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Abstract: In this paper, we study the inference of the multicomponent stress–strength reliability
(MSSR) based on the Chen distribution using progressively Type-II censored data. Both the stress
and strength variables follow the Chen distribution with a common second shape parameter. The
maximum likelihood estimates and the asymptotic confidence intervals of the MSSR are developed.
The bootstrap confidence interval of the MSSR is also constructed. The Bayesian estimation of the
MSSR is obtained under the generalized entropy loss function using the Markov Chain Monte Carlo
method. To check the effectiveness of the proposed approach, simulation studies are performed.
Finally, a real data set is analyzed.
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1. Introduction

Reliability estimation is a popular research topic that has recently received much attention.
Many studies focus on the stress–strength system with two components, which can be
regarded as two random variables X and Y, representing strength and stress. Its reliability
is R = P(X > Y). For this kind of system, extensive research has been carried out. Many
scholars have discussed the estimation of this reliability under certain distributions, such as
Weerahandi and Johnson [1], Badr et al. [2], Xu et al. [3], Hassan et al. [4], etc.

In the theory of reliability, the multicomponent stress–strength system is an extension
of the classical stress–strength system, which contains one stress component and k inde-
pendent strength components. The system will remain stable if at least s of the k strength
values exceed the stress value. For instance, a bridge with k vertical cables that represent
the strength of the structure is just a multicomponent stress–strength system. It will remain
stable if the stress brought on by wind, high traffic volume, etc., does not exceed the values
of at least s of its k strength components. Another example is an eight-cylinder vehicle
engine, which operates as long as at least four of the eight cylinders are firing.

For k strengths that are exposed to one stress, strengths X1, X2, ..., Xk are independent
random variables with the same cumulative distribution function (CDF) FX(y), and stress
Y (independent of X1, X2, ..., Xk) is a random variable with the CDF FY(y). Then, the
multicomponent stress–strength reliability (MSSR) can be described as

Rs,k = P[at least s of (X1, X2, . . . , Xk) exceed Y]

=
k

∑
m=s

(
k
m

) ∫ +∞

−∞
[1− FX(y)]

m[FX(y)]
k−mdFY(y).

(1)

The estimation of the MSSR has been widely studied under complete sample data,
where different distributions have been used. For example, Rao [5] studied the maximum
likelihood estimation and asymptotic confidence interval of the MSSR based on generalized
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exponential distribution. Jia et al. [6] discussed the classical estimation of the MSSR based on
generalized inverted exponential distribution. Nadar and Kizilaslan [7] derived the estimation
of the MSSR based on the Marshall–Olkin Bivariate Weibull distribution using frequentist and
Bayesian methods. The Bayesian estimators were developed using Lindley’s approximation
and Markov Chain Monte Carlo techniques. Kizilaslan and Nadar [8] discussed the estimation
of the MSSR based on the Bivariate Kumaraswamy distribution in a similar way.

Censoring is an effective tool that is often used in lifetime tests. In practical experi-
ments, censoring plays an important role when there are not enough test units or when data
for all test units cannot be collected because of the lack of time and resources. Type-I and
Type-II censoring attract a lot of attention due to their mathematical simplicity. In Type-I
censoring, if a pre-determined time is reached, the test will be stopped, whereas in Type-II
censoring, if a pre-determined number of units fail, the test will be stopped. However,
both censoring schemes may be inappropriate if the experimenter needs to intermittently
remove units. Thus, progressive Type-II censoring is considered a better option and has
been widely used in recent years. In this censoring, the intermittent removal of units is
allowed. In addition, it saves time and expenses to a certain extent.

Progressive Type-II censoring in a lifetime test is as follows. Assume that M units are
tested in the experiment. When the first failure x1 happens, R1 units are randomly removed.
When the second failure x2 happens, R2 units are randomly removed, and so on. Finally,
when the mth failure xm happens, the remaining Rm active units are all removed. Note
that M = R1 + R2 + ... + Rm + m. In this way, the ordered lifetime data for m elements
are obtained using the censoring scheme {M, m, R1, R2, ..., Rm}. This process is shown
in Figure 1. In particular, progressive Type-II censoring can be seen as an extension of
Type-II censoring, which is derived by assuming Ri = 0, i = 1, 2, ..., m− 1. Otherwise,
the complete sample is derived by assuming Ri = 0, i = 1, 2, ..., m.

1x 2x mx

1  unitsR
2  unitsR

1 2 1...  unitsmM R R R m−− − − − −

Figure 1. A schematic diagram of progressive Type-II censoring.

For samples that have been censored or are incomplete, there are few studies on the
inference of the MSSR in the literature. Saini et al. [9] studied the estimation of the MSSR for
Burr XII distribution using progressive first-failure censoring data. Tsai et al. [10] discussed
the estimation of the MSSR for generalized exponential distribution using Type-I censoring
data. Saini et al. [11] obtained the estimation of the MSSR for Topp–Leone distribution
using progressive censoring data.

Many probability distributions have been proposed to fit the lifetime data. Here, we
select the Chen distribution proposed by Chen [12]. Its probability density function (PDF),
CDF, and hazard rate function (HRF) are, respectively, given by

f (x; θ, λ) = θλxλ−1 exp{xλ + θ(1− exλ
)}, (2)

F(x; θ, λ) = 1− exp{θ(1− exλ
)}, (3)

h(x; θ, λ) = θλxλ−1 exp{xλ},

where x > 0 and the shape parameters θ, λ > 0. Hereafter, the Chen distribution can
be represented by Chen(θ, λ). Images of the PDFs and HRFs of the Chen distribution
for certain cases are presented in Figure 2. It can be seen that the Chen distribution has
a flexible PDF and HRF when the shape parameters are taken at different values. When
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λ > 1, the PDFs have a significant peak; when λ = 1, the PDFs have a roughly decreasing
trend; and when 0 < λ < 1, the PDFs are monotonically decreasing. Additionally, when
λ ≥ 1, the HRFs are monotonically increasing, and when 0 < λ < 1, the HRFs present as a
bathtub-shaped curve. In the literature, the Chen distribution has received considerable
attention and has been studied by several scholars, including Chen and Gui [13], Rastogi et
al. [14], Sarhan et al. [15], Mendez-Gonzalez et al. [16], and the references therein.

Figure 2. Images of PDFs and HRFs of Chen distribution under different sets of parameters.

Let X1, X2, ..., Xk follow Chen(θ1, λ) independently, and let Y (independent of
X1, X2, ..., Xk) follow Chen(θ2, λ). They have a common second shape parameter and
different first shape parameters. Now, based on Equations (1)–(3), Rs,k can be derived as

Rs,k = θ2λ ∑k
m=s

(
k
m

) ∫ ∞
0 xλ−1exp

{(
1− exλ

)
(θ1m + θ2) + xλ

}{
1− exp

{
θ1

(
1− exλ

)}}k−m
dx

= θ2 ∑k
m=s

(
k
m

)
∑k−m

n=0

(
k−m

n

)
(−1)n ∫ ∞

1 exp{[θ1(m + n) + θ2](1− t)}dt

= ∑k
m=s ∑k−m

n=0

(
k
m

)(
k−m

n

)
(−1)nθ2

(m+n)θ1+θ2
,

(4)

where t = exλ
.

