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Abstract: Following the rise of virtual reality is a demand for sound field reproduction techniques
that allow the user to interact and move within acoustic reproductions with six-degrees-of-freedom.
To this end, a mixed-source model of near-field and far-field virtual sources has been introduced
to improve the performance of sound field translation in binaural reproductions of spatial audio
recordings. The previous works, however, expand the sound field in terms of the mixed sources
based on sound pressure. In this paper, we develop a new mixed-source expansion based on particle
velocity, which contributes to more precise reconstruction of the interaural phase difference and,
therefore, contributes to improved human perception of sound localization. We represent particle
velocity over space using velocity coefficients in the spherical harmonic domain, and the driving
signals of the virtual mixed-sources are estimated by constructing cost functions to optimize the
velocity coefficients. Compared to the state-of-the-art method, sound-pressure-based mixed-source
expansion, we show through numerical simulations that the proposed particle-velocity-based mixed-
source expansion has better reconstruction performance in sparse solutions, allowing for sound field
translation with better perceptual immersion over a larger space. Finally, we perceptually validate
the proposed method through a Multiple Stimulus with Hidden Reference and Anchor (MUSHRA)
experiment for a single source scenario. The experimental results support the better perceptual
immersion of the proposed method.

Keywords: sound field translation; binaural reproduction; particle velocity; mixed-source
model; MUSHRA

1. Introduction

Sound field translation plays an important role in binaural reproduction systems [1],
which enables a listener to move about an acoustic space with a sustained perceptual
immersion. A typical example of its application is in virtual-reality reproductions of
real-world experiences, where the listener is allowed to virtually explore by moving their
body/head and they can experience a spatially accurate perception that is the same as
in the real-world space [2]. In this paper, we propose a particle-velocity-based mixed-
source expansion that can provide a wide range of sound field translation with immersive
human perception.

There have been various studies of sound field translation that allow for a listener to
interact and move within a sound field reproduction, and they can be divided into two
main categories: interpolation-based techniques [3] and extrapolation-based techniques [4].
The interpolation-based techniques aim to interpolate the sound field to listeners during
reproduction using a grid of higher-order microphones (inpractice, higher-order micro-
phones are designed from several pressure microphones equally spaced on a solid sphere)
over space [5]. For example, a simple interpolation-based technique is shown in [6], where
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the room impulse response is interpolated to enable real-time auralizations with head
rotation. The interpolation-based techniques usually suffer from a significant localization
error [5,7] and comb-filtering spectral distortions [8], in particular when the sound source
is nearer to one microphone than to another. Although the comb-filtering spectral distor-
tions can be avoided using a parametric Ambisonics room impulse response interpolation
system [9], it requires extra effort to compensate for varying interference. In addition,
the interpolation assumes multiple distributed microphones or even arrays of microphones,
which is a significant hardware limitation in many Augmented Reality/Virtual Reality
(AR/VR) applications [3,10]. To enhance the performance of perceptual source localization
for displaced listeners, a modified method is proposed, where the directional components
of the microphone nearest to the listener are emphasized [11]. This method also interpolates
the sound field to listeners and is subject to the fundamental limitation. Methods that
alleviate the fundamental limitation have been investigated; however, they usually require
additional source localization and separation of direct sound field components [12–14].
On the other hand, the extrapolation-based techniques spherically extend the translation
from the recording microphone to the nearest source, which can be achieved by Ambison-
ics [15,16], discrete virtual sources [17], plane-wave expansion [18–20], and the equivalent
source method [21]. A comparison between different extrapolation-based techniques is
given in [22]. To improve the performance of translation and source localization, especially
for off-center positions, optimized decoding methods such as max-rE (meaning max energy
vector magnitude) decoding [23] and near-field-compensated decoding [24] have been
proposed. However, most of the extrapolated-based techniques are limited by the order of
the recordings, which is determined by both the upper frequency band and the microphone
radius [25,26]. Consequently, for a low-order recording, the range of translation is signifi-
cantly limited. Attempts to move beyond this limited range, even after extrapolation, result
in spectral distortions [27–29], degraded source localization [22,30], and a poor perceptual
listening experience.

Parametric models have been shown to provide an efficient way to describe sound
scenes [14,31,32], which can be used in binaural reproduction. To overcome the limitation
of translation range discussed above, a parametric model is built to describe first-order
Ambisonics recordings for translation with known information of a listener’s position
and source distances [33]. A similar approach was described in [34], which extends to
support arbitrary listener movement; however, with multiple source directions and dis-
tances. In [35], the authors improve the spatial localization accuracy by additional spatial
information obtained from multi-perspective Ambisonics recordings. Higher order Am-
bisonics signals are used in [36], which translates the sound field based on multi-directional
decomposition that estimates source distances. Another parametric decomposition from
a higher order Ambisonics signal has been proposed in [37], offering excellent localiza-
tion performance even for strong spatial displacements. However, it also requires a prior
knowledge of source distance information and an additional analysis stage of direction
of arrival estimation. The sound field translation with very few measurements in a room
is investigated in [38]. Recently, an alternative secondary source model for extrapolated
virtual reproduction has been developed, where it sparsely expands the recording into the
equivalent virtual environment using a mix of near-field and far-field virtual sources [39]. It
has been shown that this method can relax the limitation and offer an improved perceptual
experience through perceptual listening tests [40]. However, this method expands the
sound field based on sound pressure, which is not an acoustic quantity directly linked with
human perception of sound localization.

