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Abstract: In today’s world, the safety, economic prosperity, and social well-being of nations depend
heavily on highly interconnected critical infrastructures. These infrastructures encompass power
networks, natural gas systems, communication networks, water treatment facilities, and transporta-
tion systems. Gaining insight into the behavior of these infrastructures, particularly during stress or
attacks, has become crucial for both the private and public sectors. Ensuring an adequate level of func-
tionality during emergencies, such as disasters, is also a priority, which can be attained by enhancing
infrastructure resilience. Resilience metrics and models play a significant role in understanding the
complex interplay between the behaviors and operational characteristics of interdependent critical
infrastructures. Additionally, these models and metrics must demonstrate the interdependencies
among infrastructures to provide a more comprehensive representation of infrastructure resilience.
This paper reviews, categorizes, and presents resilience metrics and models for Smart Interdependent
Critical Infrastructures (Smart ICIs). This paper provides a comprehensive evaluation of various
resilience models and measurements tailored specifically for interdependent critical smart infrastruc-
tures. It includes the essential terminology and definitions related to the resilience of Smart ICIs,
investigates the universally recognized phases and capabilities of resilience, and examines the various
types of failures that could potentially affect Smart ICIs.
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1. Introduction

With the continued growth of urban populations, the concept of resilience has become
increasingly central to the sustainability and functionality of our cities. It is imperative to
fortify our urban environments with resilience strategies to ensure their ability to adapt,
recover, and thrive amidst the diverse challenges accompanying dense population centers,
including environmental, social, and infrastructural stresses [1]. Over the past several
decades, the proportion of the global population residing in urban areas has grown from
33% to 55% [2]. This rapid urbanization has exerted immense pressure on infrastructures
that provide essential city services, leading to a surge of interest in developing smart cities.
Smart city initiatives aim to establish intelligent, data-driven urban infrastructures by lever-
aging advancements in data analytics and information and communication technology
(ICT) to enhance functionality, performance, and sustainability. In the context of today’s
society, it is important to highlight the difficulties encountered by interdependent smart crit-
ical infrastructures, especially when taking into account the differences between urban and
rural settings. Smart infrastructures are especially useful in metropolitan areas due to the
high population density and level of technological integration found there. These adaptive
and interdependent systems can increase resistance to shocks and improve productivity
under pressure.

However, in rural settings, the picture can be drastically different. These regions
typically lack the extensive, dense networks observed in cities, and their infrastructures
may be less technologically advanced. Due to this discrepancy, critical infrastructures
may become less dependent on one another, which could compromise the system’s overall
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resilience. It can also be difficult to implement smart technologies in these settings due
to a lack of resources (both financial and technical). To achieve this goal of balanced
and equitable resilience, it is essential to take into account the different requirements
and resources of urban and rural areas during the planning, design, and implementation
of smart interdependent critical infrastructures. In reference [3], the authors define a
smart city as “an urban region that employs various electronic data collection sensors to
generate information, which is then utilized to manage assets and resources effectively.
This encompasses data gathered from citizens, devices, and assets that are processed and
analyzed to monitor and control traffic and transportation systems, power plants, water
supply networks, waste management, law enforcement, information systems, schools,
libraries, hospitals, and other community services”.

The core principle behind the implementation of a smart city involves the seamless
integration of physical infrastructure, information and communication technology (ICT)
infrastructure, social infrastructure, and business infrastructure to bolster the collective
intelligence of a city [4]. Smart city infrastructure encompasses physical, digital, and
electrical backbones, including transportation networks, telecommunication networks,
traffic light systems, streetlight systems, water treatment systems, gas supply systems,
and power supply systems. ICT lies at the heart of these smart systems, transforming the
physical infrastructure into intelligent entities [5].

Innovations in sensor technology, telecommunication infrastructures, control systems,
cyber-physical operations, data management, and analytics are paving the way for smart
infrastructures in cities, enhancing sustainability, efficiency, and residents’ quality of life.
For instance, in China, Shenzhen’s citizens now enjoy a higher standard of living thanks to
the deployment of resilient urban design and infrastructure that has improved the city’s air
quality, decreased traffic, and increased the dependability of its public transportation sys-
tems [6]. Policymakers and urban planners should prioritize initiatives that not only boost
the city’s infrastructures but also enhance the general living circumstances and happiness
of its population by recognizing the influence of urban resilience on residents’ well-being.
Numerous smart city initiatives and projects have emerged in areas such as energy effi-
ciency, transportation management, environmental monitoring, and asset management
[5,7]. Unique trends are observable in deploying smart water infrastructure and utilizing
wireless sensors and actuators connected to nearby water distribution networks to monitor
various operations, including pressure, leaks, ruptures, water quality, traffic management,
and public transportation within smart transportation networks [8].

It is important to note that these new smart infrastructures are increasingly interde-
pendent [9], particularly the integration of electrical power and ICT. This interdependence
creates various vulnerabilities to both external and internal forces. External forces en-
compass natural disasters and extreme weather events (e.g., hurricanes, tornadoes, wind
storms, ice storms), while internal forces include failures resulting from component mal-
functions, system breakdowns, and human errors. This type of interdependence between
smart infrastructures is referred to as “Smart Interdependent Critical Infrastructures (Smart
ICIs) [10]”. In this context, the primary focus of this paper is to elucidate the concept of
resilience within the realm of Smart ICIs and to showcase the diverse resilience metrics and
methodologies that researchers employ to evaluate the resilience of Smart ICIs.

The idea of resilience is examined in this research in relation to Smart Interdependent
Critical Infrastructures (Smart ICIs) [11], which are becoming more and more crucial to the
operation of smart cities. These infrastructures are more vulnerable to different internal
and external pressures, including natural disasters, component failures, and human error,
as they become more linked. The study analyzes various resilience metrics and approaches
that academics use to evaluate and improve the resilience of Smart ICIs in order to address
these issues. The paper seeks to offer insights into the most efficient methods for enhancing
the robustness and adaptability of these crucial urban systems, assuring their continued
operation and ability to survive interruptions. These approaches cover a wide range
of methodologies, such as simulation, network analysis, mathematical modeling, and
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empirical evaluations. The picture emphasizes the benefits and drawbacks of each approach,
providing helpful insights into how well-suited each is to various types of Smart ICIs and
particular resilience concerns. This thorough knowledge of the state of the art in resilience
measurement can aid practitioners and decision makers in creating more effective plans for
boosting the resilience of their urban systems, ensuring the sustainable growth of smart
cities in a society that is becoming more interconnected.

The trend in measuring the resilience of intelligent infrastructure is toward more
integrated and holistic approaches. This transition is primarily motivated by the realiza-
tion that smart infrastructures are interdependent systems in which a disruption in one
component can have cascading effects [12] throughout the entire network. Consequently,
the traditional, isolated method of measuring resilience is being supplanted with methods
that can capture these interdependencies. In addition, there is a greater emphasis on dy-
namic resilience metrics that take into consideration the adaptability of these systems in
response to changing conditions and threats [13]. Data analytics and artificial intelligence
advancements play a crucial role in this trend, enabling more sophisticated models that can
process large quantities of data and generate more precise and actionable insights [14]. In
addition, there is a growing interest in developing resilience metrics that assess not only
the technical aspects of smart infrastructures, but also the social, economic, and environ-
mental dimensions. This reflects a larger transition toward a more sustainable and resilient
infrastructure development and management strategy.

This paper is structured as follows: Section 2 presents an overview of the resilience of
Smart ICI. Definitions, aspects, and perspectives relevant to ICI are included in Section 3.
Resilience metrics and models for ICI, which experts implemented to assess the resilience
of ICI, are presented in Section 4. The concluding remarks and future challenges relevant
to this work are presented in Section 6.

2. Critical Infrastructures (CIs)

Critical infrastructure, as defined by [15], encompasses systems that consist of in-
dustries, organizations, and distribution capabilities that provide a continuous flow of
essential services vital to the defense and economic security of society. These systems
are often referred to as lifeline systems. Critical infrastructure incorporates various sys-
tems such as electric power systems, telecommunications, water treatment and supply,
natural gas supply, transportation systems, and healthcare systems [16]. These infrastruc-
tures do not exist independently; instead, they are interconnected, giving rise to the term
“interdependent critical infrastructures” (ICI). ICIs encompass all interconnected critical
infrastructures utilizing different connection models, such as physical, geographical, cyber,
and virtual connections.

The interconnected nature of ICIs amplifies the need for a comprehensive understand-
ing of how these infrastructures interact with each other. This understanding can help
identify potential vulnerabilities and risks associated with their interdependence. In turn,
this awareness can lead to the development of more resilient systems that can withstand
various threats and maintain their functionality during crises or emergency situations.

Moreover, as the world moves towards an increasingly digitized and connected envi-
ronment, the interdependence of critical infrastructures becomes even more pronounced.
This shift creates new challenges and opportunities for enhancing the resilience of these
interconnected systems. By developing robust and adaptable resilience metrics and models,
stakeholders can better manage and mitigate the potential impacts of disruptions on critical
infrastructures, thereby ensuring the rapid recovery of essential services and the well-being
of society as a whole.

2.1. Smart Interdependent Critical Infrastructures (ICIs)

Interdependence is an interdependence between two infrastructures in which the
operational effectiveness of one is intrinsically linked to the performance of the other.
Consider the electric power network and the natural gas network, for instance. The
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preponderance of electric power generators relies on natural gas as a fuel source, while
certain components of the natural gas infrastructure, such as compressors, require electricity
to function. In such a scenario, any disruption to the electrical power grid may cause a
disruption in the natural gas network. In contrast, a decrease in natural gas pressure could
hinder power generation. Smart Interdependent Critical Infrastructures (Smart ICIs) adhere
to the same interdependence principle as traditional ICIs. However, the incorporation of
advanced Information and Communication Technology (ICT) could substantially amplify
their interdependence [17–19].