As far as we know, no research has been conducted on the inference of the MSSR for
the Chen distribution using progressively censored data. Wang et al. [17] discussed its
classical estimation using Type-II censored data. So, our goal is to expand their research by
carrying out its estimation from the Chen distribution using progressively censored data.
In addition, the Bayesian estimation is also considered.

This article is organized as follows. In Section 2, the maximum likelihood estimate
(MLE) is studied. Then, the interval estimation is discussed in Section 3. The asymptotic
confidence interval (ACI) is derived based on the MLE. Additionally, the Bootstrap confi-
dence interval (BootCI) is constructed. In Section 4, the Bayes estimates based on gamma
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priors are derived using the Markov Chain Monte Carlo (MCMC) method. The Bayesian
credible interval (BCI) and the highest posterior density credible interval (HPDCI) are also
discussed. In Section 5, Monte Carlo simulation studies are performed and a real data set is
analyzed. Finally, the conclusions are reported in Section 6.

2. Maximum Likelihood Estimation

In this section, we derive the MLE of Rs,k by adapting the approach of Wang et al. [17]
and extending its application to progressively Type-II censored data. Assume that N
systems with K strength components are subjected to a lifetime test. We observe the lifetime
data for n systems with k components using progressive Type-II censoring. The observed
data x

∼
and y

∼
are described as follows:

Observed strength values Observed stress values x11 x12 · · · x1k
...

...
. . .

...
xn1 xn2 · · · xnk

 and

 y1
...

yn


where each row of values in x

∼
is the censored sample from Chen(θ1, λ) with the progres-

sive Type-II censoring scheme {K, k, S1, S2, ..., Sk}, and y
∼

is the censored sample from

Chen(θ2, λ) with the progressive Type-II censoring scheme {N, n, T1, T2, ..., Tn}. For
simplicity, we denote the censoring scheme as S = (S1, S2, ..., Sk) and T = (T1, T2, ..., Tn).
Then, the likelihood function is

L(θ1, θ2, λ) = c1

n

∏
i=1

(
c2

k

∏
j=1

fX
(

xij
)[

1− FX
(
xij
)]Sj

)
fY(yi)[1− FY(yi)]

Ti , (5)

where
c1 = N(N − T1 − 1) · · · (N − T1 − · · · − Sn−1 − n + 1),

c2 = K(K− S1 − 1) · · · (K− S1 − · · · − Sk−1 − k + 1).

Now, using Equations (2), (3), and (5), the likelihood function is

L(θ1, θ2, λ) =λn(k+1)c1c2
nθ1

nkθ2
n

n

∏
i=1

k

∏
j=1

xij
λ−1 exp{xij

λ + θ1(1− exij
λ
)(1 + Sj)}

×
n

∏
i=1

yi
λ−1 exp{yi

λ+θ2(1− eyi
λ
)(1 + Ti)}.

(6)

From Equation (6), the log-likelihood function is

l = l(θ1, θ2, λ) ∝n(k + 1) ln λ + nk ln θ1 + n ln θ2

+
n

∑
i=1

k

∑
j=1

[(λ− 1) ln xij + xij
λ + θ1(1− exij

λ
)(1 + Sj)]

+
n

∑
i=1

[(λ− 1) ln yi + yi
λ + θ2(1− eyi

λ
)(1 + Ti)].

(7)

By taking the derivative of l(θ1, θ2, λ) with respect to θ1 and θ2 and setting them to 0,
we obtain the following equations:

∂l
∂θ1

=
nk
θ1

+
n

∑
i=1

k

∑
j=1

(1− exij
λ
)(1 + Sj) = 0, (8)



Appl. Sci. 2023, 13, 6509 5 of 25

∂l
∂θ2

=
n
θ2

+
n

∑
i=1

(1− eyi
λ
)(1 + Ti) = 0. (9)

Using Equations (8) and (9), we derive

θ̃1 =
nk

∑n
i=1 ∑k

j=1 (e
xij

λ − 1)(1 + Sj)
, θ̃2 =

n

∑n
i=1 (eyi

λ − 1)(1 + Ti)
. (10)

Theorem 1. For a given λ > 0, the MLEs of θ1 and θ2 exist and are, respectively, given by θ̃1 and
θ̃2 in Equation (10).

Proof. Let ti =
θi
θ̃i

, i = 1, 2. Using inequality ln ti ≤ ti − 1, we obtain

ln θ1 ≤
θ1

nk

n

∑
i=1

k

∑
j=1

(exij
λ
− 1)(1 + Sj)− 1 + ln θ̃1, (11)

ln θ2 ≤
θ2

n

n

∑
i=1

(eyi
λ − 1)(1 + Ti)− 1 + ln θ̃2. (12)

By substituting Equations (11) and (12) into (7), one obtains

l(θ1, θ2, λ) ≤n(k + 1) ln λ + nk ln θ̃1 + n ln θ̃2 − nk− n

+
n

∑
i=1

k

∑
j=1

[(λ− 1) ln xij + xij
λ]

+
n

∑
i=1

[(λ− 1) ln yi + yi
λ].

From Equation (10), one obtains

nk = θ̃1

n

∑
i=1

k

∑
j=1

(exij
λ
− 1)(1 + Sj), n = θ̃2

n

∑
i=1

(eyi
λ − 1)(1 + Ti).

One further obtains

l(θ1, θ2, λ) ≤n(k + 1) ln λ + nk ln θ̃1 + n ln θ̃2

+
n

∑
i=1

k

∑
j=1

[(λ− 1) ln xij + xij
λ + θ̃1(1− exij

λ
)(1 + Sj)]

+
n

∑
i=1

[(λ− 1) ln yi + yi
λ + θ̃2(1− eyi

λ
)(1 + Ti)]

= l(θ̃1, θ̃2, λ).

The equality holds if ti = 1, i = 1, 2, where θ1 = θ̃1 and θ2 = θ̃2.

From Theorem 1, by substituting θ1 = θ̃1 and θ2 = θ̃2 into Equation (7), the log-
likelihood function of λ is

l∗(λ) ∝n(k + 1) ln λ− nk ln [
n

∑
i=1

k

∑
j=1

(exij
λ
− 1)(1 + Sj)]− n ln [

n

∑
i=1

(eyi
λ − 1)(1 + Ti)]

+
n

∑
i=1

k

∑
j=1

[(λ− 1) ln xij + xij
λ] +

n

∑
i=1

[ln yi + yi
λ ln yi].