Since Gerzon first developed velocity theory of sound localization based on bina-
rual phase cues for reproducing psychoacoustically optimum sound [41], particle velocity
(vector), which is recently controlled in sound field reproduction systems [42–44], has
been one of the objective metrics predicting sound direction. Thus, having particle veloc-
ity as the design criterion contributes to a more precise reconstruction of the interaural
phase difference, which is crucial for human perception of sound directions and, therefore,
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contributes to improved localization of the reconstructed sound, especially for low frequen-
cies (below 700 Hz) [45]. For example, a particle-velocity-based sound field reproduction
method is proposed to improve the perception experience for listeners away from the center
of the reproduction area [46]. Furthermore, the particle velocity-controlled sound field
shows an accurate reproduction of sound intensity in the reproduction region [47,48], where
sound intensity is another important acoustic quantity for localization perception; however,
it is most appropriate at high frequencies (above 500 Hz) [49–51]. In this paper, we propose
a new mixed-source expansion based on particle velocity for sound field translation and
synthesis. We aim to reproduce a spatial acoustic scene by matching particle velocity of the
sound field over a region with a sparse distribution of virtual sound sources placed in both
the near and far field. We will show that sparsely expanding the sound field in terms of
particle velocity offers a more immersive perceptual experience at the translated positions,
especially for source localization.

The remainder of this paper is structured as follows. First, the sound field translation
problem is formulated in Section 2. We have recently formulated continuous particle
velocity expressions over space in the spherical harmonic domain [44], which contain the
directivity information of a sound field over continuous spatial regions. In Section 3, we
review the continuous particle velocity theory and develop the particle-velocity-based
expansion by exploiting this theory in the mixed-source model. Section 4 translates the
sound field and synthesizes binaural signals for translated listeners. In Section 5, we
introduce two localization metrics, in addition to the relative pressure error, as evaluation
criteria. With these criteria, we demonstrate the reproduction accuracy of the proposed
method by comparing it with the state-of-the-art method, sound-pressure-based mixed-
source expansion, through numerical simulations. The perceptual validation through
a MUSHRA experiement is presented in Section 6. Finally, the work is concluded in
Section 7.

2. Problem Formulation

Consider a listener within an acoustic environment, where the listening space of the
environment is centered by the origin o. The listener is positioned at d = (r, θ, φ), where
θ ∈ [0, π] and φ ∈ [0, 2π) in spherical coordinates, with respect to the origin. Let there be
a total of K sound sources outside the listening space, with the κth source located at bκ .
The free-field binaural sound perceived by the listener can be synthesized by filtering the
source signals with the listener’s head-related transfer functions (HRTFs), expressed as

PL,R(d, k) =
K

∑
κ=1

HL,R(k, bκ ; d)sκ(k), (1)

where PL,R(d, k) is the sound pressure at the listener’s left and right ear, HL,R(k, bκ ; d)
are the HRTFs between the κth source and the listener’s ears, sκ(k) is the sound signal
of the κth source, k = 2π f /c is the wave number, f is frequency, and c is the speed of
sound propagation.

We aim to record and reproduce the auditory experience of (1) for every possible lis-
tening position. The acoustic environment can be characterized using a spherical harmonic
decomposition of the sound pressure, expressed as

P(x, k) =
∞

∑
n=0

n

∑
m=−n

αnm(k)jn(k|x|)Ynm(x̂), (2)

where x is an arbitrary position in the space, | · | ≡ r, ·̂ ≡ (θ, φ), αnm(k) are the pressure
coefficients which completely describe the source-free acoustic environment centered about



Appl. Sci. 2023, 13, 6449 4 of 21

o, jn(·) is the nth order spherical Bessel function of the first kind, and Ynm(x̂) is the spherical
harmonic of order n and degree m, defined by

Ynm(x̂) ,

√
(2n + 1)

4π

(n−m)!
(n + m)!

Pnm(cos θ)eimφ, (3)

where Pnm(cos θ) is the associated Legendre function. In practice, the pressure coefficients
describing the acoustic environment {αnm(k)} can be estimated from recordings of a higher
order microphone or a microphone array [52]. We now consider an Nth order receiver
centered at o, such as a spherical array [53] or planar array [54], that we use to estimate the
acoustic environment for {αnm(k)} up to order N. However, the limited order N introduces
a spatial reproduction constraint that the sound field can only be accurately reproduced
within the receiver region (i.e., |x| ≤ R), where R is the radius of the receiver region that
is related by N = dkRe. This constraint restricts the listener to move within the receiver
region (i.e., |d| ≤ R). If the listener attempts to move beyond the receiver region, they
would experience spectral distortions and a loss in perceptual immersion.

The objective of this work is to perceptually enhance the performance of translation to
|d| > R for binaural reproduction from a mode-limited measurement so that a listener can
move over a large space in a virtual reconstruction with a sustained perceptual immersion,
through the proposed particle-velocity-based mixed-source expansion.

3. Particle-Velocity-Based Mixed-Source Expansion

In this section, we present the theory of particle-velocity-based mixed-source expan-
sion. We first give a brief introduction of the background knowledge involving the proposed
theory, i.e., the representation of particle velocity in the spherical harmonic domain [44]
in Section 3.1, and the mixed-source model [39] in Section 3.2. The particle-velocity-based
mixed-source expansion is developed in Section 3.3.

3.1. Spherical Harmonic Representation of Particle Velocity

Particle velocity is a vector and it can be expressed in spherical coordinates, as

V(x, k) = Vr(x, k)r̂ + Vθ(x, k)θ̂+ Vφ(x, k)φ̂, (4)

where r̂, θ̂, and φ̂ are the unit vectors in the r, θ, and φ directions, respectively. We have
recently formulated continuous particle velocity in the spherical harmonic domain [44],
which decomposes each component of the particle velocity vector in terms of spherical
harmonic functions, as

VΨ(x, k) =
QΨ

∑
p=0

p

∑
q=−p

X(Ψ)
pq (k, |x|)Ypq(x̂); Ψ ∈ {r, θ, φ}, (5)

where QΨ is the particle velocity truncation order (the spherical harmonic decomposition of
particle velocity also contains infinite summation terms, and we truncate it to an explicit or-
der for implementation) in the Ψ direction, and X(Ψ)

pq (k, |x|) denote the velocity coefficients
in the Ψ direction. According to the results in [44], the velocity coefficients are given as

X(r)
pq (k, |x|) = i

kρ0c
αpq(k)j′p(k|x|), (6)

X(θ)
pq (k, |x|) = 2πi

kρ0c
Hpq

N

∑
n=|q|

Hnqαnq(k)
jn(k|x|)
|x| G1, (7)

X(φ)
pq (k, |x|) = − 2πq

kρ0c
Hpq

N

∑
n=|q|

Hnqαnq(k)
jn(k|x|)
|x| G2, (8)
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where ρ0 is the medium density, j′p(k|x|) denotes the derivative of jp(k|x|) with respect
to r, and

Hpq =
(−1)

q+|q|
2

2|q|(|q|)!