Infrastructure interdependencies are more than just theoretical concerns. Numerous
policy reports have recognized the importance of understanding the relationships between
infrastructures [20]. These reports highlight the growing attention at the governmental pol-
icy level toward the significance of incorporating interdependencies in national strategies
to protect and defend critical infrastructures. While infrastructure service providers possess
extensive experience in responding to and mitigating blackouts or minor disruptions, there
is a crucial need for the nation to prepare for and recover from critical interruptions which
may arise due to terrorist attacks or natural disasters.

Furthermore, as the world becomes more interconnected and digitized, the complexi-
ties of smart interdependent critical infrastructures continue to evolve. This progression
necessitates continuous advancements in the development of resilience metrics and models
to understand and manage the potential impacts of disruptions on these interconnected
systems. By enhancing the resilience of Smart ICIs, stakeholders can better safeguard
the essential services that these infrastructures provide, ensuring the continuity of these
services and the well-being of society as a whole.

2.2. Interdependence Types

Smart ICIs exhibit various types of dependencies and interdependencies. While
dependency refers to a unidirectional connection between infrastructures, interdependency
implies a bidirectional relationship between them [21]. Numerous scholars have categorized
the interdependencies between infrastructures in different ways [22].

In addition to these primary types of interdependencies, it is essential to consider
the potential cascading effects that can occur within and between interconnected infras-
tructures. As the complexity of Smart ICIs increases with the integration of advanced
technologies, the possibility of cascading failures across multiple systems becomes a press-
ing concern. Identifying and understanding the different types of interdependencies can
help policymakers, planners, and infrastructure managers develop more effective strategies
to mitigate the risks associated with these complex relationships and enhance the resilience
of Smart ICIs.

Moreover, the increased interconnectivity and digitization of Smart ICIs bring both
opportunities and challenges. On the one hand, interdependent infrastructures can improve
efficiency, resource optimization, and better decision making. On the other hand, the
growing complexity of these systems can make them more vulnerable to disruptions,
cyberattacks, and other potential threats. Therefore, it is crucial for stakeholders to strike
a balance between leveraging the benefits of interdependent critical infrastructures and
addressing the challenges they pose. This can be achieved through continuous research,
innovation, and collaboration among various sectors, ultimately contributing to a more
resilient and sustainable society; however, in this paper, we classify the interdependencies
in critical infrastructures into five primary types:

• Physical Interdependence: Infrastructures exhibit physical interdependence when
the functioning of one infrastructure relies on the physical output(s) of another. For
example, consider the relationship between a coal-fired power generation plant and
its associated railroad system. The power plant generates electricity, which serves as
an input for maintaining the railroad control center’s operations. Simultaneously, the
railroad system is responsible for transporting coal to the power plant, ensuring its fuel
supply. In this case, the physical interdependency connection is established through
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the electricity produced by the power plant and its role in sustaining the railroad
system’s services. The physical dependence of the renewable energy infrastructure
on various factors adds another layer of complexity. For instance, wind turbines are
susceptible to changes in wind speed and direction, solar panels depend on sunlight
intensity, and hydroelectric systems are reliant on water flow rates. Any disruptions
in these physical dependencies can significantly impact the power generation and, in
turn, the resilience of the entire system [23].
This underscores the need for an integrative approach to resilience, encompassing
not only technical considerations but also the physical dependencies of renewable
energy infrastructures. Ensuring resilience in this context requires a thorough under-
standing of these dependencies and the development of strategies to manage potential
disruptions. This might include the diversification of renewable energy sources, strate-
gic placement and design of infrastructure to withstand environmental stresses, and
the implementation of systems that can quickly adapt and respond to changes in
renewable energy supply.

• Logical Interdependence: Infrastructures demonstrate logical interdependence when
the functioning of one system depends on the functioning of others through a mech-
anism that is not connected to physical, cyber, or geographic factors. For instance,
power system outages can lead to fluctuations in the prices of food and fuel. In this
case, the relationship between the infrastructures is established through a logical
connection, rather than a direct physical, cyber, or geographic link.

• Cyber Interdependence: Cyber interdependence manifests between infrastructures
when they are directly linked via an information exchange within an informational
infrastructure. This form of interdependency connects critical infrastructures through
informational pathways, where one infrastructure’s output data serves as another’s
input. Such an exchange between infrastructure systems must inherently involve
data transfer. Consider, for example, the typical operation of communication systems,
which depends on the electrical power generated by power plants and distributed
via transmission systems. To guide this electricity to the required systems, a Super-
visory Control and Data Acquisition (SCADA) system is utilized to administer the
electric power networks. The SCADA system leverages communication systems to
send and collect information from diverse power sectors, thus establishing a cyber
interdependency nexus between the power and communication systems.

• Geographic Interdependence: Geographic interdependence occurs when multiple
infrastructure systems are situated within the same local area, which can result in func-
tional changes to all systems involved in the event of a disruption [24]. For example,
during the 9/11 attack on the World Trade Center, the collapse of the buildings caused
functional disruptions to water systems, rail tunnels, a passenger station, and one of
the world’s largest telecommunication nodes [22].

• Social Interdependence: Social interdependence arises when the connection between
two smart interdependent infrastructures is partially rooted in human behavior out-
comes. Healthcare and other critical infrastructures are not standalone operations;
rather, they are embedded in a vast network of interdependent structures. Their
operation and effectiveness are heavily reliant on the proper functioning of other
critical infrastructures, demonstrating their intricate interdependence. For instance,
healthcare systems depend on the reliable supply of electricity for life-supporting
equipment, telecommunication networks for data transmission and coordination,
transportation systems for the mobility of patients and staff, and water systems for
sanitation and hygiene.
When a disruption occurs in any of these supporting infrastructures, it can have
a profound impact on the healthcare system. For example, a power outage can
incapacitate essential medical equipment, compromising patient care and even leading
to loss of life in extreme cases. Similarly, a failure in the transportation system might
prevent patients from reaching hospitals or delay the delivery of critical medical
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supplies. This is where the social interdependence between these systems becomes
apparent. The community relies on these interdependent infrastructures for their
health and well-being. Disruptions can not only affect physical health but also cause
stress and anxiety, impacting the community’s overall social and mental well-being.
Thus, the resilience of one infrastructure directly influences the resilience of others and
in turn, the resilience of the society they serve. It underscores the need for a holistic,
system-of-systems approach to resilience planning, ensuring that each infrastructure
can withstand, adapt to, and recover from disruptions, thereby safeguarding the
community’s health and wellbeing.

2.3. Failure Types

The various types of failures that arise from dependencies due to disruptions are
grouped into distinct categories, which encompass cascading, escalating, and common-
cause failures. These classifications are essential in understanding how the dependencies
affect the functioning of interdependent infrastructures when faced with disruptions. By
evaluating and categorizing these failures, researchers and practitioners can better identify
the most effective strategies for mitigating their impact and enhancing the resilience of
interconnected systems. Furthermore, this classification allows for a more accurate assess-
ment of the potential risks and vulnerabilities associated with each type of failure, leading
to more informed decision making in managing and protecting these vital infrastructures.
Overall, understanding the different types of failures is crucial in developing comprehen-
sive and robust strategies to ensure the stability and sustainability of interdependent critical
infrastructures [21]:

• Cascading failure is characterized as a situation where a disruption in one infrastruc-
ture (Infrastructure A) impacts one or more elements within another infrastructure
(Infrastructure B), consequently leading to partial or total unavailability of Infrastruc-
ture B. An example of this type of failure is when an electrical power outage affects
communication systems, causing disruptions or a complete loss of connectivity in
those systems [25].

• Escalating failure is defined as a situation in which a disruption in one infrastruc-
ture exacerbates an independent disruption in another infrastructure, typically by
increasing the severity of the functional loss or prolonging the recovery or repair
time for the second infrastructure. For example, a disruption in an ICT system may
amplify the impact of a separate disturbance in a road transport system, leading to
more significant consequences or longer restoration times.

• Common-cause failure happens when two or more infrastructure systems experience
a disruption simultaneously due to a single underlying cause. This could be because
the infrastructures are physically located in close proximity and depend on shared
resources, such as power or communication lines. Alternatively, it could be due to an
external factor that impacts multiple systems at once, such as a natural disaster. When
such failures occur, it can be challenging to manage and recover from as it affects
several systems simultaneously and requires a coordinated response from various
organizations. For example, if a natural disaster hits an area, it could lead to the failure
of all physical infrastructures in that region, thereby causing significant disruptions.

3. Resilience

Resilience has recently emerged as a theoretical framework for examining and as-
sessing an infrastructure’s performance prior to, during, and following the occurrence
of a disturbance. Such disturbances could arise from natural hazards or mechanical and
technical failures. Moreover, resilience is being increasingly recognized as a proactive ap-
proach aimed at bolstering the robustness of infrastructures to enhance their preventative,
mitigative, and recovery capabilities in the face of disruptive events [26].

Resilience is a concept defined in various ways, often contingent on the context of the
analysis, whether it is an asset, a facility, a system, or a system-of-systems. In this discussion,
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we concentrate on definitions that pertain to the system-of-system or interdependent
systems. One such definition posits resilience as “the capacity of a system to absorb
disturbance, undergo change, and retain essentially the same function, structure, identity,
and feedback” [27]. This perspective primarily focuses on resilience in the aftermath of a
disruptive event.

A contrasting definition proposed by the US government encompasses resilience both
prior to and following an event, as depicted in Figure 1. It defines resilience as “the ability
to adapt to changing conditions and withstand and rapidly recover from disruption due
to emergencies” [28]. The Department of Homeland Security (DHS) offers a more specific
definition of resilience in the context of critical infrastructures: “the ability to reduce the
magnitude, impact, or duration of a disruption. Resilience is the ability to absorb, adapt to,
and rapidly recuperate from a potentially disruptive event” [29].

Furthermore, a smart city can be considered resilient to a certain degree if it has
enhanced capabilities to absorb anticipated shocks and strains to its social and technical
network and infrastructures while maintaining the necessary level of functions, structures,
and identification.