(13)
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By taking the derivative of l∗(λ) and setting it to 0, we obtain the following equation
and its solution is the MLE λ̂.

dl∗

dλ
=

n(k + 1)
λ

−
nk ∑n

i=1 ∑k
j=1 (1 + Sj)e

xij
λ
xij

λ ln xij

∑n
i=1 ∑k

j=1 (e
xij

λ − 1)(1 + Sj)
− n ∑n

i=1 (1 + Ti)eyi
λ
yi

λ ln yi

∑n
i=1 (eyi

λ − 1)(1 + Ti)

+
n

∑
i=1

k

∑
j=1

(ln xij + xij
λ ln xij) +

n

∑
i=1

(ln yi + yi
λ ln yi) = 0.

(14)

From Equation (14), we can derive a nonlinear equation β(λ) = λ, where

β(λ) =n(k + 1)[
nk ∑n

i=1 ∑k
j=1 (1 + Sj)e

xij
λ

xij
λ ln xij

∑n
i=1 ∑k

j=1 (e
xij

λ − 1)(1 + Sj)
+

n ∑n
i=1 (1 + Ti)eyi

λ
yi

λ ln yi

∑n
i=1 (eyi

λ − 1)(1 + Ti)

−
n

∑
i=1

k

∑
j=1

(ln xij + xij
λ ln xij)−

n

∑
i=1

(ln yi + yi
λ ln yi)]

−1.

(15)

The above equation has a fixed-point solution for λ. The MLE λ̂ can be derived using
the fixed-point iterative approach as λ(i+1) = β(λ(i)), where λ(i) is the ith iterative value

of λ. When
∣∣∣λ(i+1) − λ(i)

∣∣∣ is very close to 0, the iteration process can be stopped. Then,

according to Equation (11), the MLEs θ̂1 and θ̂2 can be obtained using the MLE λ̂.

θ̂1 =
nk

∑n
i=1 ∑k

j=1 (e
xij

λ̂ − 1)(1 + Sj)
, θ̂2 =

n

∑n
i=1 (eyi

λ̂ − 1)(1 + Ti)
. (16)

Based on the invariance property of the MLEs, once we obtain the MLEs θ̂1, θ̂2, and λ̂,
the MLE R̂s,k is

R̂s,k =
k

∑
m=s

k−m

∑
n=0

(
k
m

)(
k−m

n

)
(−1)n θ̂2

(m + n)θ̂1 + θ̂2
. (17)

3. Interval Estimation
3.1. Asymptotic Confidence Interval

Similar to the work of Wang et al. [17], we construct an ACI using the asymptotic
normality of the MLE. Let η̂ = (θ̂1, θ̂2, λ̂) be the MLEs of η = (θ1, θ2, λ). The observed
Fisher information matrix is given by I(η̂) = [Iij] = [− ∂2l

∂ηi∂ηj
]
η=η̂

, i, j = 1, 2, 3, where

I11 =
nk
θ1

2 , I22 =
n

θ2
2 , I12 = I12 = 0,

I13 =I31=
n

∑
i=1

k

∑
j=1

(1 + Sj)e
xij

λ
xij

λ ln xij, I23 = I32 =
n

∑
i=1

(1 + Ti)eyi
λ
yi

λ ln yi,

I33 =
n(k + 1)

λ2 −
n

∑
i=1

k

∑
j=1

[xij
λ(ln xij)

2 − θ1(1 + Sj)e
xij

λ
xij

λ(ln xij)
2(xij

λ + 1)]

−
n

∑
i=1

[yi
λ(ln yi)

2 − θ2(1 + Ti)eyi
λ
yi

λ(ln yi)
2(yi

λ + 1)].

Using the delta method (see Xu and Long [18]), the variance of R̂s,k is derived as
follows:

Var(R̂s,k) = (
∂Rs,k

∂θ1
)2[I−1]11 + (

∂Rs,k

∂θ2
)2[I−1]22 + 2(

∂Rs,k

∂θ1
)(

∂Rs,k

∂θ2
)[I−1]12,
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where

∂Rs,k

∂θ1
=

k

∑
m=s

k−m

∑
n=0

(
k
m

)(
k−m

n

)
(−1)n+1 (m + n)θ2

[(m + n)θ1 + θ2]
2 ,

∂Rs,k

∂θ2
=

k

∑
m=s

k−m

∑
n=0

(
k
m

)(
k−m

n

)
(−1)n (m + n)θ1

[(m + n)θ1 + θ2]
2 .

Here, the parameters (θ1, θ2, λ) are computed as the MLEs (θ̂1, θ̂2, λ̂). Therefore, the
100(1− α)% ACI for Rs,k is(

R̂s,k − zα/2

√
Var
(

R̂s,k
)
, R̂s,k + zα/2

√
Var
(

R̂s,k
))

. (18)

where zα is 100(1− α)th percentile of N(0, 1).
A negative lower bound might be generated by the ACI proposed above but

0 < Rs,k < 1. To avoid this problem, the logit transformation can be used to provide a
more accurate confidence interval, as proposed by Krishnamoorthy and Lin [19]. Let
ξ̂ = ln(R̂s,k/(1− R̂s,k)) be the MLE of ξ = ln(Rs,k/(1− Rs,k)). Then, the 100(1− α)% ACI
of ξ is (ξL, ξU), where

ξL = ln(
R̂s,k

1− R̂s,k
)− zα/2

√
Var(R̂s,k)

R̂s,k(1− R̂s,k)
,

and

ξU = ln(
R̂s,k

1− R̂s,k
) + zα/2

√
Var(R̂s,k)

R̂s,k(1− R̂s,k)
.

Then, the ACI of Rs,k based on the logit scale is

(
exp(ξL)

1 + exp(ξL)
,

exp(ξU)

1 + exp(ξU)
). (19)

3.2. Bootstrap Confidence Interval

The MLEs may not follow the asymptotic normality when the observed sample size is
insufficient, which can be a limitation of the ACI. Therefore, the BootCI is considered. Using
the method discussed by Stine [20], the percentile BootCI is constructed. The procedures
are provided in Algorithm 1.

Algorithm 1 The algorithm of the Bootstrap CI method.

Step 1 Obtain the MLEs θ̂1, θ̂2, and λ̂ with the given data sets x
∼

and y
∼

using the method

mentioned in Section 2.
Step 2 For a fixed progressive censoring scheme (S1, S2, ..., Sk), generate censored samples

xi1
∗, xi2

∗, ..., xik
∗ from Chen(θ̂1, λ̂), i = 1, 2, ..., n. Similarly, for a fixed progressive

censoring scheme (T1, T2, ..., Tn), generate censored samples y1
∗, y2

∗, ..., yn
∗ from

Chen( θ̂2, λ̂).
Step 3 Compute the MLE R̂s,k based on the samples in Step 2.
Step 4 Repeat Steps 2–3 B times and obtain the ordered values R̃(1) ≤ R̃(2) ≤ ... ≤ R̃(B).
Step 5 The 100(1− α)% BootCI is given by

(R̃([Bα/2]), R̃([B(1− α/2)])),

where [x] is the least integer function.
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4. Bayesian Estimation

In this section, Bayesian estimation is discussed, together with the generalized entropy
loss function (GELF). When overestimation and underestimation are considered different
consequences of errors, the GELF is useful. The GELF is a suitable loss function used for
reliability estimation since overestimating is typically considerably more harmful than
underestimating. As first discussed by Calabria and Pulcini [21], the GELF is given by

L(α, α̂) ∝ [(
α̂

α
)

q
− q ln(

α̂

α
)− 1]; q 6= 0,

where α̂ is the decision rule to estimate α. The Bayes estimate with the GELF is derived as

α̂ = [E(α−q|data)]−1/q. (20)

Note that the Bayes estimate in Equation (20) corresponds to the Bayes estimate with
a precautionary loss function when q = −2, a squared error loss function when q = −1,
and an entropy loss function when q = 1.

