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Abstract: As the front end of the intake system, the intake dirty pipe is responsible for delivering
sufficient and stable air to the air filter. Therefore, in order to meet the requirements of low intake
resistance, it is necessary to correspondingly improve the flow resistance performance of the intake
dirty pipe. In this study, the main research object was the intake pipe in the intake system of gasoline
engine vehicles, and the internal gas flow field was simulated and analyzed. The results show that
there are clear discrete velocity regions at the inlet and elbow, which affect the uniformity of the
overall fluid flow and cause a certain pressure loss. After structural optimization, the total pressure
difference at the inlet and outlet of the pipeline was reduced by 22.67% compared to the original
model, and the total pressure loss was significantly reduced. A simplified model was used to make
samples of the intake dirty pipes before and after performance improvement, and flow resistance
tests were conducted respectively. The difference between test data and simulation data is within a
reasonable range, and the simulation results are relatively reliable.

Keywords: engine intake dirty pipes; flow resistance analysis; radius of horn structure; bending
radius; optimize the design

1. Introduction

The increasing number of automobiles has led to a growing concern about energy con-
sumption and environmental pollution. Therefore, it is particularly important to improve
the energy efficiency of and reduce emissions in automobiles [1-3]. Improving the charging
efficiency of the engine is essential for achieving full and effective combustion, which in
turn reduces the emission of pollutants. Effective measures to improve charging efficiency
include reducing air resistance during the intake and exhaust processes and selecting
suitable valve timing. Researchers have conducted research on the intake system since the
advent of automobiles. Giannakopoulos et al., studied the incompressible flow at a low
Reynolds number in a laboratory engine intake duct based on Bovendeerd’s description of
the flow development process in circular cross-section curved ducts, using direct numerical
simulation [4,5]. Sekav¢nik et al., proposed a method for determining key parameters to
evaluate system operation in unsteady flow research, providing some reference for this
study [6]. Most researchers focus on studying the intake and exhaust manifold. The intake
and exhaust manifolds are usually bend pipes, and researchers have studied the effects
of changing the structure and layout of the manifold on gas flow uniformity and cylin-
der volume efficiency to explore whether engine performance is improved [7-15]. Silva
et al., showed in their latest research that the engine has higher volume efficiency at high
speeds when the length of the intake manifold flow path is shorter [16]. Some researchers
have conducted research on the acoustic characteristics of the intake manifold [17-20],
which is essentially a change in the structure of the intake pipe to reduce intake noise by
increasing sound-absorbing elements. They verified their findings through bench tests,
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providing some reference for the research method used in this study. Some researchers
have studied the housing and filter element of air filters [21-26], attempting to improve
their performance by changing the structure of a particular location or adjusting the relative
position with other parts; however, only simulation analysis has been performed, without
the experimental verification of the simulation results. Few researchers have analyzed and
researched the intake pipe before and after the implementation of the air filter [27-29]. In
their latest research, Xie analyzed the intake performance of a certain type of intake pipe,
optimizing the air intake by adjusting the bending curvature and setting a guide groove at
the inlet [30]. Subsequently, the optimized model was verified through simulation but not
through physical experiments. This study mainly focuses on reducing the flow resistance of
the engine intake system by optimizing the relevant structure of the intake pipe to improve
intake efficiency. Moreover, the optimized model was subjected to flow resistance tests to
verify the reliability of the simulation results.

2. Materials and Methods

Computational fluid dynamics (CFD) is an interdisciplinary subject involving fluid
mechanics, mathematics, computer science, and engineering. It uses electronic computers
and numerical methods to model streamline mechanical processes to obtain physical
parameters such as pressure, velocity, and temperature, and their distribution in the flow
field, so as to better understand the essence of fluid dynamics. The emergence of CFD
provides new opportunities for the research of fluid mechanics, and also provides important
support for the development of human society. With the rapid development of various
general CFD software, users can use the software to analyze and predict the research object,
and adjust the corresponding parameters through the calculation results to achieve the goal
of optimal design.