Resilience has become a central concept for identifying and evaluating the performance
of infrastructures before, during, and after a disturbance. These disturbances could be
the result of natural calamities or mechanical or technological failures. As a forward-
thinking strategy, resilience has garnered a great deal of attention for its potential to fortify
infrastructure and improve its prevention, mitigation, and recovery capabilities during
an event.

There are numerous definitions of resilience, the particulars of which are frequently
dependent on the context of analysis, such as whether it pertains to an asset, facility,
system, or system-of-systems. The concentration of this article is on definitions pertinent to
interdependent systems or system-of-systems. According to [27], resilience is “the capacity
of a system to absorb disturbance, undergo change, and retain essentially the same function,
structure, identity, and feedback”. This explanation emphasizes the resilience following a
disruptive event.

In contrast, the US government’s proposed definition includes resilience both before
and after an event. It defines resilience as “the ability to adapt to changing conditions and
endure and recover quickly from disruptions caused by emergencies” [28]. The Department
of Homeland Security (DHS) offers a more detailed definition of resilience in relation to
critical infrastructures. According to them, resilience is “the capacity to lessen the extent,
impact, or duration of a disturbance [29]”. Resilience is the capacity to absorb, adapt to,
and swiftly recover from a potentially disruptive event.

The American Society of Civil Engineers (ASCE) FEMA P-58 code [30], known as the
Seismic Performance Assessment of Buildings, provides a vital framework for evaluating a
building’s potential seismic performance. This robust methodology is integral to the design
for resilience, providing a performance-based approach that allows for detailed estimations
of potential losses due to seismic events. The comprehensive nature of the FEMA P-58 code
extends beyond assessing structural damages to encompass non-structural components,
casualties, repair costs, and repair time.

By estimating the total potential impacts—including downtime, loss of functionality,
and economic implications— this methodology equips engineers with the necessary tools
to design structures that are not only resistant to seismic events but also capable of a faster
recovery. Implementing FEMA P-58 code is thus crucial in ensuring the resilience of critical
infrastructures, as it allows for a holistic understanding of how these infrastructures would
fare and recover in the event of a seismic disturbance.

In addition, a smart city is resilient if it is supplied with safeguards to effectively absorb
potential shocks and stresses to its social and technical networks and infrastructures. This
resiliency enables it to maintain the requisite levels of function, structure, and identification
despite stress.
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Figure 1. Resilience Umbrella [31].

3.1. Resilience in Smart ICI

The resilience of contemporary societies is fundamentally intertwined with the re-
silience of their Critical Infrastructures (CIs). The National Infrastructure Advisory Council
(NIAC) [16] has aptly defined infrastructure resilience as “the ability to lessen the intensity,
impact, or duration of a disruption, absorb and adapt to the disruption, and promptly
recover from a potentially disruptive event”. It is incumbent upon critical infrastructure re-
silience to develop a strategy that is self-sufficient but can also contribute to the calculation
of other measures, given its role as an element of community and regional resilience, which
includes the resilience of social, economic, and other subsystems.

The SmartResilience project [32] characterizes the resilience of infrastructure as “the
capability to foresee potential adverse scenarios or events (including new or emerging
threats) that could disrupt the operation or functionality of the infrastructure, prepare for
them, withstand or absorb their impacts, recover from the disruptions they cause, and
adapt to changing conditions” [32]. An infrastructure is generally deemed smarter when it
exhibits greater innovation in regular operations.

Moreover, smarter infrastructures often display the following attributes: they are
integrative and interdependent, innovative through the adoption of Information and Com-
munication Technology (ICT), they utilize web technology, implement smart computing,
are oriented towards smart governance, are sustainable, progressive, future-oriented, and
have practical settings. However, it remains to be observed whether such a smart critical
infrastructure (Smart ICI) would rebound “smartly” or exhibit “smart resilience” when
confronted with severe threats, such as extreme weather events or terrorist attacks.

Furthermore, one of the key questions scientists have been grappling with recently
is whether making our current infrastructure smarter might inadvertently increase its
vulnerability. Could this transformation affect the resilience of a Smart ICI in its ability
to anticipate, prepare for, adapt and withstand, respond to, and recover from disruptive
events? While risk analysis has been touted as a vital tool in disaster scenarios, it differs
from resilience in that it is more closely tied to the identification and analysis of potential
events that could have a negative impact on individuals, assets, and the environment.
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This is accomplished by conducting a risk assessment at a given time to measure the
vulnerabilities of the systems.

Smart Community-based resilience is another vital perspective that underscores the
importance of local communities in managing and reacting to various types of crises, such
as natural disasters, economic shocks, and social disruptions. This perspective suggests
that communities possess unique insights, abilities, and resources that can be utilized
to strengthen their capacity to resist and recover from these crises [33]. The concept of
community-based resilience [34] encompasses enhancing social cohesion, fostering local
leadership, cultivating collective efficacy, and providing psychosocial support, among
other factors [35]. By involving community members in decision-making processes and
resilience-building initiatives, this approach aims to foster more sustainable and equitable
solutions. In 2010, Argonne National Laboratory, in collaboration with the DHS Protec-
tive Security Coordination Division, designed a measure of the resilience of smart critical
infrastructure [36]. The Resilience Index (RI) was based on the method recommended by
the National Infrastructure Advisory Council, which argued for analyzing the resilience of
an organization or system by recognizing three essential components: robustness, resource-
fulness, and rapid recovery. Briefly stated, the RI was constructed from data collected
via the Infrastructure Survey Tool (IST), which was adjusted to address different forms
of robustness, resourcefulness, and rapid recovery. Additional detail on the IST is given
in Section 4. Since resilience is a multifaceted concept, it is crucial to evaluate resilience
within the context of interest. The context of this paper is smart interdependent critical
infrastructure systems, such as power networks, water networks, and health facilities, with
a particular interest in disaster response operations. All the above definitions for resilience
indicate how the system should be designed to protect an individual infrastructure from
any disturbance event that could lead to a failure in the system functionality. The exact
definition applies to the resilience of the interdependent infrastructure. That can be accom-
plished by expanding the protection from a single working infrastructure into n numbers
of infrastructures that run simultaneously with interdependent functionality.

3.2. Disturbance Event Phases

Resilience evaluation is indispensable for decision support, aiming to quantify the
efficacy of preparedness expenses and plans. A practical preparedness blueprint enhances
the stability of critical infrastructure in the wake of a disruptive event. Numerous models
and measures have been devised to gauge the performance and service of smart systems,
aiding in the design, upkeep, and enhancement of overall resilience. Nevertheless, re-
silience is a complex concept, challenging to tackle by examining just one specific capability.
A comprehensive approach to tackle the intricacies of resilience necessitates the creation of
sophisticated measures that scrutinize key resilience characteristics—primarily absorptive,
adaptive, and restorative capabilities. These attributes must be evaluated in the context of
different phases of a disruptive event, considering the unique conditions and challenges
each phase presents.

Each assessed attribute represents a component of the system’s response to disruptions,
offering insights into its ability to absorb shock, adapt to changing conditions, and restore
its functionality. Once these assessments are made, they can be synthesized into a singular,
unified resilience metric that encapsulates the system’s overall resilience. The refinement
of this unified resilience metric can be further achieved by transitioning the phases of
disturbance events into weighted points. This process allows the contribution of each
phase to the overall resilience to be quantified and compared. Such a method facilitates
independent experts in delineating estimates for limit values, thereby adding an additional
layer of precision to the resilience metric.

This comprehensive and robust resilience metric not only encapsulates the system’s
resilience across various phases of a disruptive event but also provides a quantifiable means
to compare and improve resilience across different systems or configurations. Thus, it serves
as a crucial tool for decision makers in enhancing the resilience of critical infrastructures.
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• Risk comprehension: Applicable prior to the adverse event, this phase underscores
potential emerging risks (ERs) and involves early detection. For example, what might
the adverse event entail? How can we gather more information and context about the
risk or hazards?

• Anticipation and preparation: This phase involves devising preparation and proac-
tive evolution plans. For instance, what outcomes should we anticipate?

• Absorptive capacity/withstand: Absorptive capacity pertains to the system’s ability
to mitigate the negative implications caused by disruptive events and minimize their
impact. An exemplification of this phase is enhancing robustness to improve system
redundancy, which offers an alternate means for the system to operate.

• Restorative capacity/recovery: Restorative capacity concerns the infrastructure’s abil-
ity to be enhanced by external interventions during the recovery period. For instance,
implementing real-time monitoring operations (e.g., Supervisory Control and Data
Acquisition system or SCADA for most infrastructures) bolsters the infrastructure’s
restorative capability. It allows for the automated detection of disruptive events, which
is crucial in minimizing the total disruption time.

• Absorption/withstand: This phase corresponds to the actions during the initial phase
of the event and should include vulnerability analysis and potential consequences.
For example, how steep is the absorption curve and how far below will it dip?

• Adaptation/learning: Adaptive capacity refers to the infrastructure’s ability to ad-
just to disruptive events within its self-organization skills to minimize outcomes. It
represents the remarkable ability of the infrastructure to improve itself during the
recovery period.

Several approaches to quantify resilience have been introduced recently. In 2003,
An initial framework was proposed to include the seismic resilience of society [37] by
presenting the theory of Resilience Loss, later referred to as the resilience triangle. Figure 1
plots an example of the concept of resilience phases and also shows the resilience triangle,
where the figure determines the property or functionality and the overall infrastructure
performance after around a half function loss. The resilience triangle depicted in the figure
represents the loss of functionality due to a disruptive event and the process of restoration
and recovery over time. The fundamental objective of resilience-enhancing metrics is
to shrink the area of the resilience triangle. This is achieved by implementing various
strategies to boost the functionality and performance of the infrastructure (represented by
the vertical axis in the figure), thereby reducing the recovery time. For instance, mitigation
measures can be employed to augment infrastructure performance and trim down recovery
time. Furthermore, the time needed for recovery can be expedited by enhancing measures
for the restoration and replacement of impaired infrastructure.