In Bayesian estimation, θ1, θ2, and λ can be considered random variables. Assume
that they have independent gamma priors and their PDFs are expressed as follows:

g1(θ1) ∝ θ1
a1−1e−b1θ1 , θ1 > 0,

g2(θ2) ∝ θ2
a2−1e−b2θ2 , θ2 > 0,

g3(λ) ∝ λa3−1e−b3λ, λ > 0,

where ai, bi > 0, i = 1, 2, 3. Then, the joint posterior density function is

π(θ1, θ2, λ|data) =
L(data|θ1, θ2, λ)g1(θ1)g2(θ2)g3(λ)∫ ∞

0

∫ ∞
0

∫ ∞
0 L(data|θ1, θ2, λ)g1(θ1)g2(θ2)g3(λ)dθ1dθ2dλ

. (21)

By substituting Equation (6) into Equation (21), the posterior distribution is

π(θ1, θ2, λ|data) ∝ θ1
nk+a1−1θ2

n+a2−1λn(k+1)+a3−1e−(b1θ1+b2θ2+b3λ)

×
n

∏
i=1

k

∏
j=1

xij
λ−1 exp{xij

λ + θ1(1− exij
λ
)(1 + Sj)}

×
n

∏
i=1

yi
λ−1 exp{yi

λ+θ2(1− eyi
λ
)(1 + Ti)}.

(22)

4.1. MCMC Method

The MCMC method is considered to obtain the Bayesian estimation. According to
Equation (22), the conditional posterior density of θ1, θ2, and λ are derived as

θ1|λ, data ∼ gamma(nk + a1, b1 +
n

∑
i=1

k

∑
j=1

(exij
λ
− 1)(1 + Sj)),

θ2|λ, data ∼ gamma(n + a2, b2 +
n

∑
i=1

(eyi
λ − 1)(1 + Ti)),

and

π1(λ|θ1, θ2, data) ∝λn(k+1)+a3−1e−b3λ
n

∏
i=1

k

∏
j=1

xij
λ exp{xij

λ + θ1(1− exij
λ
)(1 + Sj)}

×
n

∏
i=1

yi
λ exp{yi

λ+θ2(1− eyi
λ
)(1 + Ti)}.
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Now, using the gamma distributions, the values of θ1 and θ2 can be directly generated.
Nonetheless, the Metropolis–Hastings (M–H) algorithm is utilized to obtain the values of λ.
The procedure of the Gibbs sampling is provided in Algorithm 2. Then, according to the
sampling results, the Bayes estimate with the GELF is

R̂MC
s,k = [

1
T − T0

T

∑
t=T0+1

(R(t)
s,k )
−q

]

−1/q

, (23)

where T0 is the burn-in period.

Algorithm 2 The algorithm of the MCMC method.

Step 1 Set the initial values θ1
(0), θ2

(0), and λ(0).
Step 2 Set t = 1.
Step 3 Using the M–H algorithm, λ(t) can be generated from π1(λ|θ1

(t−1), θ2
(t−1), data).

Here, the N(λ(t−1), 1) is used as the proposal distribution.

Step 4 Obtain θ1
(t) from gamma(nk + a1, b1 + ∑n

i=1 ∑k
j=1 (e

xij
λ(t−1)

− 1)(1 + Sj)).

Step 5 Obtain θ2
(t) from gamma(n + a2, b2 + ∑n

i=1 (e
yi

λ(t−1)
− 1)(1 + Ti)).

Step 6 Compute R(t)
s,k using θ1

(t) and θ2
(t).

Step 7 Set t = t + 1.
Step 8 Repeat Steps 3-7 T times.

4.2. Bayesian Credible Intervals and Highest Posterior Density Credible Intervals

In this subsection, the BCI and HPDCI are constructed in the following way:
To begin with, the generated posterior samples R(t)

s,k , t = T0 + 1, T0 + 2, ..., T are sorted
to derive the values R(1) ≤ R(2) ≤ ... ≤ R(T−To). Then, the BCI with a 100(1 − α)%
confidence level for Rs,k is obtained as

(R([(T−T0)(α/2)]), R([(T−T0)(1−α/2)])).

Among all the possible intervals with a 100(1− α)% confidence level, the HPDCI has
the shortest width. Thus, the HPDCI for Rs,k is given by

(R(n), R(n+[(T−T0)(1−α)])),

where n is the integer that makes

R(n+[(T−T0)(1−α)]) − R(n) = min
1≤n≤T−T0

R(n+[(T−T0)(1−α)]) − R(n),

where [x] is the least integer function.

5. Numerical Explorations
5.1. Simulation Studies

To analyze the effects of various estimates, Monte Carlo simulations are performed.
First, the samples with the censoring scheme {N, n, S1, S2, ..., Sn} are generated according
to Algorithm 3, as discussed by Balakrishnan and Sandhu [22].
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Algorithm 3 The algorithm for generating progressively censored samples.

Step 1 Obtain n independent random variables W1, W2, ..., Wn from the Uni f orm(0, 1)
distribution.

Step 2 Set Vi = W
1/ ∑n

j=n−i+1(Sj+1)
i , i = 1, 2 , ..., n.

Step 3 Obtain Ui = 1−∏n
j=n−i+1 Vj, i = 1, 2 , ..., n, and thus (U1, U2, ..., Un) are the

required censored samples from the Uni f orm(0, 1) distribution.
Step 4 Let Xi = F−1(Ui) for i = 1, 2, ..., n, and then (X1, X2, ..., Xn) are the required

progressively censored samples for the required distribution with CDF F(x), where
F−1(x) is its inverse function.

For the different point estimates, including MLEs and Bayes estimates, we compute
their corresponding mean absolute deviations and mean squared errors. For different
interval estimates, including 95% ACIs, BootCIs, BCIs, and HPDCIs, we compute their
corresponding average lengths and coverage probabilities.

The various progressive Type-II censoring schemes (C.S) selected for the simulations
are shown in Table 1, where S1, S2, ..., S6 are the censoring schemes used for the strength
variables, and T1, T2, ..., T6 are the censoring schemes used for the stress variables. We
perform lifetime tests on N systems with K components and observe the data obtained
for n systems with k components using a certain censoring scheme. For simplicity, a
short notation such as (1× 3) represents (1, 1, 1) and ((0, 1)× 3) represents (0, 1, 0, 1, 0,
1). Take s = 3 in schemes S1, S2, and S3 and s = 2 in schemes S4, S5, and S6. When at
least two or three components survive, we derive the estimations of the system reliability.
The simulation results are based on 3000 replications and all simulation calculations are
performed using R-4.3.0 software.

