
Citation: Ahmed, H.A.; Lee, J.

FCP2Vec: Deep Learning-Based

Approach to Software Change

Prediction by Learning Co-Changing

Patterns from Changelogs. Appl. Sci.

2023, 13, 6453. https://doi.org/

10.3390/app13116453

Academic Editor: Vito Conforti

Received: 5 April 2023

Revised: 14 May 2023

Accepted: 23 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

FCP2Vec: Deep Learning-Based Approach to Software Change
Prediction by Learning Co-Changing Patterns from Changelogs
Hamdi Abdurhman Ahmed and Jihwan Lee *

Major in Industrial Data Science & Engineering, Department of Industrial and Data Engineering,
Pukyong National University, Busan 48513, Republic of Korea; hamdi@pukyong.ac.kr
* Correspondence: jihwan@pknu.ac.kr

Abstract: As software systems evolve, they become more complex and larger, creating challenges in
predicting change propagation while maintaining system stability and functionality. Existing studies
have explored extracting co-change patterns from changelog data using data-driven methods such as
dependency networks; however, these approaches suffer from scalability issues and limited focus
on high-level abstraction (package level). This article addresses these research gaps by proposing a
file-level change propagation to vector (FCP2Vec) approach. FCP2Vec is a recommendation system
designed to aid developers by suggesting files that may undergo change propagation subsequently,
based on the file being presently worked on. We carried out a case study utilizing three publicly
available datasets: Vuze, Spring Framework, and Elasticsearch. These datasets, which consist of open-
source Java-based software development changelogs, were extracted from version control systems.
Our technique learns the historical development sequence of transactional software changelog data
using a skip-gram method with negative sampling and unsupervised nearest neighbors. We validate
our approach by analyzing historical data from the software development changelog for more than ten
years. Using multiple metrics, such as the normalized discounted cumulative gain at K (NDCG@K)
and the hit ratio at K (HR@K), we achieved an average HR@K of 0.34 at the file level and an average
HR@K of 0.49 at the package level across the three datasets. These results confirm the effectiveness
of the FCP2Vec method in predicting the next change propagation from historical changelog data,
addressing the identified research gap, and show a 21% better accuracy than in the previous study at
the package level.

Keywords: change propagation; change management; change prediction; neural language model;
recommendation

1. Introduction

In recent years, software development has become increasingly complex and collab-
orative, resulting in a growing dependency among elements. These dependencies are
interconnected, with one component providing services necessary for another. For example,
elements X, Y, and Z may have an interdependence, where Z provides services necessary
for Y, and Y provides services necessary for X. Modifying a component can introduce errors
and create incompatibilities with other parts of the software. To maintain compatibility,
the programmer must fix these inconsistencies, but these fixes can also create new issues.
This ripple effect of changes in software elements is often referred to as change propagation
(CP) [1,2]. The cost of change propagation in the software industry has been reported in
the literature. Unforeseen and uncorrected inconsistencies can lead to software errors [3,4]
and, according to estimates, software maintenance costs account for more than 60% of
the total cost of a product’s life cycle. In addition, ripple effect analysis is responsible for
approximately 40% of software maintenance costs [5], so it is important to use tools and
analysis techniques to improve the quality of the change propagation process. Therefore,
the ability to predict these change propagation effects is crucial for ensuring the stability
and reliability of software systems.

Appl. Sci. 2023, 13, 6453. https://doi.org/10.3390/app13116453 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116453
https://doi.org/10.3390/app13116453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9380-5470
https://doi.org/10.3390/app13116453
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116453?type=check_update&version=2

Appl. Sci. 2023, 13, 6453 2 of 24

Scholars have used data from version control systems (VCSs) to examine the changes
that software systems have undergone, which has facilitated the prediction of their char-
acteristics [6,7]. This can aid in identifying hidden dependencies or interactions in the
system [8]. Several approaches have been proposed to analyze CP at different abstraction
levels using various techniques. For example, a heuristic approach [9] was used to predict a
change in one source code element propagating to other elements. Zimmermann et al. [10]
developed a stochastic model known as K3B, which predicts how far a set of changes
propagates throughout the system [11]. Siavash et al. [12] used the Bayesian belief network
as a probabilistic tool to predict possible models of the affected system, given a change in
the system at the package level. Oliva et al. [6] analyzed change coupling at the file level.
Pan et al. [5] proposed a class coupling network (CCN) model of the structure of software
at the class level to evaluate the stability of the software.

Previously, Lee and Hong [13] proposed a method to predict the change probability
of software elements given the set of current edited files. To estimate the probability,
they utilized a graphical model called a dependency network (DN). A DN provides an
approximation method for estimating the joint distribution among random variables.
It first learns the local distribution of each software element and combines them using
Gibbs sampling for probabilistic inference. Although their approach provides a well-
defined model for predicting change propagation, the DN-based approach has two major
limitations: scalability issues when handling a large number of files and difficulties in
interpreting complex and large models. As a result, the approach is limited to the package
level, and its predictions are not specific enough to be useful at the granularity level where
changes are implemented.

To address this limitation, we introduce FCP2Vec, which is inspired by the Word2vec
algorithm [14,15]. Word2vec is a shallow neural network that utilizes unsupervised learning
to learn relationships between words within a sentence. Although not considered as a
deep learning technique in the strictest sense, Word2vec shares some similarities with deep
learning models, such as its neural network foundation. The neural network learns from
a collection of sentences to predict the surrounding words for each word in the sentence.
Then, this process results in a set of vector representations for each word in the corpus,
where each vector captures the meaning and context of the word, which can be used to
perform various natural language processing tasks such as text classification, similarity
and analogy tasks, and information retrieval. For example, if two words have similar
vector representations, it means that they have similar meanings or contexts. Similarly,
our neural network model trains on a collection of changelogs to predict co-changing
elements for each element, resulting in a vector representation of software elements that
can be used to determine the degree of changeability between software elements. Thus, if a
developer modifies some set of elements, then the recommendation system can use this
vector representation to suggest other elements that could be changed together.

To validate our study, we used three publicly available datasets: Vuze (formerly
Azureus) [16], Spring Framework [17], and Elasticsearch [18]. These datasets, which consist
of open-source Java-based software development changelogs, were extracted from two
types of VCS. Vuze was extracted from the concurrent version system (CVS), whereas
Spring Framework and Elasticsearch were extracted from Git. Vuze is an open-source
BitTorrent client that uses the BitTorrent protocol to transfer files. It is written in Java and
has over a decade of development history in its changelog data. The Spring Framework is
an open-source Java framework that facilitates the development of enterprise-level applica-
tions by providing features such as dependency injection, aspect-oriented programming,
and support for web applications [17]. Similarly, Elasticsearch is an open-source Java-based
distributed search and analytics engine [18]. We have trained the FCP2Vec model using
these datasets’ changelogs and have shown that FCP2Vec predicts potential changes, pro-
viding recommendations based on the current open file and detecting hidden dependencies
that cannot be identified through program analysis. Comparative results also indicate that
our model is highly scalable and can support a much deeper level of granularity, such as

Appl. Sci. 2023, 13, 6453 3 of 24

the file level, which was not possible with the dependency network [13]. This approach
can help programmers predict the number of possible change propagations and the K files
related to their current task, where K is a user-defined constant number.

The remainder of this paper is organized as follows. Section 2 reviews the literature
on change propagation related to the software domain review. Section 3 motivates our
approach by providing an overview of the problem definition and the formal definition of
Word2vec and skip-gram. Section 4 describes our proposed approach. Section 5 presents an
empirical case study of Vuze, Spring Framework, and Elasticsearch. Finally, we conclude
and anticipate future work and limitations of our approach in Section 6.

2. Materials and Methods

In this section, we review some notable research articles related to change propagation
and a general overview of machine learning and deep learning architectures.

Learning methodologies, such as machine and deep learning, have been successfully
implemented in diverse fields, including, but not limited to, image recognition, sematic
image segmentation, and natural language processing. This success can be attributed to
several factors: the growing power of hardware, the expanding amount of data available
for training, and recent developments of data in machine learning algorithms. These
progressive strides have equipped deep learning methods with the capacity to effectively
employ complex, compositional non-linear functions. This enables the automatic learning
of distributed and hierarchical features, utilizing both labeled and unlabeled data to their
fullest potential [19]. Table 1 offers a comprehensive overview of the latest approaches in
this domain and their relative counterparts.

Table 1. Comprehensive overview of machine learning and deep learning in different domains.

Author(s) Year Summary

Menghani [20] 2023

Presents a survey of model efficiency in deep learning and
the problems therein, moving from modeling methods

and infrastructure to hardware, and how hardware
directly or indirectly affects the efficiency.

Menghani [20] 2023 Covers a broad range of fairness-enhancing mechanisms
and their use to compensate for bias in machine learning.

Salem et al. [21] 2022
Proposes XAI-DL, an interpretable deep learning model

for solar-driven distillation systems that provides
explanations to help users trust the system.

Lewowski et al. [22] 2022 Proposes a review of machine learning and artificial
intelligence methods in automated code smell detection.

Cabrera Lozoya et al. [23] 2021 Proposes and evaluates a transfer learning method to
learn how to classify security relevant commits.

Pan et al. 2019 Characterization of software stability via change
propagation simulation.

Alon et al. [24] 2019

A neural model for representing code snippets as
continuous distributed vectors called “code embeddings”.
The model can predict semantic properties of the snippet

and can predict method names from the vector
representation of its body.

Alon et al. [25] 2018

Proposes CODE2SEQ, an alternative seq2seq model for
source code that uses attention to focus on the relevant
program path in the source code AST to create better

source code encodings.

2.1. Leveraging Changelog Data in Change Propagation

Version control is a crucial tool for tracking changes made to a software development
project over time. One of the most widely used systems is the concurrent version system
(CVS). It creates and maintains a local repository for each project and can push changes to
remote or other local repositories as needed. This allows teams to easily undo any changes

Appl. Sci. 2023, 13, 6453 4 of 24

that may have caused problems. The CVS also allows developers to track changes to files
and see who made them. To identify and quantify change coupling, it is necessary to
first recover the change history for relevant files. This is often carried out by parsing and
analyzing the log of the version control system (VCS). In most cases, it is assumed that if
two elements are committed together, they are change coupled. However, older systems
such as the CVS that do not support atomic commits may require additional processing to
reconstruct change transactions [6]. Git, a renowned distributed version control system,
diligently records changes to any assortment of computer files. It is commonly employed
to synchronize the endeavors of programmers collectively developing source code for
software. Among its objectives are data integrity, speed, and endorsement for distributed,
non-linear workflows [26].

Due to the importance of change propagation, research has been carried out to un-
derstand, predict, and control how change propagates. Early findings on CP such as
in [3] present a model of change propagation during software maintenance and evolution.
Impact analysis and change propagation are among the major issues in software change
management. Han [27] introduced an approach to provide impact analysis and change
propagation support as an integral part of software engineering environments, so that they
can be applied during both software development and maintenance. The prediction of
such a change provides a significant challenge in the management of the redesign and cus-
tomization of complex products, where many change propagation paths may be possible.
Aryani et al. [28] introduced a method that uses the domain-level behavioral model of a
system to analyze change propagation.

Researchers have found that change couplings can be identified and evaluated from
the log of a VCS using the following three different methods. First, raw counting. Some
researchers use a raw counting method to identify change coupling. This method looks
at the relationships between changes made to different parts of a system and typically
uses a symmetry matrix or co-change matrix data structure. A co-change matrix is a
matrix that shows the relationships between changes to different parts of a system, and
change couplings are the degree to which changes to one part of a system are connected
to or dependent on changes to another part of the system. There are several ways that
co-change matrices can be inferred or constructed. One way is to analyze the version
history of a system, such as by examining commit logs or other records of changes made
to the system over time. By examining which files were modified in each commit, it is
possible to construct a co-change matrix that shows which parts of the system were changed
together [29–31].

Second, associated rule. Some researchers, for instance, [10,32–34], used association
rule mining. It is a process of finding relationships between items in large datasets. It looks
at the frequency of item pairs and then tries to identify patterns that occur frequently. These
patterns can be used to make predictions about future events.