Fluid dynamics is an important discipline to study physical phenomena. It is based on
the laws of conservation of mass, momentum, and energy to explore the laws of movement
and changes in substances under stress. It uses mathematical equations to describe the
motion laws of things, and can be used to predict the motion state of things, so as to better
understand the motion characteristics of things.

During the flow process, the fluid may have two distinct states: laminar flow and tur-
bulence. The physicist Reynolds used the Reynolds number to describe the dimensionless
parameters of these two types of flows:

M

In Formula (1), Re represents the Reynolds number, p Is the density of the fluid, v is
the velocity of the fluid, d is the characteristic scale, and y is the viscosity of the fluid. In
general, in engineering, the flow in a pipe is considered to be fully turbulent when the
Reynolds number exceeds 4000. Turbulence intensity is defined as the root mean square of
velocity fluctuations divided by the mean velocity, and for fully developed internal flow,
the turbulence intensity I can be expressed using Formula (2):

Q0=

I =0.16(Re)" )

The standard k-¢ model is a widely used turbulence model that combines turbulence
energy k and turbulence dissipation rate ¢. The transport equations are combined and
expressed in the form of functions to build a complete model. The standard k-¢ model has
good versatility, and its calculation amount is small; thus, it can be used in most scenarios.
However, for some specific cases, such as curved streamline flow, strong swirl effect, etc.,
the calculation results deviate strongly from the actual situation. Based on the RNG k-¢
model, we can process more accurate calculations of the turbulent dissipation rate and
turbulent viscosity, so as to better solve the flow with a large bending streamline, and make
the solution results of the equations closer to the actual situation. The realizable k-¢ model
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is also based on the standard k-¢ model. It is a modified model that can effectively simulate
different types of flow such as shear flow, pipe flow, jet flow, separated flow, etc.

Considering the interrelation between the three modes, the standard k-¢ model is
the basis, and the other two are based on the standard k-¢ model and are more refined.
Considering the flow of the model and the conditions of computing resources, as well
as the experience of relevant industry simulation workers, we adopted the realizable k-¢
model to complete the numerical simulation calculation.

3. Model Establishment and Grid Division

This study used the intake dirty pipe of an air filter matched with a four-cylinder
turbocharged engine of an undisclosed brand as the research object, and simulated and
calculated the internal fluid flow. As the front end of the air intake system, the intake dirty
pipe is connected to the air cleaner housing assembly. Its function is to stably deliver the
inhaled ambient air to the air filter, effectively remove the moisture and impurities in the
ambient air, and thus prevent operation wear. Figure 1 shows the three-dimensional model
of the air filter assembly and intake pipe of an undisclosed brand.

1

Figure 1. Three-dimensional model diagram of air filter assembly and intake pipe. It mainly consists
of a: (1) intake dirty pipe, (2) resonance cavity, (3) air filter, and (4) intake clean pipe.

In this study, CATIA was used for the geometric model design. In order to facilitate
the following simulation and calculation work, it was necessary to properly simplify the
intake pipe before modeling: we removed the resonant cavity connected above the intake
pipe, and simplified the support on both sides of the intake pipe and the connection with
the air filter. The simplified model only made appropriate changes to the external structure
of the housing, without much simplification of the air intake port at the front of the intake
pipe and the bends in the pipeline. Nevertheless, the simulation results still have reference
values. The simplified three-dimensional geometric model of the intake pipe is shown in
Figure 2. The maximum height difference in the front of the inlet dirty pipe is 50 mm, and
the maximum width is 230 mm. The rear part is a circular pipe with an inner diameter of
60 mm, and the wall thickness of the entire intake dirty pipe is 2.5 mm.