Here, two different sets of distribution parameters are used:

η1 = (θ1, θ2, λ) = (1, 1, 2) , η2 = (θ1, θ2, λ) = (1.5, 2, 2).

For η1, R3,5 is 0.5 and R2,4 is 0.6, whereas for η2, R3,5 is 0.5901 and R2,4 is 0.6885.

Table 1. Different censoring schemes.

(k, K) C.S (n, N) C.S

(5, 15) S1 (0× 4, 10) (10, 15) T1 (0× 9, 5)
S2 (10, 0× 4) T2 (5, 0× 9)
S3 (2× 5) T3 ((0, 1)× 5)

(4, 10) S4 (0, 0, 0, 6) (15, 30) T4 (0× 14, 15)
S5 (6, 0, 0, 0) T5 (15, 0× 14)
S6 (2, 2, 1, 1) T6 (1× 15)

To compute the Bayesian estimates, three priors are considered. The non-informative
prior is denoted as prior 1 and the gamma priors are denoted as prior 2 for η1 and prior 3
for η2. The relevant parameters for the priors are as follows:

Prior 1: ai = bi = 0, i = 1, 2, 3.

Prior 2: a1 = 1, b1 = 1, a2 = 1, b2 = 1, a3 = 2, b3 = 1.

Prior 3: a1 = 3, b1 = 2, a2 = 2, b2 = 1, a3 = 2, b3 = 1.

For the GELF, three loss functions are considered:

F1: squared error loss function (q = −1)

F2: entropy loss function (q = 1)

F3: precautionary loss function (q = −2)
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For two different sets of parameters and multiple combinations of censoring schemes,
we obtain the MLEs and Bayes estimates. Then, we compute their mean absolute deviations
(MAD) and mean squared errors (MSE), as shown in Table 2 for η1 and Table 3 for η2. The
ACIs, BootCIs, BCIs, and HPDCIs for Rs,k at a 95% confidence level are also derived under
the same combinations of censoring schemes for two different sets of parameters. When
computing the BootCIs, we take B = 1000 re-samples. The average lengths (AL) and the
coverage probabilities (CP) for different types of intervals are shown in Table 4 for η1, and
Table 5 for η2.

Table 2. MADs and MSEs of the point estimations for η1 when R3,5 is 0.5 and R2,4 is 0.6.

Bayes

MLE Prior 1 Prior2

ηi C.S MAD MSE GELF MAD MSE MAD MSE

η1 (S1, T1) 0.0894 0.0121 F1 0.0853 0.0110 0.0781 0.0092
F2 0.0905 0.0124 0.0829 0.0104
F3 0.0841 0.0107 0.0771 0.0090

(S2, T2) 0.0886 0.0124 F1 0.0843 0.0112 0.0773 0.0094
F2 0.0877 0.0120 0.0802 0.0100
F3 0.0843 0.0112 0.0773 0.0094

(S3, T3) 0.0890 0.0127 F1 0.0852 0.0115 0.0781 0.0096
F2 0.0908 0.0126 0.0833 0.0106
F3 0.0839 0.0113 0.0770 0.0095

(S4, T1) 0.0971 0.0144 F1 0.0924 0.0131 0.0844 0.0110
F2 0.0984 0.0151 0.0898 0.0126
F3 0.0907 0.0126 0.0830 0.0105

(S5, T2) 0.0905 0.0125 F1 0.0868 0.0115 0.0798 0.0097
F2 0.0928 0.0130 0.0852 0.0110
F3 0.0850 0.0111 0.0782 0.0093

(S6, T3) 0.0889 0.0124 F1 0.0855 0.0115 0.0786 0.0097
F2 0.0933 0.0135 0.0856 0.0114
F3 0.0833 0.0109 0.0766 0.0092

(S1, T4) 0.0723 0.0084 F1 0.0701 0.0078 0.0659 0.0068
F2 0.0729 0.0082 0.0685 0.0073
F3 0.0695 0.0077 0.0653 0.0068

(S2, T5) 0.0682 0.0073 F1 0.0662 0.0069 0.0627 0.0062
F2 0.0682 0.0073 0.0645 0.0065
F3 0.0661 0.0069 0.0626 0.0062

(S3, T6) 0.0691 0.0075 F1 0.0669 0.0070 0.0633 0.0062
F2 0.0697 0.0074 0.0659 0.0066
F3 0.0664 0.0069 0.0628 0.0061

(S4, T4) 0.0733 0.0084 F1 0.0708 0.0078 0.0666 0.0069
F2 0.0739 0.0085 0.0695 0.0075
F3 0.0700 0.0077 0.0658 0.0068

(S5, T5) 0.0708 0.0079 F1 0.0691 0.0075 0.0656 0.0068
F2 0.0725 0.0083 0.0688 0.0075
F3 0.0680 0.0073 0.0646 0.0066

(S6, T6) 0.0746 0.0085 F1 0.0722 0.0080 0.0683 0.0071
F2 0.0754 0.0087 0.0712 0.0078
F3 0.0713 0.0078 0.0674 0.0069
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Table 3. MADs and MSEs of the point estimations for η2 when R3,5 is 0.5901 and R2,4 is 0.6885.