4. Current Approaches to Measure Resilience in Smart ICI

Smart Interdependent Critical Infrastructures (Smart ICIs) currently employ a variety
of methods for measuring their resilience. In general, these methods can be categorized as
qualitative or quantitative. To evaluate resilience, qualitative methods frequently employ
expert opinions, surveys, and conceptual models, whereas quantitative methods employ
mathematical and statistical models. Typical resilience measurement indicators include
robustness, redundancy, resourcefulness, and speed. These indicators are used to evaluate
the system’s ability to withstand disruptions, recover rapidly, and adapt to changing
conditions. Developing a resilience index that incorporates these various indicators is a
common strategy. Given the complexity and interdependence of Smart ICIs, however,
there is a growing emphasis on the development of more sophisticated and comprehensive
models that can capture these interdependencies and provide a more accurate and holistic
assessment of resilience.

In terms of methodology, as shown in Figure 2, a systematic literature review approach
was utilized for this review paper. This required a literature review on the topic of resilience
in Smart ICIs, as illustrated in the figure below. Using a combination of keyword searches
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and citation monitoring, relevant articles from various databases, such as academic journals,
conference proceedings, and technical reports, were identified. The selected papers were
then subjected to a comprehensive analysis to extract pertinent information and insights.
The review process was iterative, with the search strategy being modified based on the
results of the initial literature review. The information gleaned from the literature was
then synthesized and classified according to the various examined aspects of resilience,
such as definitions, models, metrics, and strategies. This methodical and exhaustive
approach ensured that the review captured the scope and depth of current research on this
crucial topic.

Figure 2. Review Methodology [38].

4.1. Indicator-Based Approach

The indicator-based approach is a widely used method for measuring resilience at
a global level. It involves establishing specific indicators and threshold values to de-
termine the resilience of infrastructure systems. By setting appropriate indicator lev-
els, this approach can provide a quantitative assessment of resilience for different types
of infrastructure.

4.1.1. The ANL Method

A notable example of an indicator-based methodology for assessing resilience is the
resilience index (RI) developed by Argonne National Laboratory. This approach utilizes
uniform and consistent data, initially gathered through a revised report from the US
Department of Homeland Security (DHS) Enhanced Critical Infrastructure Protection (ECIP)
plan [36]. The resilience measurement index (RMI) comprises three primary categories for
determining overall resilience: robustness, resourcefulness, and recovery. The methodology
is structured across five hierarchical levels, with indicators generated at the lowest level.

Resilience assessment involves inputting indicator values at level five and aggregating
them up to the first level. The RI then evaluates the resilience level of critical infrastruc-
tures, ranking and prioritizing those with limited support to improve overall resilience.
Equation (1) presents the fundamental mathematical model, which encompasses the sum
of the three main components: robustness, resourcefulness, and recovery:

RI =
3

∑
i=1

ei ∗Vi (1)

Here, RI represents the relative resilience index (ranging from 0 to 100); ei is the
scaling constant (weight; a number between 0 and 1) that indicates the relative importance
of component i(i = 1, 2, 3) of resilience; and Vi is the index value of component i of
resilience (i.e., robustness, resourcefulness, and recovery). The index value of component
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i is the aggregated value from level 1. However, in level 2, each component possesses
sub-components. For instance, robustness contains three sub-components (redundancy,
prevention, and maintaining key functions) in level 2, each with an index value representing
the overall robustness value.

A similar structure is observed in level 3, wherein each sub-component is further
divided into additional information layers. For example, redundancy in level 2 is a primary
element of robustness (level 1) and comprises eight subcategories (electric power, natural
gas, telecommunications, information technology, water, wastewater, transportation, and
critical products). These subcategories are recognized in level 3 and are further divided
into distinct components. In this case, the electric power category (level 4) consists of four
subcategories (on-site backup generation, uninterrupted power system, internal generation,
and connections). To scale level 4 components, such as electrical power connections, raw
data (level 5) is collected from the facility’s responses to personal questions, resulting in a
cumulative value for electric connections.

4.1.2. The REWI Method

The Resilience-Based Early Warning Indicator (REWI) method [38] encompasses three
primary components: contributing success factors (CSF), general issues, and indicators. The
central element, contributing success factors (CSF), consists of attributes of resilience used
to derive the overall rating of a specific infrastructure. CSFs comprise various components
or factors, such as the Risk Understanding factor, which seeks to clarify questions such as
how information and expertise about risk/hazards are obtained. Anticipation is another
CSF component that addresses expectations prior to a disruptive event. Attention is a key
factor determining which aspect of the infrastructure requires the most focus. Response is
a crucial factor concentrating on the actions to be taken during the event. Robustness (of
response) indicates the approach to ensure the accomplishment of response factors with
minimal damage. Resourcefulness/rapidity denotes indicators that ensure timely reactions to
the event. Decision support is another critical factor suggesting the need for an indicator that
elucidates the trade-off between safety and production. Redundancy is the final primary
factor related to the CSFs indicators, which addresses strategies used to compensate for the
unavailability of critical infrastructures.

The second component of the REWI method involves common issues for each con-
tributing success factor (CSF), ensuring that the objective of each CSF is met. For instance,
the first CSF (Risk Understanding) has several issues to address, such as system knowledge
and reporting of incidents, near-misses, and accidents. The third and final component of
the REWI approach is the indicators, which are assigned to each general issue component
and illustrate the process of assessing general issues.

4.1.3. The SmartResilience RIL Method

Similar to the REWI method, the Smart Resilience Level (RIL) [39] method employs
issues and indicators at the two lowest levels of the structure, while phases are utilized at the
next higher level, as opposed to themes in LIOH and contributing success factors in REWI.
For each phase, significant issues are identified, guiding the implementation of indicators
to evaluate these issues and assign estimation values accordingly. The hierarchical model
comprises six distinct levels, as depicted in Figure 3.

The RIL method relies on character scores ranging from E to A, where A is the best and
E is the worst, assigned to each level. Furthermore, each score is associated with a weighted
value corresponding to a specific resilience level (RIL). For instance, a weighted value score
between 0–1 corresponds to level E, while a weighted value between 1–2 signifies resilience
level D, and so on. The quantification process of the method involves initially selecting the
area of interest, such as a smart city. Subsequently, specific smart ICI components within
the area must be chosen, along with identifying the most relevant threats for each SCI. The
next step requires considering each phase of the event for every threat and determining the
issues within each phase. A comprehensive investigation of the indicators for each issue
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should be conducted, followed by defining the range values for each indicator. Finally,
values are assigned to the indicators, and the overall RIL calculations are completed.
This approach primarily aims to measure preparedness to identify potential issues before
they arise.

Figure 3. The six levels in the hierarchical model [38].

4.1.4. DHS Infrastructure Survey Tool

In 2009, the US Department of Homeland Security began using questionnaires to
evaluate the resilience of critical infrastructure. The Infrastructure Survey Tool (IST) is
one of the most widely employed questionnaire tools, functioning as an indicator-based
method that assesses individual protective measures and vulnerability within the protective
measure and vulnerability indices (PMI/VI). The IST was enhanced to serve as a resilience
measure by developing a comprehensive methodology that applies uniform and consistent
data to generate a resilience index (RI). The RI value is derived from three components:
robustness, resourcefulness, and recovery. The RI has a value range between 0 and 100,
where 0 indicates the lowest resilience [40]. The RI leverages the results of this tool to
compare resilience levels across smart critical infrastructure sites.

Upon calculating the RI for each component, an advanced resilience index is pre-
sented in the form of a dashboard. Figure 4 illustrates an example of the DHS dashboard,
displaying the resilience index at the component level. The bar mark represents the ob-
served infrastructure, while the low, average, and large dots indicate the comparative
value in relation to other smart infrastructures. The implementation of this approach and
its transparent representation enables facility administrators to make informed decisions
more easily.

Figure 4. Dashboard displaying values of Resilience Indicator components for a sample facility [40].

4.1.5. All Hazards Knowledge Framework (AHA)

The primary motivation behind developing the AHA [41] was the need for a resilience
tool capable of assessing the resilience of interdependent CI systems in an all-hazards
context. The AHA is a framework that combines data and expert measures to calculate
overall resilience. The AHA structure consists of three components: (1) facility-level depen-
dency profiles; (2) dependency models; and (3) a text analysis system (TAS). Employing the
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AHA tool enhances the decision-making experience by providing decision makers with
the ability to comprehend critical dependencies, resilience, and the impacts of hazards on
smart ICI.

Figure 5 illustrates the high-level deployment of the AHA tool, which employs a
top-down approach. The process begins with identifying the region to be assessed and the
aid sector service providers for that region. In the figure, the aid sector is represented by
the blue rectangles in the middle row, followed by their critical infrastructures, depicted as
orange squares. A significant electric generation station could be an example of such a case.
Dark blue rectangles display the most critical dependencies between them. They propose a
holistic approach to resilience that incorporates all resilience components. The Equation (2)
presents a resilience measurement approach based on the AHA:

Res = f (aIR, bCR, cOR, dSR, ePR)|r (2)

where Res represents resilience; f denotes the function of; a, b, c, d, e, are scaling constants
ranging from 0 to 1, based on the risk type being analyzed; r signifies risk, concerning
interdependencies that may influence all risk elements; and |r is assessed at different levels
of hazard. This equation asserts that resilience is a broad concept, formulated as a function
of infrastructure resilience (IR), community resilience (CR), organizational resilience (OR),
social resilience (SR), and personal resilience (PR). The weighting of each of these elements
varies based on factors that change (geography, sector, scope, incident type, and time). Risk
is a function of threat, vulnerability, and consequence that must be examined as a part of
resilience assessment.

Figure 5. All Hazards Knowledge Framework dependency methodology [41].