√
(2p + 1)

4π

(p + |q|)!
(p− |q|)! , (9)

G1 = (n + |q|+ 1)G(a, b +
1
2
− δn+|q|+1;−µ1 − δn+|q|+1,−µ2; ν1 + δn+|q|, ν2; ξ1, ξ2)

− (n + 1)G(a, b +
1
2

;−µ1,−µ2; ν1, ν2; ξ1, ξ2),
(10)

G2 = G(a, b;−µ1,−µ2; ν1, ν2; ξ1, ξ2)

= [(−1)2b+1 + 1]
µ1

∑
j1=0

µ2

∑
j2=0

(−µ1)j1(ν1)j1
(ξ1)j1 j1!

(−µ2)j2(ν2)j2
(ξ2)j2 j2!

B(j1 + j2 + a, b)
2

,
(11)

with

δM =

{
1, if M is even
0, if M is odd,

(12)

(a)j =

{
1, if j = 0
a(a + 1) . . . (a + j− 1), if j = 1, 2, . . . ,

(13)

and a = (2|q| + 1)/2, b = (3 − δn+|q| − δp+|q|)/2, µ1 = −(1 − n + |q| − δn+|q|)/2,
µ2 = −(1− p + |q| − δp+|q|)/2, ν1 = (2+ n + |q| − δn+|q|)/2, ν2 = (2+ p + |q| − δp+|q|)/2,
ξ1 = ξ2 = |q|+ 1, and B(·) denotes the beta function. The detailed derivations of (6)–(8)
can also be found in [44].

Note that for a sound field the truncation order of the velocity field (i.e., QΨ) is
usually larger than or equal to the truncation order of the pressure field (i.e., N) due to the
truncation theorem of the velocity expressions [44]. The velocity coefficients represent the
continuous particle velocity distribution of a sound field over space and they are directly
determined by the pressure coefficients of the sound field, as well as the radial functions
(i.e., the spherical Bessel functions). All other terms in the expressions of the velocity
coefficients are either constants or indices-only dependent variables. In other words, we
can obtain the continuous particle velocity distribution of a sound field over space directly
from the pressure coefficients describing the sound field.

3.2. Mixed-Source Model

Different from the plane wave model [20], which represents a sound field with an
equivalent superposition of virtual plane wave sources, the mixed-source model expands
the sound field in terms of a mixture of near-field and far-field virtual sources [39]. This
mixed-source model can overcome the difficulties of the plane wave expansion in synthe-
sizing the near-field sources.

To blend the model of a near- and far-field virtual source together, we define a normal-
ized point-source to be the mixed-source, defined as

P(x, k; y) = |y|e−ik|y| eik|y−x|

4π|y− x| , (14)

where y denotes the position of the virtual mixed source. In the spherical harmonic domain,
it can be expressed as

P(x, k; y) =
∞

∑
n=0

n

∑
m=−n

ik|y|e−ik|y|hn(k|y|)Y∗nm(ŷ)︸ ︷︷ ︸
βnm(k)

jn(k|x|)Ynm(x̂), (15)
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where hn(·) is the spherical Hankel function of the first kind, and βnm(k) are the pressure
coefficients of the mixed source. We note that the mixed source has the property of [26]

lim
|y|→+∞

P(x, k; y) =
e−ikŷ·x

4π
, (16)

which shows that the plane-wave expansion can be modeled using the mixed-source
expansion placed in the far field.

We construct a virtual equivalent sound field using two concentric spheres of virtual
mixed sources. Therefore, the sound field can be expressed, using the mixed-source model,
as [39]

P(x, k) =
∫

ψ(k, RN ŷ; o) RNe−ikRN
eik||RN ŷ−x||

4π||RN ŷ− x||︸ ︷︷ ︸
P(x,k;RN ŷ)

dŷ

+
∫

ψ(k, RFŷ; o) RFe−ikRF
eik||RF ŷ−x||

4π||RFŷ− x||︸ ︷︷ ︸
P(x,k;RF ŷ)

dŷ,

(17)

where RN is the radius of the virtual sphere placed in the near field, RF is the radius of the
virtual sphere placed in the far field, ψ(k, RN ŷ; o) and ψ(k, RFŷ; o) are the driving functions
of the mixed-source distributions as observed at o, and P(x, k; RN ŷ) and P(x, k; RFŷ) are
the mixed sources on the two spheres. Note that the mixed-source model expands the
sound field with respect to o, which allows us to observe the source distribution at o and
estimate the sound at any translated position x.

3.3. Particle-Velocity-Based Expansion

In this subsection, we develop the theory of particle-velocity-based mixed-source
expansion. The particle velocity is related to the sound pressure by the Euler’s equation [55],

V(x, k) =
i

kρ0c
~∇P(x, k), (18)

where ~∇P(x, k) denotes the gradient of P(x, k) in terms of r, θ, and φ. Similarly, for the
mixed source, we have

V(x, k; RX ŷ) =
i

kρ0c
~∇P(x, k; RX ŷ), (19)

where RX ∈ {RN , RF}; therefore, taking the gradient operation on both sides of (17), we
can obtain the particle-velocity-based mixed-source expansion

VΨ(x, k) =
∫

ψ(k, RN ŷ; o)VΨ(x, k; RN ŷ)dŷ +
∫

ψ(k, RFŷ; o)VΨ(x, k; RFŷ)dŷ, (20)

where VΨ(x, k; RN ŷ) and VΨ(x, k; RFŷ) represent the particle velocity of the virtual sources
in the near field and the far field, respectively, in the Ψ direction.