Third, time series analysis. Some researchers, for instance, [35–37], applied time series
analysis. It is a type of data analysis that studies the patterns and trends of a set of data
points over a period of time. Time series analysis is used to identify changes in data points
over time and to understand the underlying drivers of such changes. It can be used to
forecast future values of data points and analyze the impact of certain events on a set of
data points. Time series analysis is a promising approach for dealing with some of the
issues associated with rule-based and raw counting algorithms [38].

There is a great deal of research on using historical changes to identify code dependen-
cies in software systems. Various data mining techniques have been employed to predict
the change propagation of changes by extracting historical changelogs. Gall et al. [39]
uses the history of release of a large software system together with change data to identify
potential code restructuring opportunities. Mockus et al. [40] incorporates information on
development, historical changes, and other metadata to predict the risk of failure in new
development changes. Hassan et al. [9] propose a heuristic to predict the propagation of
change at the element level. Zimmermann et al. [10] annotated software versions to extract

Appl. Sci. 2023, 13, 6453 5 of 24

association rules to guide programmers on further changes to the code. Ying et al. [34]
proposed an approach to assist developers with modification tasks by augmenting analyses
based on source code and making them more predictable, based on historical change
patterns. Finlay et al. [41] used the Hoeffding tree classifier to predict whether a software
build will succeed or fail. Sun et al. [42] proposed a framework to analyze the ripple effects
of changes proposed to the software and provided a way to evaluate these to predict the
impact of the changes.

The study by [4] explores the application of data mining techniques to predict change
propagation, applicable to open-source software systems, by focusing on Linux, FreeBSD,
and Apache. Due to the complex semantics of change propagation and the indirect nature of
previously proposed language techniques, it remains difficult to reason about the efficiency
of self-adjusting programs and change propagation.

In some instances, researchers have applied a hybrid approach to address specific
challenges. For example, Canfora et al. [38] found that while association rules are often
effective, they can fail to capture logical relationships between artifacts that are modified in
subsequent change sets. Consequently, the authors proposed a hybrid recommender that
combines time series (Granger causality) modeling with association rules to enhance the
accuracy of functional change discovery. Kagdi et al. [43] introduced a method for analyzing
the impact of changes in software code by integrating techniques from information retrieval
and software evolution. Similarly, Ref. [44] developed a relational topic-based coupling
approach for classes, using relational topic models to assess the closeness of two elements
and demonstrating how to refine object-oriented coupling metrics.

Some of the trends in recent articles to predict change propagation have been to
apply a probabilistic approach and other methods at a different level of abstraction.
Ferreira et al. [11] introduced K3B, a probabilistic model to estimate the impact of change
propagation, which can be used to estimate the effort required for software maintenance
tasks. Siavash et al. [12] used the Bayesian belief network as a probabilistic tool to predict
possible models of the affected system, given a change in the system at the package level.
Oliva et al. [6] analyzed change coupling at the file level. The authors explored the use of
Bayesian networks (BNs) for modeling and analyzing change propagation in software sys-
tems to outperform traditional change propagation prediction methods. Similarly, Ref. [13]
proposes a dependency network to estimate the probability of change propagation at the
package level, which is more effective than a BN in modeling complex systems. Pan et al. [5]
proposed a class coupling network (CCN) model of the structure of software at the class
level to evaluate the stability of the software.

2.2. Neural Language Model

Data-driven decisions are becoming increasingly important, and natural language
processing (NLP) is playing an increasingly vital role. NLP is the process of extracting
meaningful information from text. Its application to tasks such as sentiment analysis,
information retrieval, language detection, text summarization, and many others has made
it an invaluable tool for making decisions based on large amounts of unstructured data.
The specific objectives of many NLP applications can all be generalized to calculating the
probability of a given sequence of words [45,46].

In NLP, words are the basic unit of meaning and word vectors are used to represent
them. The process of mapping words to real vectors is called word embedding. One-hot
encoding is a common approach for language modeling, but it can be problematic as it
results in a loss of meaning for words [47]. Representing words as vectors, using Word2vec,
captures the semantic relationship between words and the context in which they are used.
This allows models to better understand the meaning of words and to consider the context
in which they are used. Additionally, representing words as vectors also helps reduce the
number of features needed in a model [14,15].

Over the past few years, distributed representation has become a popular tool for
representing words and phrases in NLP applications. Most of the work in the Word2vec

Appl. Sci. 2023, 13, 6453 6 of 24

area is based on the distributional hypothesis [48,49], which holds that words that appear
in the same context have similar meanings. This assumes that contexts are influential in
shaping a word’s meaning. However, research has recently extended the use of distributed
representation beyond word representation to other types of data. For example, distributed
representation can be used to represent images and audio clips [50]. Table 2 highlights
some of the versatility of word embedding usage in various domains.

Table 2. Exploring the versatility of word embeddings: some of the usage in various domains.

Categories Publication

Audio and music analysis [50,51]
Information extraction [52]
Recommender systems [53–56]

Sentiment analysis, text classification, and clustering [57–60]

From a recommendation perspective, item representation plays a crucial role in the
effectiveness of a recommendation system. Systems employing more precise and diverse
representations of items are likely to yield more accurate recommendations. Numerous
techniques have been proposed for representing items in a manner that takes into account
user transactions and item content information, including review text and images. Some
notable studies in this domain [61] include the use of co-purchase data to target and
personalize ads in the Yahoo Mail advertising system; Vasile et al. [62] proposed a method
to leverage the existing metadata of items to make better recommendations; and [55]
introduces an approach for constructing product embeddings that uses several modality-
specific features, such as text description and images.

In the context of constructing a machine learning model, the capacity to enhance its
performance is key. The calibration of the model’s hyperparameters can wield a consid-
erable influence on its precision. Default hyperparameters are employed to streamline a
model for a particular set of problems or data, frequently being selected by the machine
learning algorithm or adjusted by the model developer. However, when the problem
domain extends beyond the initial scope, the circumstances may deviate. For example,
Caselles-Dupré et al. [63] implement the skip-gram with a negative sampling technique,
a variant of Word2Vec, to generate item embeddings for recommendation systems. The
authors scrutinize the significance of hyperparameters in a recommendation context and
ascertain that the optimization of previously disregarded hyperparameters can markedly
enhance performance. Additionally, they discover that the optimal hyperparameters for
natural language processing and recommendation tasks differ. This methodology has been
employed to produce item embeddings that have proven successful in the recommenda-
tion domain, yielding substantially improved performance and elevated recommendation
accuracy. In this study, we have also adopted a similar conjecture to fine-tune the change
propagation setting.

3. Background
3.1. Problem Definition

This paper aims to address the problem of software change propagation, which
pertains to the process of identifying and monitoring the influence of software changes on
other components of a software system. When a software system undergoes modifications,
it is crucial to recognize and comprehend how those changes affect other parts of the system
where changes in one part of the can have significant impacts on other parts, potentially
causing bugs or errors. For example, as shown in Figure 1, there is a list of files that have
changed together in the past grouped as a single transaction or co-change. Let us consider
that the developer (“Dev1”) changes files “a.java” and “b.java” together, so they are called a
co-change or transaction or session, and we use them to train in predicting the probabilities
of CP.

Appl. Sci. 2023, 13, 6453 7 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 25

3. Background
3.1. Problem Definition

This paper aims to address the problem of software change propagation, which per-
tains to the process of identifying and monitoring the influence of software changes on
other components of a software system. When a software system undergoes modifica-
tions, it is crucial to recognize and comprehend how those changes affect other parts of
the system where changes in one part of the can have significant impacts on other parts,
potentially causing bugs or errors. For example, as shown in Figure 1, there is a list of files
that have changed together in the past grouped as a single transaction or co-change. Let us
consider that the developer (“Dev1”) changes files “a.java” and “b.java” together, so they
are called a co-change or transaction or session, and we use them to train in predicting the
probabilities of CP.

Figure 1. An example of a historical changelog.

To refer to a module of the system at any given level of abstraction, throughout this
work, we will use the term “element”. The scope of an element within the system is de-
termined by the level of granularity. An element can be defined as a conceptual compo-
nent at different levels, such as a package (directory), subpacket (subdirectory), files such
as classes, interfaces, and so on. The Java package is a collection of similar subpackages,
interfaces, and classes. A subpackage is a package that is defined inside another package.
This is carried out to make the structure of the packages more generic and organized. For
example, if one has a package named “University 1” and a subpackage “department 1”,
all the supporting Java files will be defined inside it.

Although co-change is not the same as CP, it can be helpful in predicting it because
if elements have changed together in the past, it is more likely that they will change to-
gether in the future, and changes are likely to propagate among those elements. In this
case study, we opt to define the element at the file level as a file name. To predict future
CP and use it as an element recommendation, we will use each transaction pattern in the
changelog obtained from the CVS as input for the proposed model and predict the next
element that most likely needs to be changed located nearby in the vector space.

Speaking more formally, given a set S of element changelogs obtained from the CVS,
where different operations (create, read, update, and delete) are applied by N developers,
where the developer’s changelog s = (𝑡ଵ, 𝑡ଶ, … , 𝑡ሻ ∈ 𝑆 is defined as continuous sequence
of M transactions and each transaction element changelog 𝑡 ൌ ൫𝑓ଵ,𝑓ଶ, … , 𝑓൯ con-
sists of 𝐵 that is operationally modified, our objective is to find a d-dimensional real-
valued representation 𝑣 ∈ ℝௗ of each element f that is chosen in such a way that co-
changed similar elements are found nearby in the vector space.

This probabilistic view of the change propagation that uses the concept of distribu-
tional models to learn the vector representation of elements is based on a skip-gram of
Word2vec [15]. Word2vec was initially designed for NLP purposes. Here, we investigate

Figure 1. An example of a historical changelog.

To refer to a module of the system at any given level of abstraction, throughout
this work, we will use the term “element”. The scope of an element within the system
is determined by the level of granularity. An element can be defined as a conceptual
component at different levels, such as a package (directory), subpacket (subdirectory),
files such as classes, interfaces, and so on. The Java package is a collection of similar
subpackages, interfaces, and classes. A subpackage is a package that is defined inside
another package. This is carried out to make the structure of the packages more generic
and organized. For example, if one has a package named “University 1” and a subpackage
“department 1”, all the supporting Java files will be defined inside it.

Although co-change is not the same as CP, it can be helpful in predicting it because if
elements have changed together in the past, it is more likely that they will change together
in the future, and changes are likely to propagate among those elements. In this case study,
we opt to define the element at the file level as a file name. To predict future CP and use
it as an element recommendation, we will use each transaction pattern in the changelog
obtained from the CVS as input for the proposed model and predict the next element that
most likely needs to be changed located nearby in the vector space.

Speaking more formally, given a set S of element changelogs obtained from the CVS,
where different operations (create, read, update, and delete) are applied by N developers,
where the developer’s changelog s = (t1, t2, . . . , tm) ∈ S is defined as continuous sequence of
M transactions and each transaction element changelog tm = (fm1, fm2, . . . , fmBm) consists
of Bm that is operationally modified, our objective is to find a d-dimensional real-valued
representation v f ∈ Rd of each element f that is chosen in such a way that co-changed
similar elements are found nearby in the vector space.

This probabilistic view of the change propagation that uses the concept of distribu-
tional models to learn the vector representation of elements is based on a skip-gram of
Word2vec [15]. Word2vec was initially designed for NLP purposes. Here, we investigate
and use them as tools in the CP domain. Taking this perspective motivates the development
of a probabilistic method to solve the problem.

3.2. Word2vec

Word2vec is one of the most popular word embedding models introduced in [14,15].
It is a technique that maps each word to a fixed-length vector. As illustrated in Figure 2,
Word2vec contains two models: the skip-gram (SG) (Figure 2b) and the continuous bag
of words (CBOW) (Figure 2a). These models rely on conditional probabilities to generate
semantically meaningful representations. In other words, rather than requesting a model
to predict the next word, we can ask it to predict the next word based on the surrounding
words in a context.

Appl. Sci. 2023, 13, 6453 8 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 25

and use them as tools in the CP domain. Taking this perspective motivates the develop-
ment of a probabilistic method to solve the problem.

3.2. Word2vec
Word2vec is one of the most popular word embedding models introduced in [14,15].

It is a technique that maps each word to a fixed-length vector. As illustrated in Figure 2,
Word2vec contains two models: the skip-gram (SG) (Figure 2b) and the continuous bag of
words (CBOW) (Figure 2a). These models rely on conditional probabilities to generate
semantically meaningful representations. In other words, rather than requesting a model
to predict the next word, we can ask it to predict the next word based on the surrounding
words in a context.