Limitations: The primary drawback of this approach is that most models rely on
judgmental data, which lacks accurate empirical information for determining resilience.
Judgmental indicators result from expert questionnaires and the completion of indicators
for each infrastructure. Indicators can only provide indications, not scientific proof or
detailed explanations of change, partly because they are based on assumptions about
system functionality, albeit informed assumptions.

4.2. Quantitative (Holistic) Approach

Quantitative methods can evaluate the resilience of any smart ICIs by encompassing
the infrastructure’s performance and functionality. Most of the quantitative models are
employed to assess system resilience by comparing the operating performance in different
event phases (before and after a disaster event). In the context of current resilience research
concerning technical systems related to smart ICIs, there is a discernible shift from qualita-
tive methods to quantitative models. Implementing these methods enables more accurate
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resilience analysis, which can significantly contribute to this field. Several resilience metrics
based on the quantification approach are presented as follows:

4.2.1. General Resilience (GR)

One of the most promising metrics presents an approach aimed at developing a math-
ematical model capable of examining the functionality of smart ICIs infrastructures. The
primary objective is to generate a time-dependent method for estimating infrastructure
resilience and utilizing the results for comparison purposes [42]. The outcomes of this
method provide detailed analysis for decision makers, supporting improvements in infras-
tructure resilience; for example, estimating the priority of each phase of an infrastructure
(i.e., the recovery phase) enables the more effective application of resilience strategies in
that phase.

Measuring resilience is insufficient when analyzing an individual infrastructure’s
capability. As such, a unique model has been proposed that integrates various resilience
capabilities (i.e., absorptive, adaptive, and restorative capability) across multiple phases
(i.e., initial steady, disruptive, recovery, and new steady phase). This distinctive method
can assess infrastructure performance over time based on system performance. To manage
the progress of the unified resilience method, the representation of all infrastructures in
Figure 6 is examined across four phases. Different approaches are used for each phase
to reflect system performance, as summarized in Table 1. Subsequently, all values are
combined into a single measurement of performance (MOP) value. This method, called
General Resilience (GR), is represented as follows:

GR = f (R, RAPIDP, RAPIRP, TAPL, RA) = R ∗ ( RAPIRP
RAPIDP

) ∗ (TAPL)−1 ∗ RA (3)

As a case study for their model, the Swiss electric power supply system (EPSS) was
selected as a representative application to demonstrate the utility of the suggested quantita-
tive method. The case study will be discussed in greater detail in the next section.

Figure 6. Illustration of essential resilience capabilities [42].

Table 1. Summary of different resilience phases [42].

Phase Time Scope Capabilities Measurements
Measurements

Original Steady phase t < tD Susceptibility Susceptibility

Disruptive Phase tD ≤ t < tD Absorptive Capability R
RAPIDP

PLDP

Recovery Phase tR ≤ t < tNS Adaptive Capability Restorative RAPIRP
PLRP

New Steady Phase t ≥ tNS Recovery Capability RA
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4.2.2. Multi-Phase Resilience Trapezoid (φΛEΠ) or (FLEP)

An additional innovative resilience quantification framework to the GR metric is the
Multi-Phase Resilience Trapezoid (MPRT) [43]. The FLEP approach focuses on developing
a resilience trapezoid (φΛEΠ) that delineates various infrastructure timeline phases for
smart ICIs. Figure 7 illustrates the multi-phase resilience trapezoid. This approach utilizes
distinct indicators for each phase and aggregates them to represent the overall resilience for
any infrastructure. By applying this approach, a precise estimation of resilience is provided,
facilitating decision making for system functionality improvement.

Figure 7. The multi-phase resilience [43].

The primary assumption of this model is that all the different indicators for the pre-
disturbance resilient state (i.e., R0o and R0i, respectively) are 100% before the event occurs
at toe, e.g., 100% of the demand for each user, and the transmission lines between them
are online sequentially. The main four key resilience metrics are presented in Table 2,
specifically addressing how active (φ) and how deep (Λ) the resilience declines in Phase I,
the magnitude (E) of the post-event functionality loss situation in Phase II, and the speed
(Π) at which the system recovers to its primary resilient state in Phase III. This collection,
which includes four methods, is described as the resilience metric system (φΛEΠ) and is
referred to as (FLEP).

Table 2. The (φΛEΠ) Resilience Metrics [43].

Phase State Resilience Metric Symbol

I Disturbance progress How fast R drops? φ
How low R drops? Λ

II Post-disturbance How extensive is the E
post-disturbance degraded state?

III Restorative How promptly does the Π
Network recover?

4.2.3. QRMP

The Quantitative Resilience Management Tool [44] has been introduced by the RE-
SILIENCE project [45], which encompasses a set of indices and characteristics (ICs) that
are employed to describe and evaluate the infrastructure at both physical and operational
levels. All measures related to the resilience project are categorized based on three event
phases (before, during, and after). A set of weights captures the relative importance of
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each IC. Upon collecting and aggregating the associated weight for each IC, the overall
resilience scores can be identified, which include resilience at different timelines such as
preparation, prevention and protection, response, and recovery. Moreover, this tool consid-
ers the resilience associated with each level (physical and operational). The Quantitative
Resilience Management Tool can be divided into the following four steps to assess the
overall resilience, as shown in Figure 8, which displays the input entries for each phase
(previous, during, and after disaster). The columns illustrate the different system levels:

Definition of the structure of indices and characteristics (ICs) of the infrastructure.
The most significant IC that can optimally represent the infrastructure must be identified,
and based on that, each stage of the level receives a corresponding rank. This ranking and
classification occur during this phase. For example, let L = 1, 2, 3 and S = 1, 2, 3 denote the
level and the stage sequentially. Next, there will be NL,SICs associated with every L, S pair,
denoted by IC = (ICi

L, S, i ∈ NL,S ).

1. Description of the table of weights. The weights associated with each IC are expressed
as W = Wi

L,S, i ∈ NL,S. It is stated that the weights have to be selected, such that:

∑
i=1...NL ,S

Wi
L,S = 1 (4)

2. Statistical representation of the ICs.
3. Obtaining the resilience sums. The expression provides the resilience scores corre-

sponding to each L, S pair:

RL,S =
1

NL,S
∑ i = 1...NL,SWi

L,S ICi
L,S (5)

The resilience scores related to each level are calculated using:

RL =
1
3 ∑

L
RL,S (6)

Moreover, the resilience scores related to each stage are calculated using the following
expression:

RS =
1
3 ∑

S
RL,S (7)

Figure 8. Description of the Quantitative Resilience Management Tool [44].

4.2.4. Resilience Capacities Metric

In [46], the authors introduced a metric for management systems as a solution for de-
cision support and design. Similar to other quantification-based approaches, this proposed
resilience metric aimed to link the three main resilience capacities (absorption, adaptation,
and restoration) with recovery time. Their model [46], expressed in Figure 8, was employed



Appl. Sci. 2023, 13, 6452 18 of 33

to evaluate a resilience factor ρi. Here, Sp represents the speed recovery factor value, Fo
denotes the initial infrastructure performance level, Fr corresponds to the total performance
after recovery, and Fd refers to the performance level immediately post-disruption.

ρi(Sp, Fr, Fd, Fo) = Sp
FrFd
FoFo

where; Sp =

{
(tδ/t∗r )exp[−a(tr − t∗r ); f or; tr ≥ t∗r ]
(tδ/t∗r ); otherwise

(8)

Furthermore, the authors discovered that these measures are generated based on the
specific historical knowledge of each affected organization and also by applying the exact
disruption event time, denoted by the indices tδ—the slack time (maximum acceptable
time post-disaster before recovery occurs) and tr—the time to achieve the final recovery
(attain equilibrium). In Equation (8), α describes the parameter measuring the “decay” in
resilience, and t∗r represents the time required to implement the recovery program and plan.

The time to recovery in this paper is assessed from the failure itself until the infrastruc-
ture restores an acceptable level of functionality. The model highlights the significance of
the time to restart the infrastructure and taking the “slack time” into account. If the recovery
process extends beyond the slack time, the resilience of the infrastructure will eventually
decrease. Conversely, if the initial recovery is faster than the slack time, the resilience metric
declines, and if the first recovery is considered effective but the infrastructure requires an
extended period to recover after initial actions, the resilience metric also declines.

4.2.5. Multi-Dimensional Resilience Metric

In [47], the authors propose the model presented in Equation (9), which can be defined
by measuring the rate of total potential damage over the time period T:

R(X, T) =
T∗ − XT/2

T∗
= 1− XT

2T∗
(9)

The components of this model used to determine the overall resilience in smart ICIs
are described as follows: X = (0; 1) represents the percentage of functionality lost after a
disturbance, T = (0; T) denotes the time required for complete recovery, and T signifies an
extended period during which lost functionality is assessed. In the same study [47], the
authors found that the equivalent level of resilience observed from the resilience triangle
could be achieved by employing different combinations of X and T. Additionally, they
present a visualization of the trade-offs between reduced functionality and recovery time
for corresponding levels of resilience.

Limitations: While resilience based on the quantification approach is considered
one of the most promising solutions for smart ICIs, the lack of data remains the most
challenging aspect of conducting a resilience analysis using this measure. Companies are
often unwilling to release data such as mean time to failure (MTTF) or mean time to repair
(MTTR), and even when they do, the released data may not cover all actual events.

4.3. Dynamic System Approach

System dynamic simulation approaches have emerged as a solution for scientists to
study infrastructure services, the consequences of disturbances, and the associated down-
stream results. Dynamic simulations also possess the capability to assess the impacts of
policies and regulations on infrastructure processes. Numerous studies have developed
specific dynamic simulations for various interdependent infrastructures, including energy
infrastructures (electricity, oil, and natural gas), telecommunications systems, transporta-
tion systems (waterways, highways, and rail), emergency services, banking and finance
infrastructure, agricultural sector, water systems, shipping systems, and market sectors [20].
In [48], the authors present a method for evaluating the resilience of smart ICIs based on
designing operative dependencies and examining the operational responses to disruptions.
They represent the infrastructure as a network model, where nodes and arcs between them
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determine dependencies. This type of relationship is described as a network topology,
represented by a dependency graph. A clear example of a dependency graph is shown in
Figure 9.