In practice, the particle-velocity-based mixed-source expansion (20) can be approxi-
mated by a finite set of L known virtual sources for each virtual sphere; therefore, (20) can
be expressed as

VΨ(x, k) =
L

∑
`=1

w`ψ(k, RN ŷ`; o)VΨ(x, k; RN ŷ`) +
L

∑
`=1

w`ψ(k, RFŷ`; o)VΨ(x, k; RFŷ`), (21)

where w` are the the sampling weights for the source distribution, and ŷ` denotes the
position of the `th virtual source on each sphere.
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Note that the parameters of the mixed-source expansion need to be carefully selected
in the implementations. The near-field radius of the virtual sphere can be selected based on
the desired maximum translation distance, because the listener cannot move beyond the
near-field sphere. As for the far-field sphere, it can be placed anywhere so long as it is in
the far-field. Moreover, the selection of the number of the virtual sources per sphere is a
trade-off between angular resolution and computation cost. The more virtual sources there
are, the more opportunity they have to match the true sound direction of arrival no matter
the higher computation cost the system has.

By replacing αnm(k) with β
(`)
nm (i.e., the pressure coefficients of the `th virtual source) in

(6)–(8), and then substituting them into (5), the particle velocity due to
the `th virtual source can be written as

VΨ(x, k; RX ŷ`) =
QΨ

∑
p=0

p

∑
q=−p

X(Ψ,`)
pq (k, |x|; RX ŷ`)Ypq(x̂), (22)

where X(Ψ,`)
pq (k, |x|) are the velocity coefficients of the `th virtual source. Substituting (5)

and (22) into (21), (21) can be simplified as

X(Ψ)
pq (k, |x|) =

2L

∑
`=1

ω`ψ(k, R`ŷ`; o)X(Ψ,`)
pq (k, |x|; R`ŷ`), (23)

where R` = RN for ` ∈ [1, L], and for ` ∈ [L + 1, 2L] we have R` = RF, and w` = w`−L.
We denote (23), in matrix form, as

X = Aψ, (24)

where X = [XT
r , XT

θ , XT
φ ]

T is a [(Qr + 1)2 + (Qθ + 1)2 + (Qφ + 1)2] long vector containing

all three components of the particle velocity vector with XΨ = [X(Ψ)
00 , X(Ψ)

1(−1), . . . , X(Ψ)
QΨQΨ

]T ,

ψ = [ψ1, . . . , ψL]
T is aL = 2L long vector with ψL = ψ(k, RLŷL; o), and A = [AT

r , AT
θ , AT

φ ]
T

is the [(Qr + 1)2 + (Qθ + 1)2 + (Qφ + 1)2] by L expansion matrix with

AΨ =


w1X(Ψ,1)

00 · · · wLX(Ψ,L)
00

w1X(Ψ,1)
1(−1) · · · wLX(Ψ,L)

1(−1)
...

. . .
...

w1X(Ψ,1)
QΨQΨ

· · · wLX(Ψ,L)
QΨQΨ

. (25)

Note that the dependence is omitted here for notational simplicity. The expansion is
now reduced to calculate the driving function of the mixed source distribution ψ(k, y; o)
for a given measured sound field. We introduce two solutions here.

3.3.1. Least Squares Solution

The least squares method is to estimate the driving function ψ so as to minimize the
difference between X and Aψ, and it can be formulated as

ψ = arg min
ψ
||Aψ− X||22. (26)

This problem can be solved using a Moore–Penrose inverse with Tikhonov
regularization [56].
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3.3.2. Sparse Solution

It is shown that modeling fewer virtual sources from propagation directions that are
similar to the original sound will lead to better perceptual immersion [39]. Therefore, we
also construct a sparse constrained objective function, expressed as

ψ = arg min
ψ
||Aψ− X||22 + λ||ψ||1, (27)

where λ is the parameter controlling the strength of the sparsity constraint for the driving
function ψ. This sparse linear regression problem can be solved using the least absolute
shrinkage and selection operator (LASSO) [57]. Other optimization techniques such as
the iteratively reweighted least squares (IRLS) [58] can also be applied to solving this
problem. We direct readers to [59] for more details about compressive sensing. Note that
the applicability of the above solutions will depend on the condition number of matrix
A, which is determined by the distribution of the virtual sources. It shows that a well-
conditioned A matrix should result from a geometry in which the virtual sources are
maximally distributed over space in the literature [26].

4. Sound Field Translation and Synthesis for Binaural Reproduction

As shown in the flowchart of the velocity-based mixed-source sound field translation
for binaural reproduction in Figure 1, in this section, we translate the sound field in
the spherical harmonic domain, and then synthesize the left and right ear signals at the
translated position.

Figure 1. The flowchart of the velocity-based mixed-source sound field translation for binaural repro-
duction.

Solving (26) or (27) gives us the reproduced virtual-reality sound field, expressed as

P̃(x, k) =
2L

∑
`=1

ω`ψ(k, R`ŷ`; o)R`e−ikR`
eik||R` ŷ`−x||

4π||R`ŷ` − x|| . (28)

With respect to the translated position d, the virtual sources are located at z` = R`ŷ` − d’;
therefore, the translated sound field can be written as

P̃(x, k; d) =
2L

∑
`=1

ω`ψ(k, R`ŷ`; o)R`e−ikR`
eik||z`−x||

4π||z` − x|| . (29)

We decompose (29) in the spherical harmonic domain about the position d, and the
pressure coefficients of the translated sound field due to the virtual sources at z` can
expressed as

γvu(k; d) =
2L

∑
`=1

ω`ψ(k, R`ŷ`; o)ikR`e−ikR`hv(k|z`|)Y∗vu(ẑ`), (30)

where v and u index the translated harmonics, centered at d. The left and right ear signals
can be synthesized, in the spherical harmonic domain, directly from the translated pressure
coefficients γvu(k; d) and the coefficients of the listener’s HRTFs, Hvu

L,R(k), with [60,61]

P̃L,R(k; d) =
∞

∑
v=0

v

∑
u=−v

γvu(k; d)Hvu
L,R(k). (31)

Note that Hvu
L,R(k) is obtained from the spherical harmonic decomposition of the HRTF

HL,R(k, y; d).
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Alternatively, the left and right ear signals can be obtained by applying the mixed-
source driving functions to the HRTFs based on the listener’s translated position, given as

P̃L,R(k; d) =
2L

∑
`=1

ω`ψ(k, R`ŷ`; o)HL,R(k, y`; d). (32)

We also direct readers to [62,63] for other options of rendering the ear signals at the
translated positions.