Figure 2. Simplified model of air filter intake dirty pipe.
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Before meshing, it was necessary to extract the fluid domain from the inside of the
intake dirty pipe. The internal surface of the intake dirty pipe was extracted through the
generative shape design module, and the closed surface operation was performed on each
surface after joining to obtain the fluid domain inside the pipe. Since the dirty air intake
pipe is at the front of the air intake system, when air enters the pipe from the external
environment, it does not enter the pipe directly perpendicular to the cross section of the
pipe, but from the entire external area. Therefore, after extracting the fluid field inside
the pipe, a hemispherical or square structure was added at the front of the air inlet, and a
length of 3—4 times that of the inner diameter was appropriately added at the outlet of the
inlet dirty pipe.

Next, we imported the fluid domain model into the fluent mesh module in ANSYS
2020 and completed the mesh settings. For this model, because some of its structural
features are relatively complex, polyhedra-type mesh was used. Next, the geometric model
was described accordingly; the geometric model was defined as a fluid region without
gaps, and the interface types of all parts were defined as internal surfaces. Then, we added
a boundary layer, the mesh type and size, and finally generated the volume mesh. In order
to determine the grid independence, the generated volume grid was subjected to dense
grid processing, and the final analysis results are not significantly different from those of
the original grid. Figure 3 shows the generated grid model of the fluid domain of the air
filter intake pipe, which is divided into 417,510 nodes and 101,407 cells.

[
Figure 3. Mesh model of fluid domain of air intake dirty pipe.

Assuming the ambient temperature is 25 °C, the air density at this time was calculated
from the air density table: p 1.1691 kg/m?, viscosity 1 1.834 x 107> kg/m~*. To obtain the
air flow rate, it is necessary to know the intake air flow of the engine first. The formula for
the maximum intake air flow of the engine is:

V4 * Smax * Ve

Qmax = K

®)
where V4 is the total displacement of the engine. This engine’s V4 =1.4 L; Spax is the speed
corresponding to the maximum output power of the engine, which is Smax = 6000 rad /min;
and V. is the inflation efficiency of the engine. For supercharged engines, V. is 1.3-1.5,
and in this paper, V, = 1.5; K is constant, and for four-stroke engines, K = 2000. It can be
calculated that the maximum intake flow of the engine is 6.3 m3/min.

For the characteristic scale, when the fluid flows through the circular pipe, its value is
the inner diameter of the circular pipe. For the non-circular section, its hydraulic diameter
is usually calculated and defined as the characteristic scale. The formula is:

s

d
C

(4)

where S is the section area and C is the perimeter of the section. It can be calculated that
d =76 mm. According to Formula (1), the Reynolds number can be calculated as 53,244,
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which means high Reynolds number turbulence. We set the turbulence model as the
realizable k-¢ model, set the wall function as the standard wall function, and then set the
physical parameters of the fluid. The boundary conditions are defined as pressure inlet and
mass flow outlet, where the pressure inlet needs to be set with turbulence intensity. The
inlet and outlet areas are set as shown in Figure 4. According to Formula (2), the turbulence
intensity can be calculated as 4.11%. The detailed boundary condition parameter settings
are shown in Table 1.

-~
Oy,

Figure 4. The inlet and outlet of the model. The blue arrow represents the inlet, and the red arrow
represents the outlet.

Table 1. Setting parameters of boundary conditions of inlet dirty pipe model.

Area Boundary Type Boundary Condition
Total pressure is 0 Pa,
Inlet Pressure inlet turbulence intensity is 4.11%, hydraulic
diameter is 76 mm
Outlet Mass flow outlet Mass flow rate is 0.1227555 kg /s

It should be noted that the FLUENT is based on the finite volume method principle,
which divides the continuous region into a series of non-repeating control volumes and
calculates and integrates them separately to obtain a similar solution. This study used the
common SIMPLE solution algorithm, which assumes a velocity distribution and calculates
an initial pressure value based on that distribution, which is applied to the momentum
equation to obtain the velocity values. Then, the velocity values are substituted into the
continuity differential equation to solve the pressure correction differential equation and
finally obtain the converged results.