Figure 2. Architecture of the Word2vec training model. (a) CBOW and (b) SG model architectures.

CBOW is an approach that uses context words to predict a target word. It works by
taking the average of the vectors that represent each context word and then passing this
vector through a softmax layer to make a prediction. In contrast, the SG model predicts
context words from a given target word. This model uses an embedding layer to map each
target word into a vector space and then passes this through a softmax layer to make a
prediction about the surrounding words.

The CBOW and SG models share some similarities, including the use of training sam-
ples consisting of pairs of words chosen based on their proximity to one another, as well
as the use of a softmax function as the final layer in the network.

Both the skip-gram and CBOW models in the Word2vec tool are considered as self-
supervised learning (SSL) models. SSL [64] is a machine learning process in which the
model is trained to learn from input data without needing external labels. This process is
also known as predictive learning or pretext learning. Word2vec is similar to an autoen-
coder in that it encodes each word in a vector. However, rather than training against the
input words through reconstruction, as a restricted Boltzmann machine does, Word2vec
trains words against other words that neighbor them in the input corpus.

In SSL, the unsupervised problem is transformed into a supervised problem by auto-
generating the labels. This makes it possible to use a large amount of unlabeled data.
However, it is crucial to set the right learning objectives to obtain supervision from the
data themselves. The process of the SSL method is to identify any hidden patterns in the
input data. For example, in NLP, if we have a few words, using SSL, we can complete the
rest of the sentence. This approach uses the structure of the data to use a variety of super-
visory signals across large datasets, without needing labels.

Skip-Gram
The skip-gram model assumes that a word can be used to predict the words that

come before and after it in a text sequence. For example, consider the text sequence “we”,

Figure 2. Architecture of the Word2vec training model. (a) CBOW and (b) SG model architectures.

CBOW is an approach that uses context words to predict a target word. It works by
taking the average of the vectors that represent each context word and then passing this
vector through a softmax layer to make a prediction. In contrast, the SG model predicts
context words from a given target word. This model uses an embedding layer to map each
target word into a vector space and then passes this through a softmax layer to make a
prediction about the surrounding words.

The CBOW and SG models share some similarities, including the use of training
samples consisting of pairs of words chosen based on their proximity to one another, as
well as the use of a softmax function as the final layer in the network.

Both the skip-gram and CBOW models in the Word2vec tool are considered as self-
supervised learning (SSL) models. SSL [64] is a machine learning process in which the
model is trained to learn from input data without needing external labels. This process is
also known as predictive learning or pretext learning. Word2vec is similar to an autoencoder
in that it encodes each word in a vector. However, rather than training against the input
words through reconstruction, as a restricted Boltzmann machine does, Word2vec trains
words against other words that neighbor them in the input corpus.

In SSL, the unsupervised problem is transformed into a supervised problem by auto-
generating the labels. This makes it possible to use a large amount of unlabeled data.
However, it is crucial to set the right learning objectives to obtain supervision from the data
themselves. The process of the SSL method is to identify any hidden patterns in the input
data. For example, in NLP, if we have a few words, using SSL, we can complete the rest of
the sentence. This approach uses the structure of the data to use a variety of supervisory
signals across large datasets, without needing labels.

Skip-Gram

The skip-gram model assumes that a word can be used to predict the words that come
before and after it in a text sequence. For example, consider the text sequence “we”, “rise”,
“by”, “lifting”, “others”. As shown in Figure 3, if we choose “by” as the center word and set
the size of the context window to 2, then the SG model considers the conditional probability
of generating the context words from the left side of the center word “we” and “rise” and,
from the right side, “lifting” and “others”; P(“we”, “rise”, “li f ting”, “others ” |“ by”), The
“window size” parameter is used to limit the number of words in each context (see Table 3).
Suppose that we represent the input of those example words; the output of the model will
be a vector containing the probability that a randomly selected nearby word is each word
in our vocabulary.

Appl. Sci. 2023, 13, 6453 9 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 25

“rise”, “by”, “lifting”, “others”. As shown in Figure 3, if we choose “by” as the center
word and set the size of the context window to 2, then the SG model considers the condi-
tional probability of generating the context words from the left side of the center word
“we” and “rise” and, from the right side, “lifting” and “others”; 𝑃ሺ”𝑤𝑒”, “𝑟𝑖𝑠𝑒”, ”𝑙𝑖𝑓𝑡𝑖𝑛𝑔”, ”𝑜𝑡ℎ𝑒𝑟𝑠” |”𝑏𝑦”ሻ, The “window size” parameter is used to limit the
number of words in each context (see Table 3). Suppose that we represent the input of
those example words; the output of the model will be a vector containing the probability
that a randomly selected nearby word is each word in our vocabulary.

Table 3. An example of a set of SG pairs of (target word, context word) where the context word
appears in the neighboring context of the target word.

Window Size Text Training Samples

2 we rise by lifting others

(by, we)
(by, rise)

(by, lifting)
(by, others)

Figure 3. The SG model considers the probability of predicting the surrounding context words given
a center word.

In the SG model training context, for example, if input target word 𝑓ሺ𝑖ሻ = “by” is
given to the model, there will be four target context words, i.e., our window size is ሺmax 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶 ൌ 2ሻ ሺContext window size K ൌ 4ሻ, with four activation func-
tions, four predictions, and four errors summed to obtain the total error. The network will
tell us the probability that every word in our vocabulary 𝑉 𝑖𝑠 the nearby word we choose
for the window size. The vocabulary here is built from the sentence. For example, if we
have 5 unique words and use “by” as a hot encoding vector, the vector will have 5 com-
ponents (one for each word in our vocabulary) and place “1” in a position corresponding
to the word “by” which is a unique spot and “0” in all other positions.

The dot product in the hidden layer (no activation function at this point) passes to
the output layer. The output layer computes the dot product between the hidden layer’s
output vectors and weighs the output layer matrix. Then, the softmax function computes
the probability of a word appearing in the context of 𝑓ሺ𝑖ሻ at a given context location,
which helps us distribute the probability throughout the output nodes, as we want to con-
vert out the last layer output in terms of probability.

More formally, the SG model learns the representation of words by maximizing the
objective function over the entire set of 𝑆 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠, defined as follows. ℒ ൌ 𝑙𝑜𝑔 𝑝൫𝑓ାห𝑓൯ି ஸ ஸ ,ஷ∈௦௦∈ௌ , (1)

where 𝑐 is the training context window size (that may depend on 𝑓) and words from the
same sentences are ordered arbitrarily. Probability 𝑝൫𝑓ାห𝑓൯ of observing a neighboring
word 𝑓ା given the current word 𝑓 is defined using the well-known softmax function,

Figure 3. The SG model considers the probability of predicting the surrounding context words given
a center word.

Table 3. An example of a set of SG pairs of (target word, context word) where the context word
appears in the neighboring context of the target word.

Window Size Text Training Samples

2

(by, we)
(by, rise)

(by, lifting)
we rise by lifting others

(by, others)

In the SG model training context, for example, if input target word f (i) = “by”
is given to the model, there will be four target context words, i.e., our window size is
(maxcontext location C = 2) (Context window size K = 4), with four activation functions,
four predictions, and four errors summed to obtain the total error. The network will tell
us the probability that every word in our vocabulary V is the nearby word we choose for
the window size. The vocabulary here is built from the sentence. For example, if we have
5 unique words and use “by” as a hot encoding vector, the vector will have 5 components
(one for each word in our vocabulary) and place “1” in a position corresponding to the
word “by” which is a unique spot and “0” in all other positions.

The dot product in the hidden layer (no activation function at this point) passes to
the output layer. The output layer computes the dot product between the hidden layer’s
output vectors and weighs the output layer matrix. Then, the softmax function computes
the probability of a word appearing in the context of f (i) at a given context location, which
helps us distribute the probability throughout the output nodes, as we want to convert out
the last layer output in terms of probability.

More formally, the SG model learns the representation of words by maximizing the
objective function over the entire set of S sentences, defined as follows.

L = ∑
s∈S

∑
fi∈s

∑
−c ≤ j ≤ c,j 6=0

log p
(

fi+j
∣∣ fi

)
, (1)

where c is the training context window size (that may depend on fi) and words from the
same sentences are ordered arbitrarily. Probability p

(
fi+j

∣∣ fi
)

of observing a neighboring
word fi+j given the current word fi is defined using the well-known softmax function,

p
(

fi+j
∣∣ fi

)
=

exp
(

uT
fi

v fi+j

)
∑F

f=1 exp
(

uT
fi

v f

) , (2)

where u f and v f are the vector representations of word f as input and output, respectively,
F is the number of unique words in the entire vocabulary.

According to Equations (1) and (2), the SG model captures the context of the word
sequence, so that words with similar contexts will have similar vector representations. The
numerator in Equation (2) demonstrates this by giving a larger value for similar words
through the dot product of the two vectors. If the words do not occur in each other’s
context, the representations will be different, and thus the numerator will be a small value.

Appl. Sci. 2023, 13, 6453 10 of 24

However, the main problem arises when we want to calculate the denominator. The
denominator is a normalizing factor that must be calculated over the entire vocabulary.
Using Equation (2) is intractable due to the computational complexity of∇p

(
fi+j

∣∣ fi
)
, which

is linear function of vocabulary size |F| that could easily reach millions of words. To solve
this problem, a negative sampling method was used as proposed in [15].

Negative sampling is a method that considers the context of words by maximizing
the similarity between words that occur in the same context and minimizing the similarity
between words that occur in different contexts. To do this, instead of comparing all words in
a vocabulary, the negative sampling randomly selects a small number of words (2 ≤ k ≤ 20)
to optimize the objective. The k value depends on the dataset. The value recommended
by [15] is a smaller k for larger datasets and vice versa.

One of the motivations for using the skip-gram with negative sampling model as the
FCP2Vec algorithm for predicting change propagation as a recommendation system is its
scalability. This is because it can approximate the original softmax loss for all possible
words, using negative sampling [15].

4. Proposed Approach

This section provides an overall procedure for modeling and predicting change prop-
agation. The design is illustrated in Figure 4. In the following subsection, each step is
described in more detail.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 25

𝑝൫𝑓ାห𝑓൯ = 𝑒𝑥𝑝 ቀ𝑢்𝑣శೕቁ∑ 𝑒𝑥𝑝൫𝑢்𝑣൯ிୀଵ , (2)

where 𝑢 and 𝑣 are the vector representations of word 𝑓 as input and output, respec-
tively, 𝐹 is the number of unique words in the entire vocabulary.

According to Equations (1) and (2), the SG model captures the context of the word
sequence, so that words with similar contexts will have similar vector representations. The
numerator in Equation (2) demonstrates this by giving a larger value for similar words
through the dot product of the two vectors. If the words do not occur in each other’s con-
text, the representations will be different, and thus the numerator will be a small value.

However, the main problem arises when we want to calculate the denominator. The
denominator is a normalizing factor that must be calculated over the entire vocabulary.
Using Equation (2) is intractable due to the computational complexity of ∇𝑝൫𝑓ାห𝑓൯ ,
which is linear function of vocabulary size|𝐹| that could easily reach millions of words.
To solve this problem, a negative sampling method was used as proposed in [15].

Negative sampling is a method that considers the context of words by maximizing
the similarity between words that occur in the same context and minimizing the similarity
between words that occur in different contexts. To do this, instead of comparing all words
in a vocabulary, the negative sampling randomly selects a small number of words (2 ≤𝑘 ≤ 20) to optimize the objective. The 𝑘 value depends on the dataset. The value recom-
mended by [15] is a smaller 𝑘 for larger datasets and vice versa.

One of the motivations for using the skip-gram with negative sampling model as the
FCP2Vec algorithm for predicting change propagation as a recommendation system is its
scalability. This is because it can approximate the original softmax loss for all possible
words, using negative sampling [15].

4. Proposed Approach
This section provides an overall procedure for modeling and predicting change prop-

agation. The design is illustrated in Figure 4. In the following subsection, each step is de-
scribed in more detail.

Figure 4. Overall framework for predicting CP using the architecture of FCP2Vec model: Word2vec
skip-gram with negative sampling model (M1) and unsupervised nearest neighbor model (M2).