5. Simulation Study

In this section, we evaluate the performance of the proposed particle-velocity-based
mixed-source expansion for binaural reproduction by comparing it with the state-of-the-art
method, the sound-pressure-based mixed-source expansion, in simulated acoustic environ-
ments. The simulated environments and the evaluation criteria are explained in Section 5.1.
The simulation results and discussions are given in Section 5.2 and Section 5.3, respectively.

5.1. Simulation Setup and Criteria

In this simulation, we firstly consider an acoustic environment that contains a single
free-field point source with a location of b1 = (1, π/3, π/4). We then consider another sce-
nario where multiple sources exist, which is constructed by adding two more point sources
with randomly selected locations of b2 = (0.5, 3π/4, 4π/3) and b3 = (1.8, π/2, π/2),
respectively, in the former acoustic environment. The true sound pressure at an arbitrary
position x due to the jth point source is

Pj(x, k) =
eik||bj−x||

4π||bj − x|| , j = {1, 2, 3}. (33)

The total sound pressure due to multiple sources follows the principle of linear su-
perposition. We assume that the receiver can record the sound field up to the 4th order
(i.e., N = 4), and the radius of the receiver region is R = 0.042 m (We simulate the radius
of the EigenMike, which is a popular commercial microphone array [53]). The pressure
coefficients describing the acoustic environment {αnm(k)} can be extracted from the re-
ceiver’s recording. Here, for simplicity, we use the theoretical pressure coefficients up to
the Nth order, expressed as

αnm(k) =


ikhn(k|b1|)Y∗nm(b̂1), n ∈ [0, N], for S1,

∑3
j=1 ikhn(k|bj|)Y∗nm(b̂j), n ∈ [0, N], for S2,

(34)

where S1 denotes the single source scenario and S2 denotes the multiple sources scenario.
The mixed-source model consists of two sets of L = 36 virtual sources distributed on the
two spheres, both with the positions arranged on Fliege nodes [64]. The first set is placed
in the near field at RN = 2 m, and the second set is placed in far field at RF = 20 m.

Throughout the simulations, the frequency of the sources is f = 1500 Hz, except the
evaluation in terms of the frequency. The sound speed is c = 343 m/s and the air density is
ρ0 = 1.29 kg/m3. The truncation orders of the velocity coefficients in the r, θ, φ direction
are Qr = N, Qθ = 2N, and Qφ = 2N, respectively, according to the truncation theorem of
the velocity expressions [44]. For the sparse solution, we use a 500 iterations LASSO.

As the first objective performance measure for the reproduction method, we define the
mismatch between the reproduced sound field and the true sound field at any point x as

ε(x, k) =
|P(x, k)− P̃(x, k)|2

|P(x, k)|2 × 100(%). (35)
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A value of 0% means the reproduced sound field is exactly the same as the true
sound field at the point. The larger the percentage, the greater the difference between the
reproduced sound field and the true sound field at the point. A good perception of sound
localization requires accurate reproduction of sound direction. To evaluate the performance
of the reproduction of sound direction at the translated position d, two localization metrics
are introduced [22]. The first one is related to the velocity vector at the translated position,
which is given by

rV(k; d) = Re
(

∑L`=1 U`(k)ẑ`
∑L`=1 U`(k)

)
, (36)

where the subscript V denotes velocity, Re(·)denotes the real part, and U`(k) are the
effective source gains (accounting for point-source radiation), expressed as

U`(k) =
eik(|z` |−R`)

|z`|/R`
ψ(k, R`ŷ`; o). (37)

rV(k) is used to predict localization at low frequencies (below 700 Hz). For high frequencies
(above 500 Hz), the second metric related to the intensity vector is given by

rE(k; d) =
∑L`=1 |U`(k)|2ẑ`
∑L`=1 |U`(k)|2

, (38)

where the subscript E denotes energy. The directions of rV(k; d) and rE(k; d) indicate the
expected localization direction, and their magnitudes, |rV(k; d)| and |rE(k; d)|, indicate the
quality of localization [22]. For the point source at b, the directional error ζV,E(k; d) at the
translated position d is defined as (The direction error is related to the direction difference
in angles between the two unit vectors in (39) by arccos(1− ζ2/2).)

ζV,E(k; d) =
∣∣∣∣ rV,E(k; d)
|rV,E(k; d)| −

b− d
|b− d|

∣∣∣∣. (39)

Ideally, rV(k; d) and rE(k; d) should be unit vectors that point to the direction of the
point source b (i.e., |rV(k; d)| = |rE(k; d)| = 1, and ζV,E(k; d) = 0).

We also implement the two corresponding solutions (i.e., the closed-form solution
and the sparse solution) of the state-of-the-art technique, the sound-pressure-based mixed-
source expansion [39,40], for comparison.

5.2. Simulation Results

In this section, we first examine the accuracy of the proposed particle-velocity-based
mixed-source expansion to reconstruct the pressure field in the two scenarios, and then
we evaluate the localization performance in terms of the frequency and translated position
using the metrics in Section 5.1 for the single source scenario.