Subsequently, the residual convergence range was set to 10-6, and parameter mon-
itoring was carried out at the inlet and outlet sections of the pipeline. Here, the speed
was selected as a reference. After the setting was completed, mixed initialization was
carried out, and the iteration number was set to 1000 times. Then, the calculation began,
monitoring the residual convergence process and the velocity fluctuations of the inlet and
outlet sections. Finally, when the calculation reached 665 times, the residual converges and
the calculation ended.

4. Results
4.1. Numerical Simulation Results and Analysis of the Model

In the flow field, characteristics such as resistance are closely related to the velocity
and pressure of the flow field. Therefore, when analyzing the flow field in post-processing,
we conducted in-depth research on the two aspects of velocity and pressure to obtain more
accurate results, and combined the actual situation, analyzed the characteristics such as
resistance, and improved the flow field characteristics through performance improvement
design. In order to describe the motion characteristics of the flow field more accurately, we
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selected a plane section that can reflect the flow characteristics as a reference to analyze the
flow field more in depth.

Figure 5 shows the partial velocity contour of the air inlet at the front of the dirty air
inlet pipe with y = 0 mm and an xoz section. It can be seen from the figure that when
air enters the air inlet from the external environment, there is a velocity gradient change,
and the air flow near the pipe wall is low, which will lead to an unsmooth air inlet. A
clear sudden change in speed occurs at the second pipe bend, which leads to an excessive
pressure loss at the bend. Figure 6 shows the velocity contour at the rear end of the inlet
dirty pipe with z = —106 mm and an xoy section. It can be seen from the figure that the
speed mutation region also occurs at the bending part, which affects the overall fluid flow
uniformity and causes pressure loss. According to the two figures, the maximum velocity
appears at the bend of the pipe, with the values of 57.8 m/s and 52.6 m/s. This is due to
the sudden change in the flow channel inside the flow field and the effect of the pressure
difference, which leads to the acceleration of the air flow, resulting in this maximum value.
Figure 7 shows the velocity vector diagram of the inlet part at the front of the inlet dirty
pipe with z = 0 mm and an xoy section. It can be seen from the figure that the velocity
uniformity of the flow field at the front of the inlet dirty pipe is poor, and the local structure
produces a backflow area, resulting in a pressure loss.

5752

5204

2001

2313

(e i

0 200 (um)

Figure 6. z = —106 mm, xoy section velocity contour.
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Figure 7. z = 0 mm, Xoy section velocity vector.

Figure 8 shows the pressure contour of the inlet part at the front of the inlet dirty pipe
with y = 0 mm and an xoz section. It can be seen from the figure that there are pressure
gradient changes at the inlet and at the bend, and the pressure gradient changes at the
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second bend are more obvious, which is due to the sharp increase in the speed at the bend,
which is consistent with the analysis in Figure 5. Figure 9 shows the pressure contour at
the rear end of the inlet dirty pipe with z = —06 mm and an xoy section. It can be seen from
the figure that the pressure gradient change area also occurs at the rear end of the pipe,
which is also caused by the speed surge at the bend, which is consistent with the analysis
in Figure 6.

contour2
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Figure 8. y = 0 mm, xoz section pressure contour (before performance improvement).
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Figure 9. z = —106 mm, Xxoy section pressure contour (before performance improvement).

According to the two figures, the inlet and outlet pressures are significantly different
due to the uneven distribution of inlet air and the bending of the pipe. According to the
calculation results, the average total pressure difference between the inlet and outlet of the
original model is 230.01 Pa.

4.2. Optimization and Analysis of Intake Dirty Pipe Structure

When air enters the pipe, the pressure near the wall of the pipe is large due to the
air entering from all directions, resulting in a velocity gradient, which affects the flow
uniformity, resulting in an excessive pressure difference at the inlet and outlet. In order to
increase the flow uniformity of the air and reduce the total pressure difference at the inlet
and outlet, the front of the pipe was locally optimized by adding a trumpet structure. The
optimized two-dimensional plane diagram is shown in Figure 10.