4.1. Data Preparation
In this subsection, we begin by extracting the relevant information from the

changelogs of the software repository. To prepare the raw data (see Figure 5) extracted
from the CVS, we applied the helper algorithm that takes the raw changelog data as input
and outputs next-step process-ready data. To use the historical data contained therein for

Figure 4. Overall framework for predicting CP using the architecture of FCP2Vec model: Word2vec
skip-gram with negative sampling model (M1) and unsupervised nearest neighbor model (M2).

4.1. Data Preparation

In this subsection, we begin by extracting the relevant information from the changelogs
of the software repository. To prepare the raw data (see Figure 5) extracted from the CVS,
we applied the helper algorithm that takes the raw changelog data as input and outputs
next-step process-ready data. To use the historical data contained therein for the proposed
system approach, we extract them in the form of event batches or co-changes.

There are two issues related to co-changes that were filtered out. The first issue is
that, in some cases, numerous elements are involved in a single co-change, which can
happen because of trivial matters or more complicated issues such as “branching and
merging” [10]. For example, any co-changes containing less than two elements or more
than 50 elements were discarded because they do not provide any insight into the change
propagation phenomenon.

Appl. Sci. 2023, 13, 6453 11 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 25

the proposed system approach, we extract them in the form of event batches or co-
changes.

Figure 5. Sample of data from the Vuze raw historical development changelog.

There are two issues related to co-changes that were filtered out. The first issue is
that, in some cases, numerous elements are involved in a single co-change, which can
happen because of trivial matters or more complicated issues such as “branching and
merging” [10]. For example, any co-changes containing less than two elements or more
than 50 elements were discarded because they do not provide any insight into the change
propagation phenomenon.

The second issue is that we are interested in files with continuity status in the system
and removing the deleted state. In computer programming, the four basic operations of
persistent storage are create, read, update, and delete (CRUD) [65]. This operation has
been applied to the historical changelog dataset, and two (see Table 4) of them are shown
in the form when they are initially created (Append), when they are updated (Modified),
and when they are deleted (D).

Table 4. Status of files before and after processing data.

Dataset Operation
File Package

Append Modified Append Modified

Vuze
Before processing data 6036 51,697 6036 51,697
After processing data 4927 36,890 2647 20,532

Spring Framework Before processing data 14,814 143,721 14,456 137,920
After processing data 8421 69,766 3806 29,338

Elasticsearch Before processing data 46,761 426,896 45,652 416,932
After processing data 33,492 242,053 16,206 132,901

4.2. Data Splitting
To ensure that the model can accurately and consistently predict future outcomes,

we split the dataset into three distinct sets: training set, validation set, and test set. The
training set is used to train the model. The validation set is used to evaluate the perfor-
mance of the model and adjust its hyperparameters, while the test set is used to evaluate
the ability of the model to generalize.

We analyzed developers’ interactions with elements in terms of the order in which
they occur over time. Each first co-change element (t − 1) was used as a training set and fit
to the M1 model. Then, we used performance on a randomly sampled ((𝑡 െ 1)௧ , 𝑡௧) val-
idation set of pairs of elements to benchmark the hyperparameters. The final result is ob-
tained by making predictions on a random sample ((𝑡 െ 1)௧ , 𝑡௧) of element pairs (query
element, next element) from the test set that does not overlap with the validation set. For

Figure 5. Sample of data from the Vuze raw historical development changelog.

The second issue is that we are interested in files with continuity status in the system
and removing the deleted state. In computer programming, the four basic operations of
persistent storage are create, read, update, and delete (CRUD) [65]. This operation has been
applied to the historical changelog dataset, and two (see Table 4) of them are shown in the
form when they are initially created (Append), when they are updated (Modified), and
when they are deleted (D).

Table 4. Status of files before and after processing data.

Dataset Operation
File Package

Append Modified Append Modified

Vuze
Before processing data 6036 51,697 6036 51,697
After processing data 4927 36,890 2647 20,532

Spring Framework Before processing data 14,814 143,721 14,456 137,920
After processing data 8421 69,766 3806 29,338

Elasticsearch
Before processing data 46,761 426,896 45,652 416,932
After processing data 33,492 242,053 16,206 132,901

4.2. Data Splitting

To ensure that the model can accurately and consistently predict future outcomes, we
split the dataset into three distinct sets: training set, validation set, and test set. The training
set is used to train the model. The validation set is used to evaluate the performance of the
model and adjust its hyperparameters, while the test set is used to evaluate the ability of
the model to generalize.

We analyzed developers’ interactions with elements in terms of the order in which
they occur over time. Each first co-change element (t − 1) was used as a training set and
fit to the M1 model. Then, we used performance on a randomly sampled ((t− 1)th, tth)
validation set of pairs of elements to benchmark the hyperparameters. The final result is
obtained by making predictions on a random sample ((t− 1)th, tth) of element pairs (query
element, next element) from the test set that does not overlap with the validation set. For
our experiments, we selected the following sample size splitting ratios: 90:5:5, 85:7.5:7.5,
80:10:10, and 70:15:15.

4.3. Learning D-Dimensional Element Representation

During the development stage or maintenance, a change occurs in a single file that
could propagate into other related files. If we can present each file as a vector, then we
create a low-dimensional representation of a set of components such that the components
that co-occur in the developer’s co-changes are close in the resulting vector space. If a
developer starts editing the file, the proposed approach shows what could be changed next

Appl. Sci. 2023, 13, 6453 12 of 24

based on the current editing session before committing a file to the repository; to do so, we
can easily extract the filename associated with the file, as shown in Figure 5.

In this paper, we use the architecture of the SG (see Figure 2b) with the negative sam-
pling method approach to the problem of maximization by minimizing the log-likelihood of
a sampled negative instance. As depicted in Figure 5, we use the transaction sequence as a
“sentence” and element (file name, for example, [file name.extension]) within the sequence
as “words”. Once we have a co-changelog history of the developer software as a sequence,
we can apply an FCP2Vec algorithm to create vectors for these change commit files and then
compare them to calculate the similarity to the k ranking score using unsupervised nearest
neighbor (UNN) [66]. We employ the implementation of the scikit-learn [67] function
as a uniform interface for three different neighbor algorithms: ball tree, KDT tree, and
brute force.

There is often a great deal of variability in optimal hyperparameter values, depending
on the data and the task being executed. As Word2vec was initially designed for language
models, we investigated the default hyperparameters for the proposed approach employ-
ing Bayesian optimization over hyperparameters. Once the data were trained with the
Word2vec model as the first model (M1), we selected the optimal hyperparameters and
retrained the model. The output vector representation of the M1 model was used as input
for the second model (M2), which was UNN. Then, to predict the final estimate, we used
the last element in the training sequence as the query element and predicted the K closest
elements to the query element using a UNN algorithm.

4.4. Evaluation Metrics

The feature vector is considered “good” enough to obtain acceptable classification
accuracy. To answer how good element embedding algorithms are, we evaluated the
embedded element using the next event prediction task (NEP), a common way to evaluate
the quality of the embedded elements for recommendation [63,68,69]. We also adopted
similar evaluation metrics and they are defined as follows:

• Hit ratio at K (HR@K). It is equal to 1/K if the test element appears in the top K list of
predicted elements [70].

• Normalized discounted cumulative gain (NDCG@K). It considers both the order and
relevance of the results. NDC@K favors higher ranks in the ordered list of predicted
elements [71]. Since we consider that the ideal NDCG@K for a list retrieved from the
UNN is 1, 1

(log2(1+i)) , where i is the position of the relevant element in the retrieved
list. The higher the position in the retrieved list, the more favorable it is.

HR and NDCG are 1 if the next element and the query element are the same, i.e., the
prediction is correct. If the next element and query element are different, we look up the K
UNN for the next element in the top K list of the retrieved elements and compute HR@K
and NDCG@K. The main difference between NDCG and HR@K is that the latter does not
have a decay factor, meaning that all results within the top K are weighed equally. In this
paper, given that each user has only one ground truth item, HR@K becomes equivalent to
Recall@K and exhibits a proportional relationship with Precision@K [72]. In our report,
we present the HR and NDCG values with K set to 10. With both HR and NDCG metrics,
superior performance is indicated by higher values.

4.5. Hyperparameters

Word2vec accepts several hyperparameters that affect both the speed and the quality
of the training. We have tuned the following hyperparameters and used the most optimal
for our problem. For the first model, we mainly tuned the following hyperparameters:
alpha, epoch, negative, ns_exponent, sample, and window. For the vector size in Word2vec,
we have used the rule of thumb suggested by [73] as embedding size = min (50, (number of
categories/2)).

The early implementation of the Word2vec algorithm in the Gensim library [74] re-
quired some code modification to tune the hyperparameters, such as the “ns_exponent”.

Appl. Sci. 2023, 13, 6453 13 of 24

The updated version (4.2.0) that we used in the experiment in this paper does not require
modifying the source code to tune the hyperparameters. We employed Bayesian optimiza-
tion (BO) to tune these hyperparameters, which is an implementation of the scikit-learn
library [67]. We used BO because it can work with non-derivable parameters that cannot be
tuned using gradient descent, for example, the learning rate. BO can find better values for
these parameters by sampling from a probability distribution over the parameter space and
evaluating the objective function at the sample points. This can be more efficient than other
methods, such as grid search or random search, because it uses a probabilistic model to
guide the search process, taking into account the past performance of the objective function
and making informed decisions about which points to evaluate next [75].

Table 5 presents a summary of the optimal hyperparameters for the Word2vec and
UNN models, tailored to optimize HR@10. This table exclusively reports the finest hyper-
parameter value for the best data split at both the file and package levels. Upon evaluation,
these parameters were determined to be particularly fitting for our use case. For the
Word2vec and UNN models, all the other hyperparameters are set to their default values,
except for those specified in Table 5.

Table 5. Optimal hyperparameters for each dataset at both file and package levels. The search method
employed encompasses uniform and log-uniform. In the uniform method, integers are sampled
uniformly between the lower and upper limits. In the log-uniform method, integers are uniformly
sampled between “log (lower, base)” and “log (upper, base)”, where the logarithm has a base of
“base”. By default, the base is set to 10.

Hyperparameters Description and
Default Value Searched

Optimal Values

Vuze Spring
Framework Elasticsearch

File Package File Package File Package

alpha The initial learning rates. The
default value is set to 0.025.

The range between
1 × 10−2 and 1 × 10−1.

Prior as uniform.
0.1 0.1 0.06 0.09 0.1 0.1

epochs
The number of iterations over
the corpus. The default value

is set to 5.

The range is between
100 and 500. Prior as

log-uniform.
500 500 500 291 500 500

negative
Negative sampling

distribution. The default
value is set to 5.

The range between
1 and 10. Prior

as uniform.
10 10 10 10 10 10

sample

The threshold for configuring
higher frequency words is
randomly downsampled.
The default value is set

to 0.001.

The range is between
0 and 1 × 10−5. Prior

as uniform.
1 × 10−5 0.0 8 × 10−6 0.0 8 × 10−6 1 × 10−5

ns_exponent

Used to shape the negative
sampling distribution. A

value of 1.0 samples exactly
in proportion to the

frequency, 0.0 samples all
words equally, while a
negative value samples

low-frequency words more
than high-frequency words.

The default value is set
to 0.75.

The range between
−1 and 1. Prior

as uniform.
1.0 0.07 1.0 −0.4 1.0 0.4

window

Maximum distance between
the current and the predicted

file within a session. The
default value is set to 5.

The range is between
2 and 10. Prior as

uniform.
2 2 2 2 2 2

sg Training algorithm. The
default value is set to 0.

Fixed: 1: skip-gram
algorithm. 1 1 1 1 1 1

Appl. Sci. 2023, 13, 6453 14 of 24

Table 5. Cont.

Hyperparameters Description and
Default Value Searched

Optimal Values

Vuze Spring
Framework Elasticsearch

File Package File Package File Package

vector_size

The number of dimensions in
the vector space in which the

word embeddings are
represented. The default

value is set to 100.

Fixed number
calculated from the rule

of thumb
(37) or 200 as random

choice.

37 200 37 37 37 37

n_neighbors
Number of neighbors to be
used for K neighbor queries.

