRCNN has
many missed detections.
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5. Ablation Study

The proposed FUDA leverages feature uncertainty to represent the degree of uncer-
tainty of the feature extraction network on the current data feature distribution. This
approach guides the domain adaptation process at the feature level by mapping the uncer-
tainty maps to the instance-level alignment, enabling the model to assign different domain
adaptation weights for each ROI during training. To analyze the effectiveness of the pro-
posed FUA and IUA, Table 4 shows the performance improvements in different modules
on detection. Without the addition of FUA and IUA modules, the proposed model achieves
the same results as DA, which is used as a baseline for comparison. The results show that
the addition of the FUA module leads to a 25.9% mAP improvement. Furthermore, with
the simultaneous addition of FUA and IUA modules, the mAP improves by 44.8%. The
FUA module contributes significantly to domain adaptation, while the IUA module further
amplifies the performance improvement.

Table 4. Effects of FUA and IUA on model detection performance in Cityscapes to Cityscapes foggy.
Bold indicates the highest result.

Methods Person Rider Car Truck Bus Train Motor Bicycle mAP

DA 25.0 31.0 40.5 22.1 35.3 20.2 27.1 20.0 27.7
FUA 28.3 39.4 51.6 28.8 39.2 32.4 31.5 28.2 34.9

FUA + IUA 43.9 49.1 53.9 28.4 41.8 31.6 28.2 45.0 40.2

The visual results of Cityscapes to Cityscapes foggy are presented in Figure 9. It can
be observed from Figure 9 that the model with the FUA module can detect vehicles and
pedestrians that are affected by fog. Furthermore, the application of both the FUA and IUA
modules enables the detection of distant targets. In contrast, the FRCNN model without
domain adaptation can only detect large objects in close proximity. This demonstrates the
effectiveness of the proposed FUA and IUA modules in providing domain adaptation.



Appl. Sci. 2023, 13, 6448 15 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19 
 

  
Original image 

  
Detection result of FRCNN  

 
Detection result with proposed FUA 

  
Detection result with proposed FUA and IUA 

Figure 9. The visual results of Cityscapes to Cityscapes foggy. 

5.1. Effect on IUA Module  
To achieve the decoupling of feature space in classification and regression tasks, the 

IUA module adopts a multi-classifier and multi-regressor approach for instance-level 
alignment. To further analyze the effectiveness of the IUA module, we set different num-
bers of detection heads. Figure 10 shows the detection results of the model on Cityscapes 
to Cityscapes Foggy dataset with different numbers of heads. It can be observed that the 
model achieves the highest mAP when there are six heads, and the mAP result is lowest 
when no IUA module is added. This result is consistent with the findings in Section 5.1, 
indicating that while the FUA realizes feature-level alignment, instance-level alignment 
through detection heads is also important for the overall performance. 

Figure 9. The visual results of Cityscapes to Cityscapes foggy.

5.1. Effect on IUA Module

To achieve the decoupling of feature space in classification and regression tasks,
the IUA module adopts a multi-classifier and multi-regressor approach for instance-level
alignment. To further analyze the effectiveness of the IUA module, we set different numbers
of detection heads. Figure 10 shows the detection results of the model on Cityscapes to
Cityscapes Foggy dataset with different numbers of heads. It can be observed that the
model achieves the highest mAP when there are six heads, and the mAP result is lowest
when no IUA module is added. This result is consistent with the findings in Section 5.1,
indicating that while the FUA realizes feature-level alignment, instance-level alignment
through detection heads is also important for the overall performance.
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5.2. Visualization of Feature Distribution

The goal of domain adaptation is to ensure that the feature distributions obtained from
different domains are similar. As shown in Figure 11, to analyze the effectiveness of the
proposed domain adaptation method, t-SNE was used to reduce the dimensionality of the
feature map output through the feature extraction network. The black squares represent
results obtained from the source domain Cityscapes, while the red circles represent those
obtained from the target domain Cityscapes foggy. It can be observed that without domain
adaptation, the model extracts feature distributions that are further apart. This indicates
that the model extracts different features from the source and target domain, making it
difficult for the detection head to produce accurate results. After applying the proposed
domain adaptation method, the model can extract similar feature distributions from two
different domains, which improves its ability to obtain domain-invariant features from the
target domain.
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6. Conclusions

In this paper, we propose a feature uncertainty-based domain adaptive object detection
algorithm to address the problem of domain shift caused by changes in background
feature distributions in autonomous driving environments. Our method improves the
detection performance of object detection algorithms in unlabeled data. To address the
problem of source domain feature degradation caused by direct alignment between local
domains in current domain adaptive methods, we propose a feature uncertainty-based
local alignment module (FUA), which enhances the ability of feature extraction networks
to acquire domain-invariant features in the target domain. We also propose an instance
uncertainty alignment (IUA) module to address the unstable bounding box regression
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alignment issue that arises in current global alignment methods. Furthermore, this module
enables spatial decoupling of classification and regression tasks, further enhancing the
domain adaptation ability of the model. Finally, the effectiveness of our proposed algorithm
is validated on Cityscapes, KITTI, and real data, achieving significant improvements
in detection performance compared to baseline models. Test results on public datasets
show that the proposed FUDA can enable the baseline model to effectively learn feature
representations of target domains and achieve state-of-the-art results on multiple categories
and mAP. The mAP results on Cityscapes Foggy, Cityscapes Rainy, and KITTI Rainy
achieved 101%, 81.5%, and 51.8% improvements, respectively. The visualization results
on real data further demonstrate the effectiveness of the proposed method. The results of
ablation experiments specifically analyze the effect of the proposed FUA module and IUA
module on detection performance.

Although our proposed domain adaptation method has shown the potential to en-
hance detection performance by leveraging unlabeled data, we acknowledge that the
presence of extreme weather conditions poses a challenge, particularly when large quanti-
ties of target domain data are not readily accessible. In future research, we will concentrate
on investigating the domain adaptation capability of our model using limited batches of
target domain data. Furthermore, ensuring the stability of the domain adaptive training
process is an aspect that deserves further examination and exploration.
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