Bayes

MLE Prior 1 Prior 3

ηi C.S MAD MSE GELF MAD MSE MAD MSE

η2 (S1, T1) 0.0888 0.0121 F1 0.0852 0.0112 0.0719 0.0080
F2 0.0921 0.0130 0.0775 0.0092
F3 0.0833 0.0107 0.0704 0.0076

(S2, T2) 0.0890 0.0123 F1 0.0855 0.0113 0.0723 0.0081
F2 0.0914 0.0127 0.0771 0.0091
F3 0.0839 0.0110 0.0711 0.0078

(S3, T3) 0.0904 0.0125 F1 0.0867 0.0115 0.0736 0.0083
F2 0.0928 0.0130 0.0786 0.0094
F3 0.0849 0.0110 0.0721 0.0080

(S4, T1) 0.0903 0.0125 F1 0.0877 0.0119 0.0737 0.0084
F2 0.0955 0.0141 0.0799 0.0100
F3 0.0849 0.0111 0.0716 0.0079

(S5, T2) 0.0807 0.0102 F1 0.0779 0.0096 0.0662 0.0070
F2 0.0847 0.0114 0.0716 0.0082
F3 0.0758 0.0091 0.0646 0.0066

(S6, T3) 0.0861 0.0114 F1 0.0833 0.0107 0.0703 0.0076
F2 0.0901 0.0125 0.0758 0.0089
F3 0.0809 0.0101 0.0684 0.0072

(S1, T4) 0.0697 0.0076 F1 0.0678 0.0072 0.0599 0.0056
F2 0.0712 0.0078 0.0631 0.0061
F3 0.0667 0.0070 0.0591 0.0055

(S2, T5) 0.0700 0.0076 F1 0.0681 0.0072 0.0613 0.0058
F2 0.0708 0.0077 0.0637 0.0062
F3 0.0673 0.0071 0.0606 0.0057

(S3, T6) 0.0715 0.0079 F1 0.0693 0.0074 0.0615 0.0058
F2 0.0723 0.0080 0.0641 0.0063
F3 0.0684 0.0073 0.0608 0.0057

(S4, T4) 0.0690 0.0073 F1 0.0669 0.0069 0.0590 0.0054
F2 0.0701 0.0076 0.0618 0.0059
F3 0.0658 0.0067 0.0580 0.0052

(S5, T5) 0.0630 0.0063 F1 0.0618 0.0060 0.0557 0.0049
F2 0.0652 0.0066 0.0586 0.0054
F3 0.0606 0.0058 0.0546 0.0047

(S6, T6) 0.0687 0.0073 F1 0.0669 0.0070 0.0593 0.0055
F2 0.0704 0.0078 0.0623 0.0062
F3 0.0658 0.0068 0.0583 0.0053

To ensure the feasibility of the MCMC method, the posterior density plots for λ are
provided, as shown in Figures 3 and 4. It can be observed that these posterior density
plots are very close to the density plots of the Gaussian distributions. Therefore, when
implementing the M–H algorithm to obtain the MCMC samples, it is possible to use the
Gaussian distribution as the proposed density. We perform T =10,000 iterations for the
MCMC method. To ensure convergence, trace plots for the three parameters are provided, as
illustrated in Figures 5 and 6. As can be seen in these two figures, the MCMC chains rapidly
converge to their stationary distributions. Thus, we can consider T0 = 500 as a burn-in period.
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Table 4. ALs and CPs of the intervals for η1 when R3,5 is 0.5 and R2,4 is 0.6.

Bayes

Prior 1 Prior 2

ηi C.S AL/CP ACI Logit BootCI BCI HPDCI BCI HPDCI

η1 (S1, T1) AL 0.4148 0.3936 0.4199 0.4003 0.3969 0.3885 0.3855
CP 0.9227 0.9480 0.9260 0.9533 0.9360 0.9633 0.9487

(S2, T2) AL 0.4065 0.3865 0.4053 0.3934 0.3898 0.3803 0.3775
CP 0.9127 0.9413 0.9173 0.9400 0.9227 0.9560 0.9353

(S3, T3) AL 0.4113 0.3906 0.4130 0.3974 0.3941 0.3853 0.3822
CP 0.9133 0.9467 0.9260 0.9467 0.9247 0.9560 0.9400

(S4, T1) AL 0.4216 0.4008 0.4246 0.4089 0.4039 0.3973 0.3928
CP 0.9107 0.9473 0.9267 0.9453 0.9227 0.9567 0.9413

(S5, T2) AL 0.4152 0.3956 0.4127 0.4039 0.3986 0.3917 0.3871
CP 0.9100 0.9480 0.9353 0.9420 0.9207 0.9627 0.9353

(S6, T3) AL 0.4171 0.3972 0.4187 0.4058 0.4002 0.3937 0.3888
CP 0.9027 0.9447 0.9420 0.9460 0.9207 0.9573 0.9353

(S1, T4) AL 0.3375 0.3257 0.3413 0.3298 0.3274 0.3221 0.3202
CP 0.9300 0.9493 0.9367 0.9487 0.9360 0.9587 0.9427

(S2, T5) AL 0.3256 0.3148 0.3261 0.3184 0.3163 0.3112 0.3092
CP 0.9300 0.9493 0.9373 0.9487 0.9360 0.9513 0.9453

(S3, T6) AL 0.3373 0.3254 0.3392 0.3294 0.3273 0.3216 0.3198
CP 0.9220 0.9473 0.9393 0.9460 0.9287 0.9560 0.9420

(S4, T4) AL 0.3454 0.3335 0.3450 0.3386 0.3354 0.3309 0.3277
CP 0.9387 0.9540 0.9287 0.9587 0.9413 0.9613 0.9513

(S5, T5) AL 0.3348 0.3239 0.3325 0.3285 0.3253 0.3214 0.3185
CP 0.9167 0.9413 0.9300 0.9407 0.9233 0.9480 0.9373

(S6, T6) AL 0.3446 0.3329 0.3426 0.3378 0.3345 0.3302 0.3273
CP 0.9293 0.9473 0.9293 0.9493 0.9267 0.9547 0.9433

Table 5. ALs and CPs of the intervals for η2 when R3,5 is 0.5901 and R2,4 is 0.6885.

Bayes

Prior 1 Prior 3

ηi C.S AL/CP ACI Logit BootCI BCI HPDCI BCI HPDCI

η2 (S1, T1) AL 0.4120 0.3925 0.4137 0.4009 0.3961 0.3782 0.3741
CP 0.9107 0.9440 0.9360 0.9433 0.9160 0.9673 0.9500

(S2, T2) AL 0.4087 0.3898 0.3984 0.3982 0.3931 0.3734 0.3691
CP 0.9153 0.9453 0.9120 0.9447 0.9260 0.9633 0.9500

(S3, T3) AL 0.4101 0.3908 0.4074 0.3990 0.3943 0.3755 0.3719
CP 0.8940 0.9380 0.9287 0.9387 0.9140 0.9587 0.9467

(S4, T1) AL 0.3937 0.3802 0.3927 0.3889 0.3797 0.3660 0.3591
CP 0.9007 0.9513 0.9187 0.9507 0.9240 0.9713 0.9607

(S5, T2) AL 0.3931 0.3798 0.3796 0.3881 0.3792 0.3640 0.3573
CP 0.9020 0.9440 0.9167 0.9433 0.9233 0.9613 0.9533

(S6, T3) AL 0.3939 0.3804 0.3872 0.3888 0.3803 0.3652 0.3583
CP 0.9173 0.9620 0.9247 0.9587 0.9367 0.9780 0.9653

(S1, T4) AL 0.3393 0.3280 0.3391 0.3330 0.3297 0.3179 0.3153
CP 0.9240 0.9487 0.9300 0.9500 0.9327 0.9673 0.9513
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Table 5. Cont.

Bayes

Prior 1 Prior 3

ηi C.S AL/CP ACI Logit BootCI BCI HPDCI BCI HPDCI

(S2, T5) AL 0.3293 0.3189 0.3254 0.3234 0.3205 0.3089 0.3065
CP 0.9333 0.9527 0.9473 0.9507 0.9420 0.9633 0.9540

(S3, T6) AL 0.3392 0.3279 0.3368 0.3330 0.3296 0.3179 0.3153
CP 0.9273 0.9507 0.9233 0.9560 0.9353 0.9687 0.9587

(S4, T4) AL 0.3257 0.3179 0.3239 0.3229 0.3173 0.3081 0.3036
CP 0.9133 0.9447 0.9347 0.9427 0.9307 0.9573 0.9507

(S5, T5) AL 0.3163 0.3090 0.3118 0.3134 0.3086 0.2997 0.2955
CP 0.9147 0.9400 0.9340 0.9380 0.9267 0.9507 0.9393

(S6, T6) AL 0.3243 0.3168 0.3209 0.3219 0.3162 0.3072 0.3024
CP 0.9127 0.9480 0.9293 0.9453 0.9300 0.9640 0.9553
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Figure 3. Posterior density plots of λ for η1 (a) with C.S (S3, T6), (b) with C.S (S2, T5).
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Figure 4. Posterior density plots of λ for η2 (a) with C.S (S3, T6), (b) with C.S (S2, T5).