Dy

-

Figure 10. Schematic diagram of air inlet structure optimization.

By changing the radius of the trumpet structure at the inlet, the flow state at the inlet
is explored and the pressure change at the inlet and outlet is monitored. Due to the inner
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diameter of the intake pipe being 60 mm and the wall thickness being 2.5 mm, in order
to avoid the influence of the horn-shaped structure on air flow into the intake pipe and
the inability to match other components due to the large lateral width of the intake pipe,
we increased the horn-shaped radius from 3 mm to 15 mm, with an interval of 2 mm in
order to analyze the changes in radius on inlet flow uniformity and inlet/outlet pressure
difference, and obtain the optimal radius. Compared to Mariotti’s spline curve generated
by two Bézier points on both sides for internal flow [31-33], the author’s use of increasing
the curvature radius of the inlet structure is simpler. Ensure the uniformity of air flow in
the intake pipe structure while increasing the intake cross-section of the intake port.

After performing the same operation process as the original model on the variable
radius conditions of the trumpet-shaped structure, we can use the simulation results to
study the flow changes and pressure difference changes at the inlet. Figure 11 shows the
velocity vector at the entrance of the section z = 0 mm, xoz, when the radius changes.

It can be seen from Figure 11 that when the change in the radius of the trumpet
structure is small, there is still an obvious backflow phenomenon inside both sides of the
air intake. The reason for this result is that the air flow area after the change in radius is
not much different to before the change; the air is still greatly affected by the speed when
passing through the pipe wall at the inlet. When the radius changes to 9 mm, it can be seen
that the speed flow field change at the air inlet tends to be stable, the return phenomenon is
significantly weakened, and the speed gradient also tends to be a stable state.

By sorting out the simulation calculation results, the influence trend of the total
pressure difference between the inlet and outlet with the radius of the trumpet structure
can be obtained, as shown in Figure 12.

It can be seen from Figure 12 that with the continuous increase in the radius of the
trumpet structure, the total pressure difference between the inlet and outlet decreases
significantly, and when the radius increases to 9 mm, it can be seen that the total pressure
difference between the inlet and outlet reaches the minimum, and with a further increase
in the radius, the total pressure difference between the inlet and outlet begins to increase
slowly.

In order to further reduce the total pressure difference between the inlet and outlet,
in addition to improving the structure of the inlet, we can see from Figures 4 and 5 that
there is also a certain velocity gradient at the bend of the pipeline, which will generate
certain resistance and affect the fluidity of the air. However, in order not to affect the layout
position of other components, it is necessary to limit the changes in the inlet and outlet
positions of the intake dirty pipe. By changing the bending radius at its bending point, the
overall flow uniformity can be improved and the pressure loss at the inlet and outlet can
be reduced. When the bending radius is too large, the pipeline cannot match other parts,
so the bending radius is proposed to vary between 1 to 3 times the inner diameter, with a
range of 60 mm to 180 mm.

After performing the same operation process as the original model on each pipe with
a change in bending radius, simulation calculations are conducted to analyze the flow
changes at the bending point and the pressure difference between the inlet and outlet.
Figure 13 shows the velocity contour of the pipe with y = 0 mm, and an xoz section when
the bending radius changes. Figure 14 shows the velocity contour of the xoy section pipe
with z = —106 mm when the bending radius changes.
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Figure 11. z = 0 mm, velocity vector at different radius inlet structures of the xoy section. (a) Horn-
shaped radius is 3 mm. (b) Horn-shaped radius is 5 mm. (c¢) Horn-shaped radius is 7 mm. (d) Horn-
shaped radius is 9 mm. (e) Horn-shaped radius is 11 mm. (f) Horn-shaped radius is 13 mm.
(g) Horn-shaped radius is 15 mm.
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is 60 mm. (b) Bending radius is 90 mm. (c) Bending radius is 120 mm. (d) Bending radius is 150 mm.
(e) Bending radius is 180 mm.