Default value is set to 5.
Fixed number 10. 10 10 10 10 10 10

5. Empirical Studies

The selection of the three datasets for the case study was based on their size, complexity,
and historical change data availability. Vuze, Spring Framework, and Elasticsearch offer a
wide range of historical change data due to their long-standing usage in the industry and
open-source nature (see Figure 6).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 25

Figure 6. Ascending order of transactional changelogs spanning Vuze (10 July 2003~2 August 2014),
Spring Framework (11 July 2008~3 May 2023), and Elasticsearch (8 February 2010~5 May 2023).

5.1. Transaction Data
We conducted our experiments on Vuze [16], Spring Framework [17], and Elas-

ticsearch [18] datasets that provide a robust and diverse set of software development
changelogs to test the proposed FCP2Vec method. Each dataset offers unique features in
terms of scale and complexity, with Vuze having 5883, Spring Framework having 158,553,
and Elasticsearch having 473,657 indexed cases (see Table 6), with other utility detail in-
formation that shows before and after processing the data. All three datasets span over a
decade (Vuze, 10 July 2003~2 August 2014; Spring Framework, 11 July 2008~3 May 2023;
and Elasticsearch, 8 February 2010~5 May 2023), providing a rich history of software
changes for the proposed approach. Their diversity in terms of size, complexity, and his-
torical change data help us to ensure that our method is robust and adaptable to different
software systems.

Table 6. Utility information about development changelog datasets. This table provides the unique
counts before (UCB) and after (UCA) processing data for each dataset.

Utility Infor-
mation

Vuze Spring Framework Elasticsearch
File

UCB|UCA
Package

UCB|UCA
File

UCB|UCA
Package

UCB|UCA
File

UCB|UCA
Package

UCB|UCA
Package - 386|385 - 525|512 - 1911|1884

Files 4778|4261 - 12,670|10,786 - 41,778|37,077 -
Total developers 41|28 41|25 912|441 882|277 2047|897 1968|735

Maximum
session length

1173|50 1173|50 6624|50 6623|50 14,908|50 14,881|50

Minimum ses-
sion length 1|2 1|2 1|2 1|2 1|2 1|2

Total sessions 19,124|7298 19,124|6094 24,467|13,941 22,065|8721 63,641|36,039 60,027|28,535

5.2. System Environments
The experiment was conducted on a system equipped with an Intel® CoreTM i7-

6700HQ CPU and NVIDIA GeForce GTX 960M GPU, with 16.0 GB installed RAM. The
operating system installed was Ubuntu 22.04. This setup provides sufficient computa-
tional power needed by the FCP2Vec model. For software dependencies, Python version
(V) 3.9.12 was used as the primary programing language. A variety of Python libraries
were also utilized, each of a specific version: Pandas V. 1.4.4, Gensim V. 4.2.0, Numpy V.
1.18.5, Matplotlib V. 3.5.2, scikit-learn V. 1.1.1, tqdm V. 4.64.1, using the Pythonic version
of Word2vec from the Gensim [74] open-source library.

Figure 6. Ascending order of transactional changelogs spanning Vuze (10 July 2003~2 August 2014),
Spring Framework (11 July 2008~3 May 2023), and Elasticsearch (8 February 2010~5 May 2023).

Vuze, known for its moderate size and architectural complexity, was chosen as a
representative case study for moderately complex software systems. Historical change
data for Vuze show a peak in development activity from 2003 to 2006, followed by a
gradual decline until 2011. This extensive history provides a rich dataset for analysis,
offering insights into how changes propagate over the lifespan of the software system.
The Spring Framework, a widely used Java framework that facilitates the development
of enterprise-level applications, represents large-scale software systems in our study. Its
change history shows a unique pattern with a peak in activity from 2008 to 2009, followed
by a decline and then a resurgence from 2012 to 2016. This pattern provides an opportunity
to analyze change propagation in large-scale software systems undergoing periods of
intense development and relative stability. Elasticsearch, a Java-based distributed search
and analytics engine, offers another perspective on large-scale software systems. Its change
history shows a different pattern compared to the other two datasets. There was a gradual
decrease in activity from 2010 to 2012, followed by a period of high activity until 2020, and
then a gradual decline. This pattern allows us to explore how change propagation evolves
during periods of varying development activity.

Appl. Sci. 2023, 13, 6453 15 of 24

5.1. Transaction Data

We conducted our experiments on Vuze [16], Spring Framework [17], and Elastic-
search [18] datasets that provide a robust and diverse set of software development changel-
ogs to test the proposed FCP2Vec method. Each dataset offers unique features in terms
of scale and complexity, with Vuze having 5883, Spring Framework having 158,553, and
Elasticsearch having 473,657 indexed cases (see Table 6), with other utility detail infor-
mation that shows before and after processing the data. All three datasets span over a
decade (Vuze, 10 July 2003~2 August 2014; Spring Framework, 11 July 2008~3 May 2023;
and Elasticsearch, 8 February 2010~5 May 2023), providing a rich history of software
changes for the proposed approach. Their diversity in terms of size, complexity, and his-
torical change data help us to ensure that our method is robust and adaptable to different
software systems.

Table 6. Utility information about development changelog datasets. This table provides the unique
counts before (UCB) and after (UCA) processing data for each dataset.

Utility Information
Vuze Spring Framework Elasticsearch

File
UCB|UCA

Package
UCB|UCA

File
UCB|UCA

Package
UCB|UCA

File
UCB|UCA

Package
UCB|UCA

Package - 386|385 - 525|512 - 1911|1884
Files 4778|4261 - 12,670|10,786 - 41,778|37,077 -

Total developers 41|28 41|25 912|441 882|277 2047|897 1968|735
Maximum

session length 1173|50 1173|50 6624|50 6623|50 14,908|50 14,881|50

Minimum session
length 1|2 1|2 1|2 1|2 1|2 1|2

Total sessions 19,124|7298 19,124|6094 24,467|13,941 22,065|8721 63,641|36,039 60,027|28,535

5.2. System Environments

The experiment was conducted on a system equipped with an Intel® CoreTM

i7-6700HQ CPU and NVIDIA GeForce GTX 960M GPU, with 16.0 GB installed RAM.
The operating system installed was Ubuntu 22.04. This setup provides sufficient computa-
tional power needed by the FCP2Vec model. For software dependencies, Python version
(V) 3.9.12 was used as the primary programing language. A variety of Python libraries
were also utilized, each of a specific version: Pandas V. 1.4.4, Gensim V. 4.2.0, Numpy
V. 1.18.5, Matplotlib V. 3.5.2, scikit-learn V. 1.1.1, tqdm V. 4.64.1, using the Pythonic version
of Word2vec from the Gensim [74] open-source library.

5.3. Results and Discussion

Evaluating the performance of unsupervised learning methods can be challenging as
there is no standard way to confirm their accuracy on independent datasets. Therefore, the
evaluation methods used in this study are based on the specific problem and dataset we
used. Tables 7 and 8 show an average score of 10-fold with the 95% confidence intervals of
our experiments with various sample sizes, to assess the model’s sensitivity to changes in
data size. The results of trial I in Table 7 were based on the default hyperparameters of the
skip-gram with a negative sampling training algorithm, but this did not perform as well
as the optimized setting in trial II of Table 7. As expected, the performance of a language
model dataset can vary depending on the specific task and language it is used for, and the
default hyperparameters may not be suitable for other datasets in different domains.

Appl. Sci. 2023, 13, 6453 16 of 24

Table 7. Evaluation performance using normalized discount cumulative gain (NDCG) and hit ratio
(HR) of the FCP2Vec model in multiple trial scenarios. Trial I results from the default parameter
values for an estimator and Trial II results from Bayesian optimization over hyperparameters using
the following split ratios: A = 90:5:5, B = 85:7.5:7.5, C = 80:10:10, and D = 70:15:15.

Datasets Granularity Metrics
Trial I

A B C D

Vuze
File level

HR@10 14.35 ± 0.69 16.25 ± 0.42 16.31 ± 0.26 16.70 ± 0.41
NDCG@10 0.081 ± 0.002 0.095 ± 0.001 0.098 ± 0.002 0.10 ± 0.001

Package level HR@10 14.76 ± 0.341 15.69 ± 0.484 16.09 ± 0.379 16.35 ± 0.301
NDCG@10 0.088 ± 0.001 0.096 ± 0.001 0.103 ± 0.001 0.10 ± 0.001

Spring
Framework

File level
HR@10 11.49 ± 0.379 11.80 ± 0.543 12.56 ± 0.253 12.54 ± 0.221

NDCG@10 0.079 ± 0.002 0.08 ± 0.003 0.087 ± 0.002 0.08 ± 0.001

Package level HR@10 22.50 ± 0.731 22.59 ± 0.723 23.13 ± 1.096 22.27 ± 0.829
NDCG@10 0.16 ± 0.004 0.17 ± 0.006 0.177 ± 0.007 0.173 ±0.004

Elasticsearch
File level

HR@10 15.41 ± 0.257 16.51 ± 0.186 16.27 ± 0.251 15.97 ± 0.098
NDCG@10 0.101 ± 0.001 0.112 ± 0.001 0.11 ± 0.001 0.107 ± 0.001

Package level HR@10 18.29 ± 0.259 18.476 ± 0.276 18.405 ± 0.195 17.82 ± 0.149
NDCG@10 0.130 ± 0.001 0.130 ± 0.001 0.131 ± 0.000 0.127 ± 0.000

Trial II

Vuze
File level

HR@10 37.80 ± 1.06 38.61 ± 0.72 37.00 ± 0.55 37.51 ± 0.21
NDCG@10 0.21 ± 0.005 0.22 ± 0.003 0.21 ± 0.002 0.58 ± 0.003

Package level HR@10 57.76 ± 0.227 55.20 ± 0.455 53.89 ± 0.326 20.67 ± 0.0
NDCG@10 0.357 ± 0.001 0.325 ± 0.001 0.334 ± 0.001 0.12 ± 0.0

Spring
Framework

File level
HR@10 26.62 ± 0.325 27.19 ± 0.424 29.84 ± 0.455 28.31 ± 0.267

NDCG@10 0.171 ± 0.001 0.172 ± 0.002 0.189 ± 0.001 0.180 ± 0.002

Package level HR@10 51.76 ± 0.451 52.23 ± 0.231 53.45 ± 0.202 53.01 ± 0.000
NDCG@10 0.362 ± 0.002 0.359 ± 0.002 0.363 ± 0.000 0.363 ± 0.000

Elasticsearch
File level

HR@10 33.86 ± 0.344 34.56 ± 0.312 34.47 ± 0.249 34.55 ± 0.181
NDCG@10 0.213 ± 0.001 0.220 ± 0.001 0.220 ± 0.001 0.220 ± 0.001

Package level HR@10 35.395 ± 0.488 35.72 ± 0.332 35.32 ± 0.406 35.348 ± 0.208
NDCG@10 0.225 ± 0.002 0.224 ± 0.001 0.222 ± 0.002 0.222 ± 0.001

We optimized the hyperparameters of the Word2vec model based on the characteristics
of our changelog dataset. As seen in Table 7, for trial II, there is a significant difference in
performance between the default and optimized hyperparameters for our dataset. We also
conducted an analysis of the model’s sensitivity to different sample sizes and found that
the 85:15 split ratio yielded the best results for the Vuze dataset at the file level. Table 8
shows the optimized results for each year in the Vuze dataset. We trained the model on one
year at a time, starting with 2003, and then added each subsequent year to the training set,
until all years from 2003 to 2014 were included. This allowed us to learn the patterns of the
data for each year individually. Table 5 summarizes the optimized hyperparameters shown
in Table 7 for trial II.

Figure 7 shows the ability of the proposed method to visually depict the changes made
to different elements in a vector space. The elements are placed close to each other if they
have undergone similar changes. To create this visualization, a dimensionality reduction
technique was used, which aims to keep as much information as possible while reducing
the number of dimensions or features in the dataset. This technique can be useful for
visualizing high-dimensional data, as it can be challenging to visualize data in more than
three dimensions. By reducing the dimensionality of the data to two or three dimensions,
it becomes much easier to plot and visualize the data, which can aid in understanding
patterns and relationships within the data. A common method for dimensionality reduction
is t-distributed stochastic neighbor embedding (t-SNE) [76], which is a non-linear method
that is often used for visualizing high-dimensional data. As shown in Figures 7 and 8,

Appl. Sci. 2023, 13, 6453 17 of 24

we used t-SNE to reduce the vector size from thirty-seven dimensions to two dimensions.
This means that the data were originally represented by thirty-seven different features, but
were reduced to just two dimensions, which makes them easier to plot and visualize. The
more densely packed a cluster of dots is, the more elements that are close together and
were changed together in the past. This can be an indication of some sort of relationship or
pattern within the data.