To better compare the effects of the different estimates, in Tables 2–5, we present
the simulation results shown in Figure 7 for the point estimates and Figure 8 for the
interval estimates. Note that the x-axis sequentially represents 12 different combinations of
censoring schemes.

In Figure 7, it can be seen that the Bayes estimates performed better in the majority
of cases because they had lower MADs and MSEs. However, the Bayes estimate with
non-informative priors, where F2 was chosen as the loss function, performed slightly
worse. In the Bayes estimate, the informative priors had lower MADs and MSEs than the
non-informative priors. In all cases, among the three loss functions, F3 performed the best,
followed by F1, and F2 performed the worst. In addition, the performances of the different
censoring schemes varied. For η1, the censoring scheme (S2, T5) exhibited the smallest
MADs and MSEs, and the censoring scheme (S3, T6) was the second-best performer. For η2,
the censoring scheme (S5, T5) exhibited the smallest MADs and MSEs, and the censoring
scheme (S6, T6) was the second-best performer.
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Figure 5. Trace plots for η1 (a) with C.S (S2, T5), (b) with C.S (S4, T1).
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Figure 6. Trace plots for η2 (a) with C.S (S3, T3), (b) with C.S (S4, T4).
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Figure 7. Visualization results of MADs and MSEs (a) for η1, (b) for η2.

Figure 8. Visualization results of average lengths and coverage probabilities (a) for η1, (b) for η2.

In Figure 8, it can be seen that BCIs and HPDCIs for the gamma informative priors
performed the best, as they had the shortest average lengths and highest coverage prob-
abilities. The logit-scale-based ACIs performed the second best. The ACIs and BootCIs
performed the worst, as they had the longest average lengths and the lowest coverage
probabilities. In all of these cases, in terms of the BCIs and HPDCIs, the HPDCIs had shorter
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average lengths, whereas the BCIs had higher coverage probabilities so they each have their
own advantages. In addition, the informative priors outperformed the non-informative
priors, as they exhibited both shorter average lengths and higher coverage probabilities.
Furthermore, different censoring schemes also performed differently. For η1, in terms of
average lengths, the censoring scheme that performed the best was (S2, T5), whereas in
terms of coverage probabilities, the censoring scheme that performed the best was (S4, T4).
For η2, in terms of average lengths, the censoring scheme that performed the best was (S5,
T5), whereas in terms of coverage probabilities, the censoring scheme that performed the
best was (S2, T5).

5.2. Real Data Example

To illustrate the suitability of the proposed method, a real data set was used. The data
set we selected was obtained from http://cdec.water.ca.gov/cgi-progs/queryMonthly?
SHA (accessed on 10 March 2023) and represents the water capacity of the Shasta reservoir
in California, USA. We assumed that the water levels do not lead to excessive dryness if
the reservoir capacities in August for at least 2 out of the next 5 years are not lower than
the capacity observed in December of that year. Our purpose was to infer whether the area
was excessively dry. Therefore, we can build a model to estimate the MSSR, where the
capacities in August can be regarded as the strength variables and the capacity in December
can be regarded as the stress variable. From 1975 to 2016, the water capacities in August
and December were as follows:

X =



0.287785 0.126977 0.768563 0.703119 0.729986
0.811159 0.829569 0.726164 0.423813 0.715158
0.363359 0.463726 0.371904 0.291172 0.414087
0.538082 0.744881 0.722613 0.561238 0.813964
0.668612 0.524947 0.605979 0.715850 0.529518
0.742025 0.468782 0.345075 0.425334 0.767070
0.613911 0.461618 0.294834 0.392917 0.688100


, Y =



0.667157
0.767135
0.640395
0.650691
0.709025
0.824860
0.679829


Before proceeding with the estimation, we first performed Kolmogorov–Smirnov

(K-S) tests to ensure that X and Y did follow the Chen distribution. In addition, three
distributions were used to compare with the Chen distribution in the K–S tests. Their PDFs
are as follows:

Weibull: f (x) =
θ

λ

( x
λ

)θ−1
e−(

x
λ )

θ
, x > 0, θ, λ > 0,

Burr XII: f (x) = θλxθ−1(1 + xθ)−λ−1, x > 0, θ, λ > 0,

Generalized Rayleigh: f (x) = 2θλ2xe−(λx)2
(1− e−(λx)2

)θ−1, x > 0, θ, λ > 0.

The results of the K–S tests are shown in Table 6. It can be seen that both X and
Y followed the Chen distribution at the 0.05 significance level. In particular, the Chen
distribution demonstrated better performance in the K–S tests for data set X.

In the previous sections, the estimations of Rs,k were discussed under the assump-
tion that the stress and strength variables followed the Chen distribution with the same
second shape parameter. Therefore, before estimating using the real data, we needed to
check whether their second shape parameters were the same. Let X1, X2, ..., Xk follow
Chen(θ1, λ1) independently, and let Y (independent of X1, X2, ..., Xk) follow Chen(θ2, λ2).
Then, the following hypothesis testing question is posed as

H0 : λ1 = λ2 versus H1 : λ1 6= λ2.

In the complete sample, the corresponding likelihood function is given by

http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA
http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA
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L(θ1, λ1, θ2, λ2) =
n

∏
i=1

(
k

∏
j=1

fX(xij)

)
fY(yi)

=θ1
nkλ1

nkθ2
nλ2

n
n

∏
i=1

k

∏
j=1

xij
λ1−1exp{xij

λ1 + θ1(1− exij
λ1
)}

×
n

∏
i=1

yi
λ2−1exp{yi

λ2 + θ2(1− eyi
λ2 )}.

Then, the likelihood ratio statistic is constructed as follows:

r =
max

θ1,θ2>0,λ1=λ2>0
L(θ1, λ1, θ2, λ2)

max
θ1,θ2,λ1,λ2>0

L(θ1, λ1, θ2, λ2)
.

For large n, when H0 holds, one has Λ = −2 ln r ∼ χ2(1) asymptotically. Thus, the
rejection region is {Λ > χ2

α(1)} at a given significance level α, where χ2
α(1) is 100(1− α)th

percentile of χ2(1). For given data sets X and Y, we calculate that Λ = 0.2580 with a
p-value of 0.6115. Therefore, we can accept H0 at the 0.05 significance level, whereupon the
MSSR can be estimated using our proposed method.

Table 6. Comparison of different distributions in K–S tests.