It can be seen from Figures 13 and 14 that when the bending radius is gradually
increased, there is still an obvious velocity gradient change at the pipe bend. When the
bending radius is increased to 150 mm, the velocity distribution becomes very stable both
in the whole flow field and at the pipe bend. According to the statistics of the simulation
calculation results, the curve of the total pressure difference at the inlet and outlet versus
the bending radius is obtained, as shown in Figure 15. It can be seen from Figure 14 that
with the continuous increase in the bending radius, the total pressure difference at the
inlet and outlet gradually decreases, and after the bending radius increases to 150 mm, the
pressure difference decreases more and more slowly.

From this, we can obtain the best performance improvement scheme of the intake dirty
pipe structure: a trumpet structure with a radius of 9 mm at the intake, and a pipe bend
radius of 150 mm. Figures 16 and 17 correspond to the pressure contour of Figures 8 and 9,
respectively. It can be seen from the figure that the pressure loss at the bend of the optimized
pipe is significantly reduced. Although there is still a pressure gradient at the rear end of
the pipe, the total pressure loss is significantly reduced compared to the original model.
The calculation results show that the average total pressure difference at the inlet and outlet
of the optimized model is 177.86 Pa, which is 22.67% lower than that of the model before
performance improvement. The pressure loss at the inlet and outlet is significantly reduced.
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4.3. Model Flow Resistance Test of Intake Pipe

In order to verify the reliability of the numerical simulation results, the simplified
model and the optimized model of the inlet dirty pipe were made into physical samples to
carry out the flow—resistance test, and the simulation results were compared with the test
data one by one to illustrate the reliability of the simulation results.

4.3.1. Test Equipment, Materials, and Methods

The sample used in this test was realized by 3D printing technology, and the material
used is a high toughness resin, which has a high deformation temperature. In some high
temperature areas, it can avoid deformation of the sample due to excessive temperature,
which can cause significant differences between the actual object and the data model,
affecting the accuracy of the test results. The finished model sample is shown in Figure 18.
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Figure 18. Simplified sample model of intake dirty pipe. The upper part is the sample after perfor-
mance improvement, and the lower part is the sample before performance improvement.

The air filter pipe performance test was carried out according to the standard require-
ments of ISO 5011:2000. The equipment used is the JJG620-2008 air filter test bench, which
was equipped with the corresponding flow resistance device. Figure 19 shows the flow
resistance test device diagram.

Figure 19. Flow resistance test device. The test piece is installed on a flow resistance device for
testing.

The test method is as follows: turn on the fan switch in the reserve room, the assembly
power switch, the industrial computer switch, and the computer console switch. After
the ambient temperature and humidity around the test device are relatively stable, fix the
tested part on the front end of the test device, open the test operation software, enter the
main interface to select the percentage test, and then set its value to 50%, 75%, 100%, 125%,
and 150%, according to the rated flow. Click the start test button—the test device will run
automatically—and observe the relevant data changes and flow-resistance curve through
the operating platform. After the test, remove the tested part, turn off all power supplies,
and adjust the test console to the shutdown state. According to the above process, the
optimized model sample was retested and the test data results were obtained. In order to
ensure the reliability of the test data results, the method of averaging multiple tests was
adopted during the flow-resistance test. The data obtained from each test were recorded
and compared with the data obtained from the simulation to analyze whether there was
any difference in the data.

4.3.2. Test Results and Discussion

We averaged the obtained data, as shown in Table 2. It can be seen from the table
that with the increase in intake flow, the resistance gradually increases, and the overall
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resistance value of the optimized intake dirty pipe model is significantly lower compared
to before performance improvement.

Table 2. Pre- and post-performance improvement test values under average processing.