5.2.1. Reproduced Pressure Field

In terms of the single source scenario, Figure 2 shows the true pressure field calculated
by (33), and the recorded pressure field calculated using the theoretical pressure coefficients
in (34). The black circle denotes the receiver region. The receiver can record the sound
field within the receiver region. However, truncation error degrades the accuracy of the
pressure field beyond the receiver region, which is the constraint in Section 2 that we
wish to relax through the proposed method. To compare the proposed method with the
sound-pressure-based expansion, we first show the results of the sound-pressure-based
expansion for the closed-form solution and the sparse solution in Figure 3. We observe
that the closed-form solution can guarantee the reproduction accuracy within the receiver
region. However, for a position away from the receiver region, the mismatch percentage
at the position quickly increases to a value close to 100 %, which is similar (but not exact)
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to the recorded pressure field and is not good enough for translation. The sparse solution
improves the performance and reconstructs the pressure field accurately around the receiver
region, which allows for the listener to move to the position exterior to the receiver region.
Figure 4 shows the reconstructed pressure field and the error field controlled by the least
squares solution and the sparse solution using the particle-velocity-based expansion, and
these two solutions have the exactly same pressure field mismatch, which means that the
least squares solution of the particle-velocity-based expansion has the same performance
as the closed-form solution of the sound-pressure-based expansion. However, for the
sparse solution of the particle-velocity-based expansion, it provides a larger area with 0
% pressure field mismatch around the receiver region compared with the sparse solution
of the sound-pressure-based expansion, which allows for the listener to translate further
away from the original receiver region.
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Figure 2. The truepressure field and recorded pressure field at 1500 Hz. The black circle denotes the
receiver region. (a) the true pressure field; (b) the recorded pressure field.
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Figure 3. The reconstructedpressure field and the error field controlled by the closed-form solution
(P-CFS) and the sparse solution (P-SS) using the sound-pressure-based expansion. (a) Reconstructed
pressure field controlled by P-CFS; (b) error field controlled by P-CFS; (c) reconstructed pressure field
controlled by P-SS; (d) error field controlled by P-SS.
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Figure 4. The reconstructed pressure field and the error field controlled by the least squares solution
(V-LSS) and the sparse solution (V-SS) using the particle-velocity-based expansion. (a) Reconstructed
pressure field controlled by V-LSS; (b) error field controlled by V-LSS; (c) reconstructed pressure field
controlled by V-SS; (d) error field controlled by V-SS.

As for the multiple sources scenario, the true pressure field and recorded pressure
field are given in Figure 5. The pressure field difference between them also increases
gradually (i.e., the value of the mismatch gradually increases from 0% to 100%) as the
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observation point moves away from the target region due to the truncation error. Similar to
the evaluation for the single source scenario, we first show the reconstructed pressure fields
controlled by the closed-form solution and the sparse solution based on the sound-pressure-
based expansion in the multiple sources scenario. The results with the error fields are
shown in Figure 6. It shows that the closed-form solution still can only guarantee accurate
reproduction around the target region, whereas the sparse solution can provide greater
translation area. However, the area with 0% pressure field mismatch is much smaller than
that in the single source scenario. Figure 7 shows the results of the least squares solution
and the sparse solution based on the particle-velocity-based expansion. Similarly, the result
of the least squares solution under the particle-velocity-based expansion is identical to
the result of the closed-form solution under the sound-pressure-based expansion in terms
of the pressure field mismatch. Although the sparse solution of particle-velocity-based
expansion in the multiple sources scenario can provide a smaller translation area than that
in the single source scenario, it still has an improved performance compared to the sparse
solution of the sound-pressure-based expansion in the multiple sources scenario.
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Figure 5. The true pressure field and recorded pressure field at 1500 Hz in the multiple sources
scenario. The black circle denotes the receiver region. (a) the true pressure field; (b) the recorded
pressure field.
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Figure 6. The reconstructed pressure field and the error field controlled by P-CFS and P-SS using the
sound-pressure-based expansion in the multiple sources scenario. (a) Reconstructed pressure field
controlled by P-CFS; (b) error field controlled by P-CFS; (c) reconstructed pressure field controlled by
P-SS; (d) error field controlled by P-SS.
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Figure 7. The reconstructed pressure field and the error field controlled by V-LSS and V-SS using the
particle-velocity-based expansion in the multiple sources scenario. (a) Reconstructed pressure field
controlled by V-LSS; (b) error field controlled by V-LSS; (c) reconstructed pressure field controlled by
V-SS; (d) error field controlled by V-SS.
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5.2.2. Frequency

To evaluate the broadband performance of the proposed method on direction repro-
duction at a translated position, we calculate the directional error ζV,E and the magnitude
of rV,E (i.e., |rV,E|) using the two localization metrics introduced in Section 5.1, with re-
spect to the change in frequency. The translated position is (0.2, 0.3, 0) m in Cartesian
coordinates. Figure 8 shows the results of ζV and |rV |. As expected, the sparse solution
of the particle-velocity-based expansion is better than all the other solutions, especially
for low frequencies. The results of ζE and |rE| are given in Figure 9. We observe that
the sparse solution of the particle-velocity-based expansion has the least directional error,
and the |rE| for this solution is closest to 1 among all the evaluated methods. Compared to
curves for the other method, the curve for the sparse solution of the particle-velocity-based
expansion has little fluctuation in terms of frequency, which means the sparse solution of
the particle-velocity-based expansion can provide a uniform performance for broadband
signals. In addition, the least squares solution of the particle-velocity-based expansion
is the same as the closed-form solution of the sound-pressure-based expansion for the
performance in terms of frequency.
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Figure 8. The directional error ζV and the magnitude of rV with respect to frequency at the translated
position of (0.2, 0.3, 0) m. (a) Directional error ζV ; (b) magnitude of rV .
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Figure 9. The directional error ζE and the magnitude of rE with respect to frequency at the translated
position of (0.2, 0.3, 0) m. (a) Directional error ζE; (b) magnitude of rE.

5.2.3. Translated Position

We also evaluate the performance of each method when the translated position moves
away from the receiver region. Figures 10 and 11 show the results of ζV and |rV | at 300 Hz,
and the results of ζE and |rE| at 1500 Hz, respectively, as a function of translation distance
along the positive y-axis. Note that we plot Figures 10 and 11 at different frequencies
because rV is a good predictor for low frequencies, whereas rE is a good predictor for
high frequencies, as mentioned in Section 5.1. From Figures 10a and 11a, we show that
all the methods have little error at the origin where the receiver is positioned; however,
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the performance worsens as the translation distance increases for all the methods. Com-
pared to the sparse solution of the sound-pressure-based expansion, the sparse solution
of the particle-velocity-based expansion has less directional error and this advantage be-
comes more significant for a further translated position, which leads to a better direction
reproduction, especially for the translated position far away from the receiver region.
The results of Figures 10b and 11b also indicate that the sparse solution of the particle-
velocity-based expansion can provide a better quality of localization for the listener than
the sparse solution of the sound-pressure-based expansion. Once again, we notice that
the least squares solution and the closed-form solution have same performance, and both
are worse than the the sparse solutions of the particle-velocity-based expansion and the
sound-pressure-based expansion.