Figure 9. Interconnections of four systems [47].

In this method, each infrastructure is defined based on the functionality loss rate
λ, recovery rate µ, and service threshold σ. The authors conduct a simple examination
of two interconnected infrastructures, as illustrated in Figure 10. If S1 fails (i.e., its state
threshold is exceeded), it ceases providing service to S2, which subsequently begins to
fail. Two primary scenarios exist: (1) S1 recovers, meaning the state of S1 returns within
its threshold σ1, before S2 fails; (2) S2 fails before S1 recovers. In the latter case, both
infrastructures become inoperative and incapable of regaining functionality, resulting in a
deadlock wherein each system awaits the other’s functional restoration. The components
of the interconnected infrastructures are combined into a hypercube [0, 1]n. This collection
can be divided into four disjoint subsets: the operation region O, the resilience region R, the
non-resilience region R̄, and the out-of-operation region Ō. The following ratio provides an
evaluation of the network resilience capacity:

cr =
M(R)

M(R ∪ R̄)
=

M(R)
M(R) + M(R̄))

∈ [0, 1] (10)

Studying the resilience of interconnected infrastructures is an original objective linked
to other challenging goals, such as designing resilient controllers. In situations involving
large-scale events, understanding response dynamics in the face of an incident is crucial.
In complex, realistic obstacle environments, the recovery to standard functionality must
be executed within prescribed time constraints, e.g., the maximum functional blackout a
given infrastructure can tolerate.

Figure 10. System composed of two subsystems with mutual functional dependency [47].

Limitations: This model faces limitations in its capacity to address all distinct stages
and to incorporate every resilience capacity within each integrated model, as well as in over-
lapping with other concepts such as robustness, vulnerability, and fragility. Furthermore,
scalability and accuracy also present significant challenges in this method.

4.4. Empirical Approach

The empirical approach is a prevalent method for evaluating resilience in smart
Interdependent Critical Infrastructures (ICIs). This approach emphasizes data collection
directly from the infrastructure to determine overall resilience, relying on historical reports
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to assess the total resilience of the ICI. In [49], the authors propose an empirically based tool
that examines ICI connectivity measurements derived from news, articles, and other reports
on severe ICI impacts. Recently, databases dedicated to collecting empirical data have been
established to monitor and report ICI events. However, these databases primarily focus on
individual smart infrastructures rather than ICIs as a whole.

Many incidents, such as terrorist attacks on energy infrastructure, serve as examples
of such databases. One notable example can be found in [49], a database containing public
reports of ICI disruptions. Data in this database are gathered from open sources, including
newspapers, articles, and news, and only high-impact events are recorded, e.g., those
affecting at least 10,000 customers. Regularly occurring, limited, and planned operational
disruptions are not included. Each event is characterized by various attributes, such as ICI
sector and context, event start time, duration, affected geographical area, type of failure,
losses and impact, recovery methods, and recommendations.

Another framework using a similar data type is presented in [50], where the authors
develop an analytical structure with practical applications for understanding ICI failures.
They utilize significant power outages as primary data to demonstrate how major problems
in power infrastructure can cause issues in interconnected (interdependent) infrastructures.
Their analysis is based on three real examples: the August 2003 northeastern North Amer-
ican blackout, the 1998 Quebec ice storm, and a series of three 2004 Florida hurricanes.
Data were collected through news and internet reports, and measures were developed to
efficiently identify possible outcomes based on the type of failures and affected regions.
A comparison between all events is provided as a basis for considering the advantages
of risk mitigation. In [51], a knowledge-based learning method for ICI is employed to
acquire reports of common patterns of ICI failure following external disturbances. The
knowledge-based discovery process combines ICI failure reports and demonstrates the
procedure for transforming them into new data frames for data mining purposes. A data
mining algorithm known as a generalized sequential pattern (GSP) is then applied to
identify common patterns in ICI failure records. Figure 11 illustrates the five main steps of
this approach, which helps clarify the most frequent failure events.

Figure 11. Knowledge discovery process for ICI [51].

Limitations: The collection of empirical data often focuses on specific failure types,
such as cascading failures. However, there are numerous reasons why failures may prop-
agate beyond CI sector boundaries and may not be captured in this type of data. Addi-
tionally, this data may lack accuracy since many failures are not reported in the news or
at a technical level. Aside from the absence of accurate data, the database itself presents
another limitation of the empirical approach, as no databases have been identified that
concentrate on critical disturbances across all ICIs and cascading consequences using an
“all-hazards” approach.

4.5. Economic Approach

In current research, economic resilience is defined as the “inherent ability and adaptive
response that enables firms and regions to avoid maximum potential losses” [52]. The
foundational model in [52] employs a linear time-independent analysis to examine various
aspects that may influence overall resilience, such as generation, flow, and consumption
of multiple products within ICIs. This model has also been extended to incorporate
nonlinearities and time dependencies to investigate different hazard models within ICIs.
Moreover, in [53], the authors characterize dependencies between infrastructures in simple
terms, such as the exchange of products, data, and services. They also demonstrate how
a disaster event can exacerbate initial damage based on these dependencies, resulting in
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cascading failures. Consequently, understanding the dependencies within ICIs is a crucial
aspect for decision makers to consider during the modeling and recovery processes. In
their example, recovery is based on assessing infrastructure parameters from graph theory.
This methodology was illustrated using a potential infrastructure system, including power,
water, and telecommunication infrastructures following a hurricane.

Additionally, in [54], the authors present a risk-based economic input–output model,
which serves as a useful tool for estimating the cascading effects of ICI failures. Their model
is applied to provide a framework for evaluating economic resilience. They propose a static
model for resilience that incorporates primary resilience concepts of robustness, rapidity,
redundancy, and resourcefulness. The general notion of static resilience, or “the ability
of infrastructure to maintain functionality during a disruptive event” [55], is depicted in
Figure 12 and expressed in Equation (11):

Static Economic Resilience =
%∆DYmax −%∆DY

%∆DYmax (11)

Here, %∆DY represents the actual percentage difference in infrastructure function-
ality following a disruptive event, and %∆DYmax denotes the maximum rate difference
corresponding to the worst-case level of production.

Figure 12. Static economic resilience quantification [54].

Limitations: The primary weaknesses of this approach are that many metrics related
to this type are only for static resilience and focus on the disturbance event, which lacks the
determination of resilience measures in pre/post-event phases, such as preparedness.

4.6. Network-Based Approach

The network-based approach seeks to understand data on dependencies by repre-
senting various components of the infrastructure as nodes within a network, where the
presence of a connection between two nodes is depicted by a link connecting them. In
paper [31], the authors present a resilience metric based on the infrastructure performance
method during a period from 0 to T, which may involve multiple disruptive events, as
illustrated in Figure 13. For a disruption event, time is divided into three phases: (1) a
disaster prevention phase (t0 ≤ t ≤ t1), (2) a loss propagation phase (t1 ≤ t ≤ t2), and
(3) an evaluation and recovery phase (t2 ≤ t ≤ t3). These three phases can sequentially
demonstrate the resistant, absorptive, and restorative capabilities of the infrastructure
experiencing the disaster, and these capacities, shown from 0 to T, collectively define
infrastructure resilience during that period. The overall resilience is then calculated based
on the target performance curve PT(t) and the original performance curve PR(t):

R(T) =
∫ T

0
PR(t)dt/

∫ T

0
PT(t)dt (12)

Note that various times T allow for different types of resilience: past resilience, present
potential resilience, and anticipated potential resilience. This model primarily examines
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the present potential resilience, where infrastructure components are constant through
0 to T and similar to those currently in place. For the case in which the present potential
resilience PT(t) is a fixed value 1.0 and when a risk has its existence governed by a Poisson
process [56], the expected resilience E[R(T)] is:

E[R(T)] = E

[∫ T
0 PR(t)dt

T

]
= 1− E

[
1
T

N(T)

∑
n=1

IAn(tn)

]
= 1− λE[AI] (13)

where E[∗] is the expected value; n is the event experience number; N(T) is the total number
of event experiences during T; tn is the occurrence time of the nth event. Additionally, the
random variable IAn(tn) is defined as the space between the original performance curve
and the target performance curve, called the impact area for the nth incident occurring at
time tn; E(IA) is the expected impact area following the accidents considering all possible
forces; and λ is the occurrence rate of the accidents per year.

Figure 13. Typical performance process of an infrastructure during a time period T with multiple
disruptive events [31].

In order to demonstrate a network-based framework for interdependent systems
resilience assessment, the authors of [31] investigate the gas system in Harris County,
Texas, USA. The gas compressors, gas storage facilities, gas delivery facilities, gas receipt
facilities, and gas pipeline junctions are modeled as nodes, while the gas pipeline segments
are described as links. The authors also investigate the effects resulting from the interde-
pendencies among the systems by applying five different restoration strategies: random
restoration, independent restoration, power first and gas second restoration, gas-aimed
restoration, and power and gas compromised restoration.

Figure 14 displays the average restoration curves of the power and gas systems in
Harris County, Texas, USA, under a hurricane scenario. This network-based approach
is useful for understanding the complexities of interdependent infrastructure systems,
helping decision makers plan and implement effective resilience strategies based on the
unique characteristics and relationships between different infrastructure components. By
considering various restoration strategies and analyzing their impacts on the performance
of interdependent systems, this approach provides valuable insights into the most effective
ways to enhance resilience in the face of disruptive events.

Limitations: While the network-based approach offers valuable insights for under-
standing interdependent infrastructure systems, it may not be suitable for all types of ICIs
due to the specific topology of certain systems. For instance, the network-based metric
might not be appropriate for telecommunication systems, as their static properties do not
directly impact their ability to provide intended services (i.e., due to the presence of buffers,
batteries, and multiple paths).