Model before Performance Improvement Model after Performance Improvement
Intake Air Flow (L/h) ~ verage Resistance o e AirFlow (L/n) ~ AAverase Resistance
(Pa) (Pa)
190.93 314.66 190.81 287.12
286.62 674.58 286.38 637.04
382.13 1181.72 381.83 1117.14
477.68 1853.51 477.36 1741.26
574.14 2670.29 573.75 2491.76

We carried out numerical simulation analysis on the optimized simplified model of the
intake dirty pipe under different flow conditions, and compared the calculated results with
the test values to obtain the comparison diagram of the resistance curve under different
flow conditions, as shown in Figure 20.

—— Test value
—— Simulation value

3000

2500

2000

1500

resistance (Pa)

1000

0 1 . 1 . 1 . 1 . 1
200 300 400 500 600

Intake air flow (L/h)

Figure 20. Comparison of test and simulation value.

It can be seen from Figure 20 that the outlet resistance value obtained from the actual
test is higher than the resistance value obtained from the simulation. There are three main
reasons for this: first, the actual measured air flow value during the test is higher than the
value set during the simulation. Second, due to the influence of the ambient temperature
and humidity, the test value and simulation value also have certain differences. Finally,
due to the limited manufacturing technology of the sample, the inner wall surface of the
pipe has an uneven surface, resulting in the high resistance measured in the actual test.
In general, the difference between the simulation value and the test value is within the
acceptable range, and the relevant data results obtained from the simulation are relatively
reliable.

Regarding the performance improvement plan for the two structures of the intake pipe,
the author believes that there is still a need for comparison compared to other scholars, such
as Matsushima et al.,’s proposal to improve its pressure characteristics by increasing the
diffusion angle on both sides of the pipe [34]. The author believes that this improvement
method is also a good method, but for the intake pipe model mentioned in this study,
increasing the curvature radius of the intake structure is equivalent to increasing the
diffusion angle on both sides, and this approach is more innovative. For the scheme of
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increasing the bending radius at the bend of the pipeline, the author believes that this
improvement method is relatively common and easy for readers to understand. Moreover,
while increasing the curvature radius of the inlet structure, it can still reduce the total
pressure difference between the inlet and outlet, which is also important for improving
overall performance. For the two improvement methods, the author also attempted to
change the optimization sequence by first increasing the bending radius at the pipeline
bend. Through simulation results, it can be concluded that the total pressure difference
between the inlet and outlet decreases with the increase of the bending radius, which
is consistent with the conclusion obtained from optimization based on increasing the
curvature radius of the inlet structure: the performance of reducing the total pressure
difference by increasing the bending radius of the structure at the bending point is not
significantly different from increasing the curvature radius of the inlet structure. For these
two improvement methods, the author conducted a sensitivity posterior evaluation and
concluded that both methods are quite important for improving performance [35]. There
is no doubt that two structural improvements to the original pipeline model have a more
significant improvement effect compared to improvements to a certain structure.

5. Conclusions

This research used the intake dirty pipe in the intake system of a vehicle as the main
research object and carried out simulation and analysis of its internal gas flow field. The
results show that there is an obvious speed mutation region at the intake and at the pipe
bend, which affects the overall fluid flow uniformity and causes a pressure loss. At this
time, the average total pressure difference at the inlet and outlet is 230.01 Pa. Then, the
structure was optimized. The performance improvement scheme was to add a trumpet
structure with a radius of 9 mm at the air inlet and adjust the bending radius at the pipe
bend to 150 mm. After structural optimization, the average total pressure difference at
the inlet and outlet of the pipe was 177.86 Pa, which is 22.67% lower in numerical value,
and the total pressure loss was significantly reduced. The air inlet dirty pipe before and
after performance improvement was made into a sample by a simplified model, and a
flow-resistance test, respectively. The difference between the test data and the simulation
data is within a reasonable range, and the simulation results are relatively reliable.
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