From the above analysis, we conclude that the least squares solution of the particle-
velocity-based expansion is identical to the closed-form solution of the sound-pressure-
based expansion, whereas the sparse solution of the particle-velocity-based expansion has
better overall performance than the sparse solution of the sound-pressure-based expansion.
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Figure 10. The directional error ζV and the magnitude of rV as a function of translation distance along
the positive y-axis. The frequency of the source is 300 Hz. (a) Directional error ζV ; (b) magnitude
of rV .
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Figure 11. The directional error ζE and the magnitude of rE as a function of translation distance along
the positive y-axis. The frequency of the source is 1500 Hz. (a) Directional error ζE; (b) magnitude
of rE.

5.3. Discussion

Based on the above simulation results, we give the following comments:

• The particle-velocity-based expansion is derived directly from the sound-pressure-
based expansion by the gradient calculation. Therefore, the least squares solution of
the particle-velocity-based expansion is mathematically parallel to the closed-form
solution of the sound-pressure-based expansion, both of which aim to reconstruct the
original truncated recording by distributing energy throughout all virtual sources and
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inherit the spatial artifacts caused by the truncated measurement. This leads to poor
reproduction outside the receiver region.

• Sparse solutions can improve the performance of reproduction outside the receiver
region due to the fact that most sound fields can be reproduced accurately by a single
or a few virtual sources, and thus exhibit sparsity in space. Therefore, provided that the
desired sound is sparse in space, the sparse solutions can be used to relax the restriction
we mentioned in Section 2. We should note that the region of accurate translation in
the multiple sources scenario becomes smaller than that in the single source scenario
for the sparse solution. In addition, the sparse solution is less applicable to highly
reverberant fields where the sparsity does not hold.

• Particle velocity contains the direction information of a sound field. For the sparse
solutions, we can achieve more accurate sound field reproduction by controlling
particle velocity than sound pressure. In other words, the particle-velocity-based
solution outperforms the sound-pressure-based solution for sound field reproduction
in the cases where there are a limited number of sources. Furthermore, particle velocity
reflects the interaural time difference (ITD); therefore, the velocity vector is directly
related to the localization predictor for human perception at low frequencies. Particle
velocity is also one of the quantities that determine the sound intensity vector (the
localization predictor at high frequencies), which reflects another human localization
cue of interaural level difference (ILD). Therefore, the sparse solution of particle-
velocity-based expansion is expected to provide an enhanced perceptual immersion
for the listener.

• Sparse solutions extrapolate the sound field at the translated positions beyond the
receiver region according to the sound field within the receiver region by the mixed-
source expansion where we use multiple virtual sources to estimate the original source.
Therefore, the more the virtual sources are used, the less error the mixed-source ex-
pansion has; however, the higher computation cost the system has. In addition,
the particle-velocity-based solutions would be more computationally expensive than
the sound-pressure-based solutions due to the the extra spherical harmonic decompo-
sition of particle velocity.

We examine the perceptual advantages of the proposed sparse solution of particle-
velocity-based expansion by experiments in the next section.

6. Experimental Verification

In this section, we evaluate the perceptual performance of the proposed method against
the state-of-the-art method in a listening experiment. The experimental methodology is
introduced in detail in Section 6.1, and then we present the statistical results in Section 6.2.

6.1. Experimental Methodology

To generate the binaural test signals, we construct a virtual experimental environment,
where there is a 4th order receiver located at the origin and a free-field point source located
at (1, 0, 0) m, with respect to the origin. The receiver region is a spherical region with
a radius of 0.042 m, to represent the spatial abilities of common spherical microphone
arrays. We assume the microphone array works ideally, and the theoretical pressure
coefficients (34) can be extracted from the ideal microphone recording. The parameters
of the mixed-source model are the same as those in Section 5.1. We reproduce the sound
image for the listener away from the recording area by extrapolation using the proposed
method. The listener faces the positive x-axis, and the listener’s head is aligned vertically
with the point source on the x-y plane. We used the HRTFs of the FABIAN head and
torso simulator [65] from the HUTUBS dataset [66,67]. The source signal is a clip of dry
instrumental music with 10 s duration and its spectrum energy mainly distributes in the
frequency band below 8 kHz. We process the signals at a frame size of 4096 with 50%
overlap and a 16 kHz sampling frequency. We carry out a MUSHRA [68] experiment to
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compare four translation methods; therefore, for a translated position there are a total of six
binaural test signals in this experiment:

• Reference/Hidden reference: The ground truth, which is obtained directly from
filtering the theoretical point source signal with the HRTFs.

• Anchor: Signals of the truncated recording at the origin, which are simulated using the
pressure coefficients up to order N in (34). No translation is processed, but is filtered
by the HRTFs.

• P-CFS: Signals reconstructed using the closed-form solution of the sound-pressure-
based expansion and rendered by the HRTFs.

• V-LSS: Signals reconstructed using the least squares solution of the particle-velocity-
based expansion and rendered by the HRTFs.

• P-SS: Signals reconstructed using the sparse solution of the sound-pressure-based
expansion and rendered by the HRTFs.

• V-SS: Signals reconstructed using the sparse solution of the particle-velocity-based
expansion and rendered by the HRTFs.