Table 8. Evaluation performance of each study period using the normalized cumulative discount
gain (NDCG) and the hit ratio (HR) of the FCP2Vec model on Vuze dataset at file level. All trial II
results from Bayesian optimization over hyperparameters. Based on the split ratios: A = 90:5:5, B =
85:7.5:7.5, C = 80:10:10, and D = 70:15:15.

Year Metrics A B C D

2003
HR@10 52.77 ± 0.0 55.55 ± 0.0 59.72 ± 1.07 51.85 ± 5.35

NDCG@10 0.244 ± 2.09 0.29 ± 0.0 0.32 ± 0.0 0.25 ± 4.18

2004
HR@10 39.27 ± 0.41 36.12 ± 0.22 38.09 ± 0.13 36.96 ± 0.32

NDCG@10 0.23 ± 0.002 0.18 ± 6.7 × 10−4 0.20 ± 3.5 × 10−4 0.18 ± 0.001

2005
HR@10 41.59 ± 0.67 41.34 ± 0.19 35.61 ± 0.069 35.48 ± 0.74

NDCG@10 0.26 ± 0.005 0.24 ± 0.001 0.20 ± 2.1 × 10−4 0.21 ± 0.003

2006
HR@10 34.85 ±1.32 34.26 ± 0.74 35.56± 1.0 36.68 ± 0.46

NDCG@10 0.20 ± 0.006 0.19 ± 0.005 0.211 ± 0.003 0.21 ± 0.004

2007
HR@10 35.89 ± 0.76 35.17 ± 0.79 38.86 ± 0.71 39.09 ± 0.42

NDCG@10 0.19 ± 0.002 0.20 ± 0.004 0.22 ± 0.004 0.22 ± 0.004

2008
HR@10 40.03 ± 0.99 39.85 ± 0.45 39.35 ± 0.65 38.10 ± 0.22

NDCG@10 0.24 ± 0.004 0.23 ± 0.004 0.23 ± 0.0058 0.31 ± 0.003

2009
HR@10 37.85 ± 0.94 36.81 ± 0.53 37.56 ± 0.70 37.01 ± 0.62

NDCG@10 0.22 ± 0.003 0.22 ±0.004 0.22 ± 0.004 0.21 ± 0.003

2010
HR@10 36.40 ± 1.27 35.81 ± 0.82 37.18 ± 0.21 37.13 ± 0.57

NDCG@10 0.20 ± 0.006 0.20 ± 0.004 0.77 ± 0.005 0.21 ± 0.002

2011
HR@10 36.20 ± 1.27 37.11 ± 0.60 39.66 ± 0.80 36.09 ± 0.56

NDCG@10 0.20 ± 0.006 0.20 ± 0.003 0.22 ± 0.003 0.20 ± 0.002

2012
HR@10 36.14 ± 0.63 35.94 ± 0.89 34.01 ± 0.58 35.14 ± 0.36

NDCG@10 0.20 ± 0.004 0.20 ±0.004 0.19 ± 0.003 0.20 ± 0.002

2013
HR@10 34.21 ± 1.03 36.62 ± 0.51 36.76 ± 0.93 35.50 ± 0.43

NDCG@10 0.20 ± 0.007 0.21 ± 0.005 0.21 ± 0.002 0.20 ± 0.002

2014
HR@10 37.80 ± 1.06 38.61 ± 0.72 37.00 ± 0.55 37.51 ± 0.21

NDCG@10 0.21 ± 0.005 0.22 ± 0.003 0.21 ± 0.002 0.58 ± 0.003

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 25

dimensions. This means that the data were originally represented by thirty-seven different
features, but were reduced to just two dimensions, which makes them easier to plot and
visualize. The more densely packed a cluster of dots is, the more elements that are close
together and were changed together in the past. This can be an indication of some sort of
relationship or pattern within the data.

Figure 7. The two-dimensional vector representation of Vuze changelogs at file level in the vector
space. The denser the dot cluster, the more files that are close together and the more frequently they
were changed together in the past.

Figure 8. A randomly selected data point from the two-dimensional vector representation of Vuze
changelogs at file level in the vector space. The denser the dot cluster is, the more files that are close
together and the more frequently they were changed together in the past.

For instance, as shown in the zoomed-in part of Figure 8, the following
[“DHTTransportUDP.java”, “DHTUDPPacketReply.java”, “DHTUDPPacket-
Request.java”, “DHTUDPPacket.java”] elements that experience simultaneous co-
changes were chosen randomly from the input data. These data were used as input to our
model except the last element of the list, which is [“DHTUDPPacket.java”]. Then, using
(query element, next element) we found the following interesting results shown in Table
9.

Figure 7. The two-dimensional vector representation of Vuze changelogs at file level in the vector
space. The denser the dot cluster, the more files that are close together and the more frequently they
were changed together in the past.

Appl. Sci. 2023, 13, 6453 18 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 25

dimensions. This means that the data were originally represented by thirty-seven different
features, but were reduced to just two dimensions, which makes them easier to plot and
visualize. The more densely packed a cluster of dots is, the more elements that are close
together and were changed together in the past. This can be an indication of some sort of
relationship or pattern within the data.

Figure 7. The two-dimensional vector representation of Vuze changelogs at file level in the vector
space. The denser the dot cluster, the more files that are close together and the more frequently they
were changed together in the past.

Figure 8. A randomly selected data point from the two-dimensional vector representation of Vuze
changelogs at file level in the vector space. The denser the dot cluster is, the more files that are close
together and the more frequently they were changed together in the past.

For instance, as shown in the zoomed-in part of Figure 8, the following
[“DHTTransportUDP.java”, “DHTUDPPacketReply.java”, “DHTUDPPacket-
Request.java”, “DHTUDPPacket.java”] elements that experience simultaneous co-
changes were chosen randomly from the input data. These data were used as input to our
model except the last element of the list, which is [“DHTUDPPacket.java”]. Then, using
(query element, next element) we found the following interesting results shown in Table
9.

Figure 8. A randomly selected data point from the two-dimensional vector representation of Vuze
changelogs at file level in the vector space. The denser the dot cluster is, the more files that are close
together and the more frequently they were changed together in the past.

For instance, as shown in the zoomed-in part of Figure 8, the following [“DHTTrans-
portUDP.java”, “DHTUDPPacketReply.java”, “DHTUDPPacketRequest.java”, “DHTUDP-
Packet.java”] elements that experience simultaneous co-changes were chosen randomly
from the input data. These data were used as input to our model except the last element of
the list, which is [“DHTUDPPacket.java”]. Then, using (query element, next element) we
found the following interesting results shown in Table 9.

Table 9. A sample of random results from the Vuze dataset at the file level, employing single-input
queries and group queries with the highest probability score as output. The outcomes are organized
in descending order, accompanied by a probability score for each element.

Metrics

Results

Most Similar
Top 10 Elements Probability Score

Single input query
“DHTUDPPacketRe-

quest.java”

DHTUDPPacketRequestFindValue.java 0.885
DHTUDPPacketRequestPing.java 0.870

DHTUDPPacketRequestFindNode.java 0.869
DHTUDPPacketReply.java 0.868

DHTUDPPacket.java 0.867
DHTUDPPacketData.java 0.862
DHTTransportUDP.java 0.841

DHTUDPPacketRequestStore.java 0.838
DHTTransportStatsImpl.java 0.837

DHTUDPPacketReplyStats.java 0.809

Group input query:
[“DHTTrans-

portUDP.java”,
“DHTUDPPacketRe-

ply.java”,
“DHTUDPPacketRe-

quest.java”]

DHTUDPPacketRequestFindValue.java 0.914
DHTUDPPacketData.java 0.910

DHTUDPPacket.java 0.909
DHTUDPPacketReplyFindNode.java 0.906

DHTUDPPacketReplyPing.java 0.894
DHTUDPPacketRequestFindNode.java 0.882

DHTUDPPacketRequestStore.java 0.881
DHTUDPUtils.java 0.880

DHTUDPPacketRequestPing.java 0.876
DHTUDPPacketReplyStats.java 0.871

Appl. Sci. 2023, 13, 6453 19 of 24

The results presented in Table 9 demonstrate that elements that have undergone
changes together in the past tend to be located close to each other in the vector space, as
shown in Figure 8. Additionally, the probability scores for these elements are also higher
within the searched range. This means that the higher the score, the more likely it is that
changes will propagate to that particular element. This knowledge can assist in managing
the complexity and risk associated with making changes to a software system.

Comparison between FCP2Vec and DN

In this study, a comparative analysis was undertaken to evaluate the performance
of FCP2Vec and the DN with respect to two primary dimensions: change prediction
performance and computation efficiency.

Change prediction performance: in our study, FCP2Vec change prediction performance
was compared with that of the DN. For consistency, we used the same dataset (Vuze),
granularity level, and top “K” (where K = 10). Figure 9 illustrates the comparative hit ratios
of change prediction for the top 10 for both the DN and FCP2Vec. The result reveals a
superior performance from FCP2Vec across all DN scenarios [13]. The HR@10 value for
FCP2Vec stands at 0.58, which shows a significant increase compared to the DN scenarios.
Specifically, FCP2Vec’s HR@10 value is approximately 92% higher than DN scenario I,
about 33% higher than DN scenario II, and approximately 21% higher than DN scenario III.
This underscores FCP2Vec’s superior performance in terms of change prediction.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 25

representations. We leveraged this feature to recommend the next elements based on the
developer’s historical behavior. Furthermore, we applied the concept of transfer learning.
Here, the embedding learned by Word2vec served as input features for other models. Af-
ter Word2vec converted elements into high-dimensional vectors encapsulating the context
co-change relationships, these feature vectors were used as input to the UNN algorithm.
The underlying principle of the UNN was to create “K” nearest neighbors that could be
utilized for ranking in our evaluation metrics. Consequently, this approach resulted in
improved performance compared to the DN.

Figure 9. Comparative hit ratios of change prediction for dependency network (DN) and FCP2Vec
in various scenarios at package level.

Computation efficiency: we evaluated the computational efficiency of our proposed
model by conducting an experiment on the changelogs of Vuze at the file level. At the
lowest granularity level, they contained more elements than at the package level and a
previous study [13] also benchmarked computational efficiency at this level. The result
was an escalation in computational complexity for the dependency network model in
terms of learning and inference.

In our study, we compared the training and inference time of FCP2Vec with those of
the dependency network. We excluded the elapsed optimization time from our compari-
son, as it was not considered in the previous study. Figure 10a shows the optimization
time in relation to different split ratios and the count of transaction files annually. The
findings indicate that the elapsed hyperparameter optimization time peaked with a split
ratio of 80:10:10 and troughed with a ratio of 85:7.5:7.5, pointing to a rapid convergence.
The prompt identification of optimal hyperparameters during optimization confers sev-
eral benefits, including efficient resource utilization, accelerated experiment and model
selection to reduce overfitting risk, and timely prediction. Figure 10b contrasts the elapsed
training times using different split ratios and the annual count of transaction files. Our
results highlighted that change propagation at the file level trained 30% quicker than the
dependency network, a percentage that increased with increasing file counts. Further-
more, our model clocked an inference time of a mere 0.5 s, significantly outpacing the 17
s logged for the dependency network.

Figure 9. Comparative hit ratios of change prediction for dependency network (DN) and FCP2Vec in
various scenarios at package level.

The performance outcome was made possible due to the model’s capacity to learn
from each context, thereby capturing relationships and similarities between elements. In
terms of semantic similarity, FCP2Vec can discern sematic similarity between elements, for
instance, elements frequently changed together may have closer vector representations. We
leveraged this feature to recommend the next elements based on the developer’s historical
behavior. Furthermore, we applied the concept of transfer learning. Here, the embedding
learned by Word2vec served as input features for other models. After Word2vec converted
elements into high-dimensional vectors encapsulating the context co-change relationships,
these feature vectors were used as input to the UNN algorithm. The underlying principle
of the UNN was to create “K” nearest neighbors that could be utilized for ranking in
our evaluation metrics. Consequently, this approach resulted in improved performance
compared to the DN.