To address these limitations, researchers have suggested incorporating network dy-
namics into the analysis by superimposing flux dynamic models onto the topological
structure. By considering both the static and dynamic properties of the network, this inte-
grated approach can offer a more comprehensive understanding of the resilience of various
ICIs, including those for which a purely network-based approach may not be sufficient.
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Figure 14. Average Restoration curves, where (a) shows the average power performance over
disaster time, and (b) shows the average gas performance over disaster time in Harris County, Texas,
USA [31].

4.7. Vulnerability Analysis Approach

The vulnerability analysis-based approach is a primary method for investigating and
assessing the resilience of interdependent critical infrastructures (ICIs). In their study [57],
the authors conducted a vulnerability analysis of ICIs, demonstrating the impact of de-
pendencies on connected infrastructures. These effects can lead to significant economic
disruptions and losses in various aspects. Their work examines two types of vulnerability:
structural and functional vulnerability. A high-level overview of the vulnerability analysis
process for ICIs is illustrated in Figure 15.

Figure 15. The vulnerability analysis process of interdependent infrastructures [57].

The topology is represented as a graph G = (V, E), where V = vi is the set of vertices
and E is the set of edges. The shortest path lengths connecting two nodes in the topology are
denoted by d(vi, vj). The structural efficiency X(G) of infrastructure can then be defined as:

X(G) =
1

Nr NI
∑

i∈GT ,j∈GI

1
d(vi, vj)

(14)

Here, Nr represents the total number of support nodes, and NI denotes the total
number of load nodes. When two nodes are entirely unconnected or become disconnected
due to attacks, their shortest path length d(vi, vj) becomes infinite, and 1/d(vi, vj) equals
zero. A high value for X(G) indicates that the infrastructure is well-connected and has
excellent performance. In the case of ICIs, the authors introduce a new parameter called
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the interdependent effect. This parameter is defined as the absolute difference between
the independent and interdependent efficiency, normalized by the maximum independent
efficiency achieved at any extraction fraction:

Independente f f ect =
|Interdependent Efficiency − Independent Efficiency|

max(Independent Efficiency)
(15)

For the independent scenario, the performance can be calculated for any given removal
fraction. However, in the interdependent case, a fixed fraction of nodes will be removed
from both infrastructures, and subsequently, the interdependent performance is evaluated
for each network.

Limitations: The primary challenges of the vulnerability analysis-based approach are
related to data availability and scalability, which can be further elaborated as follows:

Data Availability: Obtaining accurate and up-to-date data for interdependent crit-
ical infrastructures is often difficult due to security and privacy concerns. Additionally,
proprietary information or sensitive data might not be publicly accessible, resulting in
incomplete or outdated information for the analysis. This limitation can hinder the accurate
assessment of the ICIs’ resilience and vulnerability, leading to suboptimal decision making
and risk management.

Scalability: The vulnerability analysis-based approach can become computationally
expensive when applied to large-scale and complex ICIs, as it involves calculating the
shortest path lengths and interdependent effects for numerous nodes and edges. As the size
and complexity of the infrastructure networks increase, so does the required computational
power and time. This challenge can make it difficult to efficiently analyze large-scale
interdependent infrastructures and provide timely results for effective decision making
and response planning.

These limitations highlight the need for alternative methods or improvements in data
collection and computational efficiency to overcome the challenges associated with data
availability and scalability in the vulnerability analysis-based approach for assessing the
resilience of interdependent critical infrastructures.

4.8. Simulation-Based Approach

The simulation-based approach has recently gained traction as a useful method for
decision makers to efficiently analyze the resilience of interdependent critical infrastructures
(ICIs). In situations such as terrorist attacks on ICI systems, it is crucial to have simulation
models that can accurately assess resilience and provide targeted solutions to address
vulnerabilities in the infrastructure. A case study demonstrating the use of a simulation-
based approach was presented by [58], which investigated the response capabilities of a fire
department under various terrorist scenarios. The authors in [58] also proposed a discrete
event simulation model, focusing on preparedness as a key factor in pre-event disruption
resilience. Two types of simulation models were extensively discussed in their work: the
first model deals with the social response or population dynamics following a terrorist
attack, while the second model examines resource allocation management in affected areas.
For both simulation models, resilience quantification was based on the response time
(RT). Additionally, in [59], the authors suggested employing a simulation-based approach
within the supply chain context to assess resilience. Their simulation models were centered
on three critical resilience factors: preparedness, responsiveness, and recovery, with the
Introduction of Time Absolute Error (ITAE) as an innovative resilience measurement.

Limitations: One of the primary challenges in this approach is the complexity of
modeling interdependent infrastructures to evaluate resilience. Moreover, an accurate
simulation requires reliable data related to the infrastructure being modeled, which may
not always be readily available. These limitations emphasize the need for better modeling
techniques and data collection methods to enhance the effectiveness of the simulation-based
approach for assessing the resilience of ICIs.
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4.9. Seismic Resilience Approach

Seismic-related measures and approaches have been historically considered critical
solutions for predicting the overall resilience of both standalone infrastructures and inter-
dependent critical infrastructures (ICIs) [60]. A promising method has been introduced by
the Multidisciplinary and National Center for Earthquake Engineering Research (MCEER).

MCEER developed a comprehensive resilience framework [37] to define the seismic
resilience of infrastructure in response to a specific event, such as an earthquake. The
impact of an earthquake can be estimated by calculating the predicted degradation in the
quality of service associated with the infrastructure, Q(t). Assuming an earthquake occurs
at time t0, this degradation is estimated for the period immediately following the shock (t0)
until Q(t) recovers to its pre-earthquake levels (t1). Resilience loss, RL, is determined as:

RL =
∫ t1

t0
[100−Q(t)]dt (16)

Alternatively, the overall system loss can be predicted based on the shaded area in
Figure 16. The framework assumes that infrastructure performance levels are at 100 percent
before the shock event and will recover to this level after the earthquake. Although this
approach is demonstrated in the context of earthquakes, it can be adapted for other types
of shocks as well.

Figure 16. Conceptual illustration of MCEER’s seismic resilience loss measurement [37].

Limitations: As one of the oldest approaches for measuring ICIs resilience, the seismic
approach has several weaknesses. One significant limitation is its time-dependent (static)
nature, which only considers the event time and does not cover all resilience phases (i.e.,
anticipation, absorption, and adaptation) along the timeline. Furthermore, this approach
relies heavily on accurate and available data, which may not always be feasible.

4.10. Probability-Based Resilience Approach

The probability-based resilience estimation is a traditional method that has been
used historically to help infrastructures predict event occurrences based on historical data.
In [61], the authors introduced a probabilistic method for estimating the total infrastruc-
ture resilience. They mathematically described it in Equation (17) concerning predefined
performance standards A, given a seismic event of size i:

R = P(A|i) = P(r0 < r∗and; t1 < t∗) (17)

where r0 = initial infrastructure function loss; r∗ = a determined standard of robustness
representing the “highest tolerable loss” in infrastructure function after a disturbance event;
t1 = time to complete recovery; and t∗ = the “highest tolerable disruption time”, i.e., the
maximum acceptable duration for infrastructure function to return to pre-earthquake levels.
They defined resilience R as “the probability that the system of interest will meet predefined
performance standards in a seismic event of magnitude i” (Equation (17)). Figure 17
illustrates the use of each element and how they are estimated. The authors focused on
assessing resilience concerning the changes in the infrastructure function product.
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Figure 17. Measuring probabilistic resilience [61].

Limitations: The probability-based approach heavily relies on data to estimate the
likelihood of an event occurring and its potential impact on infrastructure resilience. How-
ever, the availability and reliability of such data pose significant challenges. For instance,
the historical data used for probability calculations may not accurately represent the cur-
rent state of the infrastructure or the potential risks it faces. Additionally, the data may
not be complete or may be biased towards certain types of events, leading to inaccu-
rate predictions. Therefore, it is crucial to ensure that the data used in probability-based
approaches are up-to-date, accurate, and comprehensive to obtain reliable estimates of
infrastructure resilience.

This paper presents a summary of all the methods and metrics used for determining
the resilience of Smart ICIs, as shown in Table 3. The classification used in this table is
based on the modeling strategies presented in [20], with the addition of four approaches:
indicator-based, quantification-based, seismic-based, and probability-based approaches.
The table indicates the model and threat type associated with each method. For instance,
the LIOH approach in the indicator-based method uses the level-based model to detect
resilience and can be applied to all types of threats.

Table 3. Resilience Measures for Smart Critical Infrastructure in the Literature.

Resilience Approach Metric Model Threat Type

Indicator-based approach ANL [36] Level-based All-hazards
LIOH [38] Level-based All-hazards
REWI [38] Level-based All-hazards

SmartResilience [39] Level-based All-hazards
DHS-IST [40] Level-based All-hazards

AHA [41] Level-based All-hazards

Quantitative (holistic)
approach MOP-GR [42] Time-based All-hazards

FLEP [43] Time-based All-hazards
QRMP [44] Indicator-based All-hazards
RCM [46] Time-based All-hazards

MDRM [47] Time-based All-hazards

Dynamic system approach Cr [48] Functional-
dependent Cyber

Empirical approach Event metrics [49] Data-based Cascading
IFI [50] Data-based All-hazards

GSP [51] Knowledge-based System failures

Economic approach Operability [53] Graph-based All-hazards
SER [54] Static-based All-hazards

Network-based approach R(T) [31] Time-based Hurricane

Vulnerability analysis
approach ieffect [57] Network-based Cyber

Simulation-based approach RT [58] Time-based Terror-attack

Seismic resilience approach RL [37] Time-based earthquakes

Probability-based approach ProbR [61] Probability-based earthquakes
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The approaches are categorized based on the method used to quantify resilience and
the type of data used, such as historical data, news data, and data based on previous events.
While all methods can be used, some methods are more preferred than others depending
on the situation, such as the availability of accurate and reliable data. For example, if the
available information is based on news and reports, such as the number of available power
lines during a disruption event, then empirical models are preferred. On the other hand,
if the interdependent infrastructures can be modeled as a graph, and accurate data are
available, then the network-based approach is more preferred in such a situation.