Data Set Distribution θ̂ λ̂ K–S Distance p-Value

X Chen 4.5946 3.5431 0.1461 0.4050
Weibull 3.5428 0.6249 0.1550 0.3344
Burr XII 3.7702 6.5519 0.1612 0.2908

Generalized Rayleigh 2.2869 2.1350 0.1552 0.3329

Y Chen 2.9026 3.6574 0.2337 0.7630
Weibull 11.0177 0.7358 0.2297 0.7807
Burr XII 11.1770 31.7219 0.2272 0.7913

Generalized Rayleigh 1481.5031 3.9797 0.1966 0.9048

Then, we obtain different estimates of Rs,k using the complete sample, as well as three
different censored samples. The samples can be, respectively, generated by the censoring
schemes as follows:

Complete Sample: S = (0 ∗ 5), T = (0 ∗ 7) (n = 7, k = 5, s = 2).

C.S 1: S = (0, 0, 0, 1), T = (0, 0, 0, 1, 1) (n = 5, k = 4, s = 2).

C.S 2: S = (1, 0, 0, 0), T = (2, 0, 0, 0, 0) (n = 5, k = 4, s = 2).

C.S 3: S = (1, 1, 0), T = (1, 1, 1, 0) (n = 4, k = 3, s = 1).

Based on C.S 1, the censored samples are derived as

X1 =


0.291172 0.363359 0.371904 0.414087
0.538082 0.561238 0.722613 0.744881
0.126977 0.287785 0.703119 0.729986
0.294834 0.392917 0.461618 0.613911
0.423813 0.715158 0.726164 0.811159

, Y1 =


0.640395
0.650691
0.667157
0.679829
0.767135


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Based on C.S 2, the censored samples are derived as

X2 =


0.291172 0.371904 0.414087 0.463726
0.294834 0.461618 0.613911 0.688100
0.524947 0.605979 0.668612 0.715850
0.423813 0.726164 0.811159 0.829569
0.345075 0.468782 0.742025 0.767070

, Y2 =


0.640395
0.679829
0.709025
0.767135
0.824860


Based on C.S 3, the censored samples are derived as

X3 =


0.291172 0.371904 0.463726
0.126977 0.703119 0.768563
0.524947 0.605979 0.715850
0.345075 0.468782 0.767070

, Y3 =


0.640395
0.667157
0.709025
0.824860


For the complete, as well as three progressively censored, samples, we derive various

point estimates and 95% interval estimates of Rs,k, as shown in Tables 7 and 8, respectively.
For the Bayesian estimates, non-informative priors are used. For three parameters in
the MCMC method, we provide the CUSUM plots in Figure 9 and the trace plots in
Figure 10. As can be seen in these figures, the MCMC chains converged quickly to stationary
distributions, indicating that the MCMC method performed well.

Table 7. The point estimates for real data.

Bayes

C.S MLE F1 F2 F3

Complete Sample 0.5133 0.5007 0.4632 0.5165
C.S 1 0.4339 0.4252 0.3724 0.4466
C.S 2 0.3630 0.3589 0.3075 0.3808
C.S 3 0.4858 0.4760 0.4044 0.5028

Table 8. The interval estimates for real data.

Intervals Complete Sample C.S 1 C.S 2 C.S 3

ACI (0.2550, 0.7715) (0.1480, 0.7199) (0.1026, 0.6235) (0.1421, 0.8294)
Logit (0.2727, 0.7478) (0.1931, 0.7106) (0.1560, 0.6374) (0.1927, 0.7890)

BootCI (0.2860, 0.8142) (0.1798, 0.8088) (0.1500, 0.7633) (0.1486, 0.8643)
BCI (0.2555, 0.7463) (0.1712, 0.7035) (0.1394, 0.6273) (0.1708, 0.7949)

HPDCI (0.2531, 0.7411) (0.1531, 0.6821) (0.1267, 0.6108) (0.1658, 0.7884)

Figure 9. Cont.
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Figure 9. CUSUM plots for θ1, θ2, and λ (a) with the complete sample, (b) with censoring scheme 1,
(c) with censoring scheme 2, (d) with censoring scheme 3.
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Figure 10. Trace plots for real data.

6. Conclusions

We study the estimation of the MSSR based on the Chen distribution using progres-
sively censored data. The reliability inference of multicomponent stress–strength systems
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has attracted significant interest, with numerous scholars contributing to the field. Progres-
sive Type-II censoring has been widely used in lifetime tests for nearly two decades. The
Chen distribution is commonly used to model real-life data in the fields of lifetime analysis
and reliability theory.

We begin by obtaining the MLE. Then, the ACI based on the MLE is derived, where the
delta method is used. The percentile BootCI is also constructed. Additionally, the Bayes esti-
mates, BCIs, and HPDCIs are obtained using the MCMC method. The stochastic simulations
are performed using the R software. According to the results, the Bayes estimates under the
gamma priors using the precautionary loss function exhibit the smallest MADs and MSEs
among all the point estimates. Among all the interval estimates, the BCIs have the shortest
lengths and the HPDCIs have the highest coverage probabilities. Finally, the applicability of
the method is illustrated using real data.

Our study focuses solely on the estimation of the MSSR based on the Chen distribution
using a common second shape parameter. In the future, we will explore the case of unequal
shape parameters. Additionally, the multicomponent stress–strength system we study
contains only one stress component and we do not consider scenarios involving multiple
stress components. In the future, we will explore a more complex system and further
extend the model to cases where there is more than one stress component. Furthermore, we
assume that the strength random variables are independently and identically distributed,
which may not accurately reflect certain real-world situations. Therefore, the study of
multicomponent stress–strength systems with non-identical strength variables will be
considered in the future.
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Abbreviations

MSSR Multicomponent stress–strength reliability
MLE Maximum likelihood estimate
ACI Asymptotic confidence interval
BootCI Bootstrap confidence interval
BCI Bayesian credible interval
HPDCI Highest posterior density credible interval
MCMC Markov Chain Monte Carlo
GELF Generalized entropy loss function
C.S Censoring scheme
F1 Squared error loss function
F2 Entropy loss function
F3 Precautionary loss function
MAD Mean absolute deviation
MSE Mean squared error
AL Average length
CP Coverage probability
PDF Probability density function



Appl. Sci. 2023, 13, 6509 24 of 25

CDF Cumulative distribution function
HRF Hazard rate function
S Censoring scheme for the strength variables
T Censoring scheme for the strength variables
Rs,k Multicomponent stress–strength reliability
X Strength variables
Y Stress variables
I Observed Fisher information matrix
θ First shape parameter of the Chen distribution
λ Second shape parameter of the Chen distribution
θ1 First shape parameter of the Chen distribution for the strength variables
θ2 First shape parameter of the Chen distribution for the stress variables
η (θ1, θ2, λ)

q Parameter of the GELF
a Parameter of gamma prior
b Parameter of gamma prior
s Parameter of MSSR
k The number of observed components in each system in the lifetime test
N The number of systems in the lifetime test
n The number of observed systems in the lifetime test
K The number of components in each system in the lifetime test
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