Computation efficiency: we evaluated the computational efficiency of our proposed
model by conducting an experiment on the changelogs of Vuze at the file level. At the

Appl. Sci. 2023, 13, 6453 20 of 24

lowest granularity level, they contained more elements than at the package level and a
previous study [13] also benchmarked computational efficiency at this level. The result was
an escalation in computational complexity for the dependency network model in terms of
learning and inference.

In our study, we compared the training and inference time of FCP2Vec with those of
the dependency network. We excluded the elapsed optimization time from our comparison,
as it was not considered in the previous study. Figure 10a shows the optimization time in
relation to different split ratios and the count of transaction files annually. The findings
indicate that the elapsed hyperparameter optimization time peaked with a split ratio of
80:10:10 and troughed with a ratio of 85:7.5:7.5, pointing to a rapid convergence. The
prompt identification of optimal hyperparameters during optimization confers several
benefits, including efficient resource utilization, accelerated experiment and model selec-
tion to reduce overfitting risk, and timely prediction. Figure 10b contrasts the elapsed
training times using different split ratios and the annual count of transaction files. Our
results highlighted that change propagation at the file level trained 30% quicker than the
dependency network, a percentage that increased with increasing file counts. Furthermore,
our model clocked an inference time of a mere 0.5 s, significantly outpacing the 17 s logged
for the dependency network.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 25

Figure 10. Computational time between different years and split ratio for Vuze datasets at file level:
(a) elapsed optimization time and (b) elapsed training time based on different split ratios.

The result shows that utilizing file level change coupling can uncover concealed cor-
relations that are absent from both the source code and associated documentation. For
example, a class A may be modified in conjunction with another class B without having a
structural dependence on it. Moreover, it does not require parsing code, making it more
lightweight than structural analysis. Its language-independent nature makes it a highly
adaptable and optimal choice for research involving a wide range of subject systems de-
veloped in different programming languages.

The significance of this research lies on its potential to improve the accuracy and
scalability of change propagation in large software systems using the proposed approach.
By addressing the current limitation of previous methods such as dependency networks,
this research can contribute to the development of more reliable and efficient software
systems, reducing the costs of maintenance and error correction. This research can also
help software developers with a new set of tools and techniques to improve the quality
change process and predict the effects of change propagation. Overall, applying change
coupling in the software development process can help developers to better understand
and manage the complexity and risk associated with making changes to a software sys-
tem, leading to improved efficiency, reliability, and quality.

6. Conclusions
This article investigates how the evolutionary changelog dataset of software creates

a low-dimensional representation of a set of components such that the components that
co-occur in developer transactions are close in the resulting vector space. We used an
FCP2Vec model to learn file vector representations that can be predicted from the K near-
est top files. A dataset from software development changelogs was used to develop a
change propagation model as a recommendation system. This system recommends the
next similar file that might need to be changed based on the probability of propagation of
changes at the file level. We have investigated a methodical way of suggesting files that
are more likely to be changed due to change propagation, based on their rank score. To
validate our approach, we conducted our experiments on Vuze, Spring Framework, and
Elasticsearch datasets, open-source Java-based projects that have been developing
changelog data for over a decade.

The use of changelog data offers a variety of benefits. One key advantage is that it
allows for the discovery of historical relationships within a system. By analyzing the
changes made to different elements, previously hidden connections may be uncovered,
making this approach crucial for understanding complex systems. Additionally, utilizing
changelog data can improve accuracy by enabling computers to recognize patterns that
humans may overlook. It also allows for early detection of potential issues, leading to a
faster and more effective resolution. This system is also beneficial for developers joining a
project post-launch, as it provides insight into historical relationships. Additionally, it
does not require code parsing, making it more efficient than structural analysis. Its

Figure 10. Computational time between different years and split ratio for Vuze datasets at file level:
(a) elapsed optimization time and (b) elapsed training time based on different split ratios.

The result shows that utilizing file level change coupling can uncover concealed
correlations that are absent from both the source code and associated documentation. For
example, a class A may be modified in conjunction with another class B without having
a structural dependence on it. Moreover, it does not require parsing code, making it
more lightweight than structural analysis. Its language-independent nature makes it a
highly adaptable and optimal choice for research involving a wide range of subject systems
developed in different programming languages.

The significance of this research lies on its potential to improve the accuracy and
scalability of change propagation in large software systems using the proposed approach.
By addressing the current limitation of previous methods such as dependency networks,
this research can contribute to the development of more reliable and efficient software
systems, reducing the costs of maintenance and error correction. This research can also
help software developers with a new set of tools and techniques to improve the quality
change process and predict the effects of change propagation. Overall, applying change
coupling in the software development process can help developers to better understand
and manage the complexity and risk associated with making changes to a software system,
leading to improved efficiency, reliability, and quality.

6. Conclusions

This article investigates how the evolutionary changelog dataset of software creates
a low-dimensional representation of a set of components such that the components that
co-occur in developer transactions are close in the resulting vector space. We used an
FCP2Vec model to learn file vector representations that can be predicted from the K nearest

Appl. Sci. 2023, 13, 6453 21 of 24

top files. A dataset from software development changelogs was used to develop a change
propagation model as a recommendation system. This system recommends the next similar
file that might need to be changed based on the probability of propagation of changes at
the file level. We have investigated a methodical way of suggesting files that are more
likely to be changed due to change propagation, based on their rank score. To validate our
approach, we conducted our experiments on Vuze, Spring Framework, and Elasticsearch
datasets, open-source Java-based projects that have been developing changelog data for
over a decade.

The use of changelog data offers a variety of benefits. One key advantage is that
it allows for the discovery of historical relationships within a system. By analyzing the
changes made to different elements, previously hidden connections may be uncovered,
making this approach crucial for understanding complex systems. Additionally, utilizing
changelog data can improve accuracy by enabling computers to recognize patterns that
humans may overlook. It also allows for early detection of potential issues, leading to a
faster and more effective resolution. This system is also beneficial for developers joining a
project post-launch, as it provides insight into historical relationships. Additionally, it does
not require code parsing, making it more efficient than structural analysis. Its language
independence makes it a versatile and optimal choice for research across a variety of subject
systems developed in different programming languages.

Despite demonstrating superior performance and adequately addressing scalability
issues compared to previous methodologies, our current model nonetheless faces certain
limitations. A prominent example is the inability to handle out-of-vocabulary elements.
Specifically, if an element is not part of the original training corpus, Word2vec fails to
recognize it. Consequently, this necessitates the model’s retraining to incorporate the
new element into the system. Although Word2vec is optimally designed for language
models, its application across different domains demands substantial computational power,
particularly when training on large elements. A potential solution to tackle these challenges
may lie in the exploration of recent developments, such as transformer-based models and
their variants.

As we look to the future, our aim is to further experiment using open-source software,
in conjunction with diverse changelog data across various domains.

Author Contributions: Methodology, H.A.A.; software, H.A.A.; validation, H.A.A. and J.L.; formal
analysis, H.A.A.; investigation, H.A.A.; writing—original draft preparation, H.A.A.; writing—review
and editing, J.L; visualization, H.A.A.; supervision, J.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the BK21 FOUR of the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (No. 5199990914451). This work was also sup-
ported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (NRF-2022R1I1A3071200)

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bennett, K.H.; Rajlich, V.T.; Wilde, N. Software Evolution and the Staged Model of the Software Lifecycle. In Advances in Computers;

Elsevier: Amsterdam, The Netherlands, 2002; pp. 1–54.
2. Yau, S.S.; Nicholl, R.A.; Tsai, J.J.-P.; Liu, S.-S. An Integrated Life-Cycle Model for Software Maintenance. IEEE Trans. Softw. Eng.

1988, 14, 1128–1144. [CrossRef]
3. Rajlich, V. A model for change propagation based on graph rewriting. In Proceedings of the 1997 Proceedings International

Conference on Software Maintenance, Bari, Italy, 1–3 October 1997.

https://doi.org/10.1109/32.7624

Appl. Sci. 2023, 13, 6453 22 of 24

4. Yu, L.; Schach, S.R. Applying association mining to change propagation. Int. J. Softw. Eng. Knowl. Eng. 2008, 18, 1043–1061.
[CrossRef]

5. Pan, W.; Jiang, H.; Ming, H.; Chai, C.; Chen, B.; Li, H. Characterizing Software Stability via Change Propagation Simulation.
Complexity 2019, 2019, 9414162. [CrossRef]

6. Oliva, G.A.; Gerosa, M.A. Chapter 11—Change Coupling Between Software Artifacts: Learning from Past Changes. In The Art
and Science of Analyzing Software Data; Morgan Kaufmann: Burlington, MA, USA, 2015; pp. 285–323.

7. Ball, T.; Kim, J.H.; Porter, A.; Siy, H. If Your Version Control System Could Talk. In Proceedings of the ICSE Workshop Process
Modelling and Empirical Studies of Software Engineering, Boston, MA, USA, 18 May 1997.

8. Cataldo, M.; Herbsleb, J.D. Coordination breakdowns and their impact on development productivity and software failures. IEEE
Trans. Softw. Eng. 2013, 39, 343–360. [CrossRef]

9. Hassan, A.; Holt, R. Predicting Change Propagation in Software Systems. In Proceedings of the 20th IEEE International Conference
on Software Maintenance, Chicago, IL, USA, 11–14 September 2004.

10. Zimmermann, T.; Weißgerber, P.; Diehl, S.; Diehl, S. Mining version histories to guide software changes. IEEE Trans. Softw. Eng.
2005, 31, 429–445. [CrossRef]

11. Ferreira, K.A.M.; Bigonha, M.A.S.; Bigonha, R.S.; Lima, B.N.B.D.; Gomes, B.M.; Mendes, L.F.O. A model for estimating change
propagation in software. Softw. Qual. Control 2018, 26, 217–248. [CrossRef]

12. Siavash, M.; Alaa, H.; Ladan, T. Using Bayesian Belief Networks to Predict Change Propagation in Software Systems. In
Proceedings of the 15th IEEE International Conference on Program Comprehension, Banff, AB, Canada, 26–29 June 2007.

13. Lee, J.; Hong, Y.S. Data-driven prediction of change propagation using Dependency Network. Eng. Appl. Artif. Intell. 2018,
70, 149–158. [CrossRef]

14. Mikolov, T.; Chen, G.C.K.; Dean, J. Efficient estimation of word representations in vector space. In Proceedings of the Workshop
at International Conference on Learning Representations, Scottsdale, AZ, USA, 2–4 May 2013.

15. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; Dean, J. Distributed Representations of Words and Phrases and their Composi-
tionality. arXiv 2013, arXiv:1310.4546.

16. Vuze-Azureus. Sourceforge. 2020. Available online: https://sourceforge.net/projects/azureus/ (accessed on 11 September 2020).
17. Spring Framework. 2023. Available online: https://github.com/spring-projects/spring-framework (accessed on 3 May 2023).
18. Elasticsearch. 2023. Available online: https://github.com/elastic/elasticsearch (accessed on 5 May 2023).
19. Khan, M.; Jan, B.; Farman, H.; Ahmad, J.; Farman, H.; Jan, Z. Deep Learning Methods and Applications. In Deep Learning:

Convergence to Big Data Analytics; Springer: Singapore, 2019; pp. 31–42.
20. Menghani, G. Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better. ACM Comput.

Surv. 2023, 55, 1–37. [CrossRef]
21. Salem, H.; El-Hasnony, I.M.; Kabeel, A.; El-Said, E.M.; Elzeki, O.M. Deep Learning model and Classification Explainability

of Renewable energy-driven Membrane Desalination System using Evaporative Coole. Alex. Eng. J. 2022, 61, 10007–10024.
[CrossRef]

22. Lewowski, T.; Madeyski, L. Code Smells Detection Using Artificial Intelligence Techniques: A Business-Driven Systematic Review.
In Developments in Information & Knowledge Management for Business Applications; Kryvinska, N., Poniszewska-Marańda, A., Eds.;
Springer International Publishing: Berlin/Heidelberg, Germany, 2022; Volume 3, pp. 285–319.

23. Lozoya, R.C.; Baumann, A.; Sabetta, A.; Bezzi, M. Commit2Vec: Learning Distributed Representations of Code Changes. SN
Comput. Sci. 2021, 2, 150. [CrossRef]

24. Alon, U.; Zilberstein, M.; Levy, O.; Yahav, E. code2vec: Learning distributed representations of code. In Proceedings of the ACM
on Programming Languages, Phoenix, AZ, USA, 22–26 June 2019.