5. Resilience Assessment for Smart Power and Telecommunication: Case Study

The electric power network is considered one of the most crucial infrastructures in
the event of a hazardous occurrence. Scientists have identified failure types of electric
power infrastructure and the consequences of power outages following natural or human-
made disasters [62]. The core critical facilities of the electric power infrastructure include
generation power plants, transmission substations, and transmission and distribution lines.
Transmission lines connect generation power plants to transmission substations, which
deliver high-voltage electricity over long distances. If any of these plants or materials are
physically damaged or if supporting infrastructures such as operation systems collapse,
the electric power infrastructure may experience severe effects and potentially a complete
failure [63].

In addition to the power grid, telecommunication infrastructure is also considered
one of the leading critical infrastructures in smart cities, providing a pathway for data
transmission. The fundamental connections can be classified into three different levels:
landlines, airwaves, and satellite links [64]. Both systems are interdependent on each other,
and various resilience approaches have been proposed to overcome the failure event in any
of the systems that develop after a disaster occurs [65,66].

In this section, we present a case study that demonstrates essential measures for
assessing the resilience of interdependent electrical and communication grids. The case
study examines the feasibility and applicability of the General Resilience (GR) quantita-
tive method for the Swiss electric power supply system (EPSS), which is considered an
exemplary application. The study conducted by Nan et al. [67] utilizes a hybrid modeling
simulation approach to represent the behavior and functionalities of each subsystem, as
shown in Figure 18. The EPSS is viewed as three interrelated subsystems, including the
system under control (SUC), the operational control system (OCS), and the social system
(SS). SUC and OCS are regarded as technical systems, while SS is viewed as non-technical.

The resilience capabilities, including the absorptive, adaptive, and restorative capa-
bility, are identified and integrated into a unique resilience metric, which combines these
capabilities into a comprehensive view of the system’s resilience in different phases. The
metric proposed is the General Resilience (GR), which integrates measures of robustness
(R), rapidity (RAPI), performance loss (PL), the time-averaged performance loss (TAPL),
and recovery ability (RA) into a simultaneous quantification. This metric is unique in its
complete dependence on time and ability to merge all three required capabilities.

The case study deploys a two-layer Agent-Based Simulation Modeling approach to
integrate time-dependent stochastic factors into the vulnerability assessment of the electric
power system. The simulation is based on the assumption that a natural hazard, such as
a winter storm, impacts the central zone of Switzerland, where power transmission lines
are located, resulting in the disconnection of 17 transmission lines out of 219 lines. The
analysis is a causal data analysis that investigates what happens to one variable when
another variable changes.
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Figure 18. The representation of the EPSS in three subsystems (layers).

Overall, this case study demonstrates how the GR method (3) can be utilized to
estimate the interdependent resilience index of the EPSS. The proposed method and met-
ric provide a holistic view of the system’s resilience and allow for comparisons across
multiple systems and configurations. The study highlights the importance of consid-
ering interdependent infrastructures and the need for a comprehensive approach to
resilience assessment.

The Swiss high-voltage electric power supply system (EPSS) is illustrated in Figure 19,
which consists of 219 transmission lines and 129 substations.

Figure 19. The high voltage Swiss electric power transmission system.

In this case study, the performance of the scrutinized system is evaluated using
two distinct measurements, each addressing unique aspects of the infrastructure’s charac-
teristics. The first measurement centers around the total quantity of available transmission
lines, a parameter that directly reflects the system’s topology. The second measurement, on
the other hand, assesses the precise amount of power demand that the system can cater to,
offering insights into its functional capabilities.

To further investigate the performance, a multi-objective optimization problem (MOP)
is defined for the Supervisory Control and Data Acquisition (SCADA) system, an integral
part of the infrastructure. This selected MOP is intrinsically tied to the system’s topology,
focusing specifically on the total number of Remote Terminal Units (RTUs) at its disposal.

It is vital to recognize that the selection of a suitable MOP for the SCADA system
is influenced by various factors, including the overarching goals of the system, the re-
sources at its disposal, and the system’s specific constraints. Consequently, the selected
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MOP should be in harmony with the performance metrics employed for evaluating the
system’s effectiveness.

To facilitate comparisons, the MOPs are normalized within the range of [0, 1]. This nor-
malization process helps in keeping the diverse measurements within a standard scale, en-
abling a more accurate and fair comparison. In the broader setting, the case study provides a
comprehensive analytical framework that captures key elements of system resilience while
addressing the inherent complexities and interdependencies within the infrastructure.

MOPSUC1 =
number of available transmission lines

number of total transmission lines
∈ [0, 1] (18)

MOPSUC2 =
actual power demand served (MW)

total power demand (MW)
∈ [0, 1] (19)

MOPSCADA1 =
number of available RTU devices

number of total RTU devices
∈ [0, 1] (20)

To conduct a thorough and effective assessment of the resilience metric, General
Resilience (GR), vis-à-vis alternative strategies, it is imperative to calculate a couple of
additional performability metrics. These metrics provide complementary perspectives on
system performance and enhance our understanding of the system’s resilience.

The first metric is the Average Substation Service Availability Index (ASSAI). This
index quantifies the proportion of the total hours during which all operational substations
render service in relation to the total hours wherein the service is demanded. This index
offers a comprehensive view of the service available throughout the entire system, taking
into account the operational status of all substations.

By comparing the ASSAI values of various solutions, one can gain a deeper under-
standing of their capacity to provide a dependable service over an extended period. This
comparison provides an analytical perspective that is invaluable in understanding the
system’s resilience and effectiveness. Notably, the ASSAI serves as an essential tool for
evaluating the dependability and robustness of the system’s service, hence playing a pivotal
role in the overall resilience assessment.

These combined metrics—GR and ASSAI—allow for a more holistic and nuanced
understanding of system resilience. By integrating various aspects of system performance,
they provide a comprehensive picture of system resilience, thereby facilitating informed
decision making in the design and operation of resilient infrastructures.

ASSAI =
NS × number of hours−∑NS

i=1 Resi

NS × number of hours
∈ [0, 1] (21)

where Resi represents the restoration time for the i− th substation if service interruption
exists and NS represents the total number of substations. They experiment with the
two systems under deploying different strategies, two strategies for the SUC system and
one for SCADA systems; after applying each strategy in each system, they measure the
resilience GR value, disruptive phase capabilities (Robustness (R),rapidity (RAPI), performance
loss (PL)), and Recovery Phase capabilities(rapidity (RAPI), performance loss (PL)) of each
system under different experiments design (Mean Time To Repair (MTTR), Human error
probability (HEP)). After that, they compare results from SUC and SCADA systems using
coefficient correlation to understand the interdependence effects on each other shown in
Figure 20. The directed impact of physical interdependence between SUC and SCADA
are viewed in the left side of the figure. Higher numbers conclude that actions affecting
the functionality, e.g., performance loss of the system, will directly result in an impact on
the corresponding functionality of the other system that is dependent upon it. Hence, the
impacts of improving the resilience of a system can result in a much more critical effect on
an interdependent system.
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Figure 20. The average system performance under different experiments, where (1) shows the
physical dependency and (2) shows the informational dependency

6. Conclusions

This paper examines an array of resilience models and measurements that have been
meticulously designed for interconnected, essential smart infrastructures, also known as
Smart ICIs. It encompasses a vast array of associated terminology and definitions, delves
deeply into universally acknowledged stages and capacities of resilience, and investigates
in depth a variety of potential failure types that could disrupt Smart ICIs.

In addition, the paper elucidates each metric in great detail and provides a comprehen-
sive comprehension of the employed methods, illustrated with case studies. In addition, it
introduces a variety of resilience strategies tailored to various resilience phases, articulating
these strategies in a manner that is simple to comprehend.

As the paper nears its conclusion, it focuses on a quantification-based approach,
supplemented by a pertinent case study, that exemplifies the practical application of
interdependent resilience metrics in tangible, real-world situations. In addition, there is
a concise summary of the most common obstacles encountered when assessing Smart
ICI resilience metrics. Given the rapidly expanding understanding of Smart ICIs, it is
imperative that all stakeholders confront these challenges head-on and endeavor to develop
even more precise and effective resilience metrics and models.

This exhaustive review serves as an invaluable resource for policymakers, researchers,
and industry professionals committed to enhancing the resilience of interdependent smart
critical infrastructures. With a comprehensive grasp of the various metrics and models, as
well as an understanding of the complexities involved in assessing resilience, stakeholders
are better able to make informed decisions and implement more effective strategies to pro-
tect these vital systems. In a world that is becoming increasingly interconnected, the ongo-
ing evolution and improvement of resilience metrics and models will be crucial for ensuring
the safety, security, and sustainability of smart interdependent critical infrastructures.

Despite the scope and depth of this study, certain limitations must be acknowledged. It
is difficult to develop universally applicable tools due to the fact that resilience metrics and
models are highly dependent on the context, the characteristics of the specific infrastructure,
and the nature of potential threats. In addition, the current study focuses predominantly
on theoretical aspects and case studies, which, despite providing invaluable insights, may
not fully reflect the variety of real-world scenarios and operational constraints that can
significantly impact the resilience of Smart ICIs.

There are numerous opportunities for further research and development in this field
moving forward. Future research may investigate the development and implementation
of dynamic resilience models that can adapt to changing conditions and evolving threats.
Additionally, it may be advantageous to investigate the integration of machine learning
and artificial intelligence techniques to improve the predictive capabilities of these models,
thereby allowing for more proactive resilience-building measures. Future research could
also concentrate on the implementation of these models and metrics, as well as the cre-
ation of decision-support tools for policymakers and industry professionals. To increase
the resilience of Smart ICIs, these instruments could facilitate more effective planning,
investment, and operational decisions. In a world that is becoming increasingly com-
plex and interconnected, these future endeavors will play a vital role in advancing our
understanding and administration of resilience.
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