We generate the above binaural test signals at six different translated positions outside
the receiver region. All the translated positions are on the x-y plane, and they are (0, 1, 0) m,
(0,−1, 0) m, (0.5, 0.8, 0) m, (0.5,−0.8, 0) m, (1, 1, 0) m, and (1,−1, 0) m, respectively. In total,
the scores of 31 subjects (16 females and 15 males) with normal hearing are collected
for this listening experiment. Among the participants there are 14 experienced listeners
with an audio research background and 17 common listeners without any audio research
background. A random set out of the six sets of test signals is selected for each hearing
subject. The test signals are played on a computer and the hearing subjects need to wear
headphones to listen to the test signals. We provide the participants with Matlab programs
containing the test signals with a user interface, and guide them to perform the experiment
using their own computer and headphone through online meetings. The experiment
includes two tests, and they are the source localization test and the basic audio quality test,
respectively. The order in which the test signals are played is also random for each test.
For the source localization test, the hearing subjects are asked to score all the test signals
against the reference for the perceived direction of the sound source, whereas the hearing
subjects need to score on the spectral distortions and other audible processing artifacts with
respect to the reference for the basic audio quality test. During the test, the participants
can arbitrarily switch between different test signals, and the duration of the experiment is
usually within 20 min. The score ranges from 0 to 100. We disqualify the hearing subjects
who score the hidden reference below 90, and their results are removed from the final
dataset of scores.

6.2. Experimental Results

After removing the scores of the disqualified subjects, we collect the scores of 30 sub-
jects in total for the source localization test, and 29 scores for the basic audio quality test.
Box plots showing the results for both tests are given in Figure 12. On each box, the central
short red line indicates the median value, and the edges of the box are the 25th and 75th
percentile of the scores. The extremes of the whiskers correspond to q3 + 1.5(q3 − q1) and
q1− 1.5(q3− q1), where q1 and q3 are the 25th and 75th percentile of the scores, respectively.
If a score goes beyond the extremes of the whiskers, it is considered an outlier, indicated
by the symbol + in the plots. The symbol ∗ denotes the mean value, and the v-shaped
notches refer to the 95% confidence interval. The endpoints of the notches are calculated by
q2 − 1.57(q3 − q1)/

√
Ns and q2 + 1.57(q3 − q1)/

√
Ns, where q2 is the median value and Ns

is the number of the scores. The intervals can be used to compare the median values. If two
intervals do not overlap, their true medians are different with 95% confidence.
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Figure 12. Results of the listening experiment scores for the source localization test and the basic
audio quality test. Each box bounds the 25th and 75th percentile of the scores with the central red
line indicating the median value, and the whiskers are the outward extension of the 25th and 75th
percentile by 1.5 times of the interquartile range. The v-shaped notches represent the 95% confidence
intervals. The symbols + denote the outliers and the symbols ∗ denote the mean values. (a) Source
localization test; (b) basic audio quality test.

From Figure 12a, we observe that, for the source localization, the closed-form solu-
tion of the sound-pressure-based expansion and the least squares solution of the particle-
velocity-based mixed-source solution have similar mean values and median values, and their
confidence intervals have nearly 100% overlapping. The sparse solutions of both expan-
sions have higher mean values and median values. However, the sparse solution of the
particle-velocity-based expansion has a more significant improvement in score and a more
centralized score distribution compared to the sparse solution of the sound-pressure-based
expansion. Similar results are shown for the basic audio quality test in Figure 12b, where
no significant difference is found between the closed-form solution and the least squares
solution. For the sparse solutions, the particle-velocity-based expansion is still observed
to perform better than the sound-pressure-based expansion; however, both of outperform
the closed-form solution and the least squares solution. We also notice that for the sparse
solution of the particle-velocity-based expansion the scores in the source localization test
are relatively higher than those in the basic audio quality test.

According to the above experimental results, we conclude that in terms of the per-
ceptual criteria of source localization and audio quality the sparse solutions have better
performance than the closed-formed solution and the least squares solution, both of which
have similar performance. In the sparse solutions, the particle-velocity-based expansion
shows an improvement against the sound-pressure-based expansion, especially for the
source localization.

6.3. Discussion

Based on the above experimental results, we give the following comments:

• Statistically, the least squares solution of the particle-velocity-based expansion is equiv-
alent to the closed-form solution of the sound-pressure-based expansion, whereas the
sparse solution of the the particle-velocity-based expansion provides better perceptual
performance than the sparse solution of the sound-pressure-based expansion at a ran-
dom translated position. The experimental results are consistent with the discussions
in Section 5.3.

• Having particle velocity as the design criterion contributes to more precise recon-
struction of the interaural phase difference than sound pressure, which is of utmost
important for direction perception and therefore, contributes to improved localization
of reconstructed sound when there are only a limited number of sources (the sparse
solution). In addition to direction perception, audio quality can also be improved by
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controlling particle velocity for the sparse solution, which may be due to the more
accurate reproduction of the sound field.

• There are some limitations for the experimental verification. We only evaluate the
single source scenario in the perceptual experiment, where the sound field exhibits
sparsity. The perceptual performance may degrade for the multiple source scenario
or the highly reverberant sound fields. In addition, the source signal is a single type
of music, and the performance of the proposed method in terms of the type of audio
remains unexplored. We should note that the equipment used (e.g., headphone and
sound card) and the listening environment may differ for different subjects due to the
remote experiment.

7. Conclusions

We have proposed a new mixed-source expansion, which exploits particle velocity to
enhance the performance of sound field translation for binaural reproduction. We describe
spatial particle velocity using the velocity coefficients in the spherical harmonic domain,
and expand the sound field in terms of the velocity coefficients. We compare the proposed
method with the state-of-the-art expansion based on sound pressure. The simulation
results show that the least squares solution of the particle-velocity-based expansion is
parallel to the closed-form solution of the sound-pressure-based expansion, whereas the
sparse solution of the particle-velocity-based expansion can reproduce the sound field
over a larger area with less error, and has more accurate direction reproduction at the
translated positions than the sparse solution of the sound-pressure-based expansion. Finally,
the results of the MUSHRA experiment verify that the particle-velocity-based expansion
outperforms the sound-pressure-based expansion for the sparse solution at the translated
positions in terms of both source localization and audio quality for the single source
scenario. The improvement for source localization is greater than audio quality.
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