25. Alon, U.; Brody, S.; Levy, O.; Yahav, E. code2seq: Generating Sequences from Structured Representations of Code. arXiv 2018,
arXiv:1808.01400.

26. Loeliger, J.; McCullough, M. Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development; O’Reilly
Media, Inc.: Sebastopol, CA, USA, 2012.

27. Han, J. Supporting impact analysis and change propagation in software engineering environments. In Proceedings of the
Eighth IEEE International Workshop on Software Technology and Engineering Practice incorporating Computer Aided Software
Engineering, London, UK, 14–18 July 1997.

28. Aryani, A.; Peake, I.D.; Hamilton, M.; Schmidt, H.; Winikoff, M. Change Propagation Analysis Using Domain Information. In
Proceedings of the 2009 Australian Software Engineering Conference, Gold Coast, QLD, Australia, 14–17 April 2009.

29. Gall, H.; Jazayeri, M.; Krajewski, J. CVS Release History Data for Detecting Logical Couplings. In Proceedings of the IWPSE ‘03:
6th International Workshop on Principles of Software Evolution, Helsinki, Finland, 1–2 September 2003.

30. Zimmermann, T.; Diehl, S.; Zeller, A. How history justifies system architecture (or not). In Proceedings of the Sixth International
Workshop on Principles of Software Evolution 2003, Proceedings, Helsinki, Finland, 1–2 September 2003.

31. Oliva, G.A.; Gerosa, M.A. On the Interplay between Structural and Logical Dependencies in Open-Source Software. In Proceedings
of the 2011 25th Brazilian Symposium on Software Engineering, Sao Paulo, Brazil, 28–30 September 2011.

32. Bavota, G.; Dit, B.; Oliveto, R.; Penta, M.D.; Poshyvanyk, D.; Lucia, A.D. An empirical study on the developers’ perception of
software coupling. In Proceedings of the ICSE ‘13: 2013 International Conference on Software Engineering, San Francisco, CA,
USA, 18–26 May 2013.

https://doi.org/10.1142/S0218194008004008
https://doi.org/10.1155/2019/9414162
https://doi.org/10.1109/TSE.2012.32
https://doi.org/10.1109/TSE.2005.72
https://doi.org/10.1007/s11219-017-9358-6
https://doi.org/10.1016/j.engappai.2018.02.001
https://sourceforge.net/projects/azureus/
https://github.com/spring-projects/spring-framework
https://github.com/elastic/elasticsearch
https://doi.org/10.1145/3578938
https://doi.org/10.1016/j.aej.2022.03.050
https://doi.org/10.1007/s42979-021-00566-z

Appl. Sci. 2023, 13, 6453 23 of 24

33. Wang, X.; Wang, H.; Liu, C. Predicting Co-Changed Software Entities in the Context of Software Evolution. In Proceedings of the
2009 International Conference on Information Engineering and Computer Science, Wuhan, China, 25–26 July 2009.

34. Ying, A.T.; Murphy, G.C.; Ng, R.; Chu-Carroll, M.C. Predicting source code changes by mining change history. IEEE Trans. Softw.
Eng. 2004, 30, 574–586. [CrossRef]

35. Antoniol, G.; Rollo, V.; Venturi, G. Detecting groups of co-changing files in CVS repositories. In Proceedings of the Eighth
International Workshop on Principles of Software Evolution (IWPSE’05), Lisbon, Portugal, 5–6 September 2005.

36. Bouktif, S.; Gueheneuc, Y.-G.; Antoniol, G. Extracting Change-patterns from CVS Repositories. In Proceedings of the 2006 13th
Working Conference on Reverse Engineering, Benevento, Italy, 23–27 October 2006.

37. Ceccarelli, M.; Cerulo, L.; Canfora, G.; Penta, M.D. An eclectic approach for change impact analysis. In Proceedings of the 2010
ACM/IEEE 32nd International Conference on Software Engineering, Cape Town, South Africa, 1–8 May 2010.

38. Canfora, G.; Ceccarelli, M.; Cerulo, L.; Penta, M.D. Using multivariate time series and association rules to detect logical change
coupling: An empirical study. In Proceedings of the 2010 IEEE International Conference on Software Maintenance, Timisoara,
Romania, 12–18 September 2010.

39. Gall, H.; Hajek, K.; Jazayeri, M. Detection of logical coupling based on product. In Proceedings of the International Conference on
Software Maintenance (Cat. No. 98CB36272), Bethesda, MD, USA, 16–19 March 1998.

40. Mockus, A.; Weiss, D.M. Predicting risk of software changes. Bell Labs Tech. J. 2000, 5, 169–180. [CrossRef]
41. Finlay, J.; Pears, R.; Connor, A.M. Data stream mining for predicting software build outcomes using source code metrics. Inf.

Softw. Technol. 2014, 56, 183–198. [CrossRef]
42. Sun, X.; Li, B.; Zhang, Q. A Change Proposal Driven Approach for Changeability Assessment Using FCA-Based Impact Analysis.

In Proceedings of the 2012 IEEE 36th Annual Computer Software and Applications Conference, Izmir, Turkey, 16–20 July 2012.
43. Kagdi, H.; Gethers, M.; Poshyvanyk, D. Blending conceptual and evolutionary couplings to support change impact analysis

in source code. In Proceedings of the 2010 17th Working Conference on Reverse Engineering, Beverly, MA, USA, 13–16
October 2010.

44. Gethers, M.; Poshyvanyk, D. Using Relational Topic Models to capture coupling among classes in object-oriented software
systems. In Proceedings of the 2010 IEEE International Conference on Software Maintenance, Timisoara, Romania, 12–18
September 2010.

45. Chowdhary, K.R. Natural Language Processing. In Fundamentals of Artificial Intelligence; Springer: New Delhi, India,
2020; pp. 603–649.

46. Otter, D.W.; Medina, J.R.; Kalita, J.K. A Survey of the Usages of Deep Learning for Natural Language Processing. IEEE Trans.
Neural Netw. Learn. Syst. 2021, 32, 604–624. [CrossRef]

47. Zhang, A.; Lipton, Z.C.; Li, M.; Smola, A.J. Dive into Deep Learning. arXiv 2021, arXiv:2106.11342.
48. Harris, Z.S. Distributional Structure. Word 1954, 10, 146–162. [CrossRef]
49. Sahlgren, M. The distributional hypothesis. Ital. J. Disabil. Stud. 2008, 20, 33–53.
50. Liu, S.; Mallol-Ragolta, A.; Parada-Cabaleiro, E.; Qian, K.; Jing, X.; Kathan, A.; Hu, B.; Schuller, B.W. Audio self-supervised

learning: A survey. Patterns 2022, 3, 100616. [CrossRef]
51. Chuan, C.-H.; Agres, K.; Herremans, D. From context to concept: Exploring semantic relationships in music with word2vec.

Neural Comput. Appl. Vol. 2020, 32, 1023–1036. [CrossRef]
52. Kumar, A.; Starly, B. “FabNER”: Information extraction from manufacturing process science domain literature using named

entity recognition. J. Intell. Manuf. 2022, 33, 1572–8145. [CrossRef]
53. Capelleveen, G.V.; Amrit, C.; Zijm, H.; Yazan, D.M.; Abdi, A. Toward building recommender systems for the circular economy:

Exploring the perils of the European Waste Catalogue. J. Environ. Manag. 2021, 277, 111430. [CrossRef] [PubMed]
54. Patra, B.G.; Maroufy, V.; Soltanalizadeh, B.; Deng, N.; Zheng, W.J.; Roberts, K.; Wu, H. A content-based literature recommendation

system for datasets to improve data reusability—A case study on Gene Expression Omnibus (GEO) datasets. J. Biomed. Inform.
2020, 104, 103399. [CrossRef]

55. Nedelec, T.; Smirnova, E.; Vasile, F. Specializing Joint Representations for the task of Product Recommendation. In Proceedings of
the DLRS 2017: 2nd Workshop on Deep Learning for Recommender Systems, Como, Italy, 27 August 2017.

56. Zheng, C.; Zhai, S.; Zhang, Z. A Deep Learning Approach for Expert Identification in Question Answering Communities. arXiv
2017, arXiv:1711.05350.

57. Bravo-Marquez, F.; Tamblay, C. Words, Tweets, and Reviews: Leveraging Affective Knowledge between Multiple Domains. Cogn.
Comput. 2022, 14, 388–406. [CrossRef]

58. Khatua, A.; Khatua, A.; Cambria, E. A tale of two epidemics: Contextual Word2Vec for classifying twitter streams during
outbreaks. Inf. Process. Manag. 2019, 56, 247–257. [CrossRef]

59. Li, C.; Lu, Y.; Wu, J.; Zhang, Y.; Xia, Z.; Wang, T.; Yu, D.; Chen, X.; Liu, P.; Guo, J. LDA Meets Word2Vec: A Novel Model for
Academic Abstract Clustering. In Proceedings of the WWW ‘18: Companion the Web Conference 2018, Geneva, Switzerland,
23–27 April 2018.

60. Jha, S.; Prashar, D.; Long, H.V.; Taniar, D. Recurrent neural network for detecting malware. Comput. Secur. 2020, 99, 102037.
[CrossRef]

https://doi.org/10.1109/TSE.2004.52
https://doi.org/10.1002/bltj.2229
https://doi.org/10.1016/j.infsof.2013.09.001
https://doi.org/10.1109/TNNLS.2020.2979670
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1016/j.patter.2022.100616
https://doi.org/10.1007/s00521-018-3923-1
https://doi.org/10.1007/s10845-021-01807-x
https://doi.org/10.1016/j.jenvman.2020.111430
https://www.ncbi.nlm.nih.gov/pubmed/33075657
https://doi.org/10.1016/j.jbi.2020.103399
https://doi.org/10.1007/s12559-021-09923-9
https://doi.org/10.1016/j.ipm.2018.10.010
https://doi.org/10.1016/j.cose.2020.102037

Appl. Sci. 2023, 13, 6453 24 of 24

61. Grbovic, M.; Radosavljevic, V.; Djuric, N.; Bhamidipati, N.; Savla, J.; Bhagwan, V.; Sharp, D. E-commerce in Your Inbox: Product
recommendations at scale. In Proceedings of the KDD ‘15: 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, 10–13 August 2015.

62. Vasile, F.; Smirnova, E.; Conneau, A. Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation. In
Proceedings of the RecSys ‘16: 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016.

63. Caselles-Dupré, H.; Lesaint, F.; Royo-Letelier, J. Word2vec applied to recommendation: Hyperparameters matter. In Proceedings
of the RecSys ‘18: 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2–7 October 2018.

64. Noroozi, M.; Vinjimoor, A.; Favaro, P.; Pirsiavash, H. Boosting Self-Supervised Learning via Knowledge Transfer. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

65. Martin, J. Managing the Data-Base Environment, 1st ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1983.
66. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
67. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.

API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238.
68. Letham, B.; Letham, B.; Madigan, D. Sequential event prediction. Mach. Learn. 2013, 93, 357–380. [CrossRef]
69. Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing personalized Markov chains for next-basket recommendation. In

Proceedings of the WWW ‘10: 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010.
70. Le, Q.; Smola, A. Direct Optimization of Ranking Measures. arXiv 2007, arXiv:0704.3359.
71. Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 2002, 20, 422–446. [CrossRef]
72. Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential Recommendation with Bidirectional Encoder

Representations from Transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, Beijing, China, 3–7 November 2019.

73. Howard, J.; Gugger, S. Deep Learning for Coders with Fastai and PyTorch: AI Applications without a PhD; O’Relly Media, Inc.:
Sebastopol, CA, USA, 2020.

74. Řehůřek, R. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks; ELRA: Valletta, Malta, 2010.
75. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the

Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, NV, USA, 3–6 December 2012.
76. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1007/s10994-013-5356-5
https://doi.org/10.1145/582415.582418

	Introduction
	Materials and Methods
	Leveraging Changelog Data in Change Propagation
	Neural Language Model

	Background
	Problem Definition
	Word2vec

	Proposed Approach
	Data Preparation
	Data Splitting
	Learning D-Dimensional Element Representation
	Evaluation Metrics
	Hyperparameters

	Empirical Studies
	Transaction Data
	System Environments
	Results and Discussion

	Conclusions
	References

