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Abstract: In order to accurately identify the state of health (SOH) and remaining useful life (RUL)
of lithium-ion batteries, this paper proposes an SOH estimation algorithm for lithium-ion batteries
based on stream learning and LightGBM. To address the problem of inconsistent data length, which
makes it difficult to establish the state mapping relationship between degraded data and health
state, the health factors in this paper are extracted from capacity degradation features, entropy
features, and correlation coefficient features. Then, the landmark isometric mapping (L-ISOMAP)
manifold learning algorithm is used to dimensionally reduce the input feature set and map the
high-dimensional features to the low-dimensional space to solve the dimensional explosion problem.
Finally, a LightGBM prediction model is developed to perform SOH prediction on different datasets,
and the superiority of the multidimensional model is evaluated. The experimental results show
that the goodness-of-fit is 0.98 and above, and the MSE values are below 4 × 10−4. Comparing
several prediction models, the LightGBM model has the best performance and better results in several
indexes, such as MSE and RMSE. Under different working conditions, the proposed model in this
paper has a goodness-of-fit of more than 0.98 in dataset B, which proves that the proposed model has
a strong generalization ability.

Keywords: capacity degradation feature; SOH prediction; manifold learning; LightGBM model

1. Introduction

As one of the most commonly used energy storage devices, lithium-ion batteries are
widely used in aerospace, new energy vehicles, and portable electronic devices [1–5]. Due to
the chemical reactions inside the battery and the influence of the external environment, the
service life of the battery gradually ages or even fails with the use time. Therefore, timely
prediction of the health condition and failure threshold of Li-ion batteries is beneficial for
planning and managing batteries to ensure safe and reliable operation of devices. Therefore,
accurate prediction of the state of health (SOH) and remaining useful life (RUL) of Li-ion
batteries is of great significance in the field of Li-ion battery use [6–8].

In recent years, theories and technologies related to the fields of artificial intelligence,
machine learning, and data mining have become more and more mature, and data-driven
battery SOH prediction has received more and more attention. Researchers have used
advanced machine learning and neural networks and other methods to establish the
mapping relationships between battery SOH and RUL and features to achieve the pre-
diction task [9–12]. Shi Yongsheng et al. used early battery cycling data, observed the
discharge voltage–capacity degradation curve, and established a hybrid prediction model
of a WOA–XGboost algorithm with input time series data to achieve SOH prediction on
a time series [13]. In the research of Ji Wu, the voltage during the charging process of
Li-ion batteries served as an indirect health factor, and a model for predicting the RUL
of Li-ion battery was built based on an artificial neural network (ANN). Nevertheless,
fewer features were extracted, and the model generalization ability of the model with
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fewer features in the actual prediction should be verified [14]. Ping Wang et al. proposed
a Gaussian regression-based, joint principal component analysis method to process the
charging curve to obtain indirect health features, which was combined with a battery aging
model and achieved high accuracy. Pan, H. et al. proposed constructing health indicators
(HI) characterizing battery decline under dynamic operating conditions and introduced
an ELM decline model for offline training of the whole battery life cycle by an extreme
learning machine (ELM) to achieve SOH online estimation, which is more robust than the
traditional estimation methods [15]. Wen proposed a model based on incremental capacity
analysis and a BP neural network to predict the SOH of batteries at different ambient
temperatures. By analyzing the correlation between IC curve characteristics and SOH, the
mapping relationship between temperature and IC curve characteristics was established by
the least squares method to obtain the SOH prediction model at different temperatures [16].
Jixuan Zhang combined the filtering algorithm with the autoregressive sliding average
algorithm and used the fusion algorithm to build the remaining life prediction model for
lithium-ion batteries, which effectively improved the training speed [17].

Due to the complexity of chemical reactions in actual lithium-ion batteries, various
types of partial differential equations need to be established, and the parameters and matrix
calculations involving the equivalent circuit model are relatively large, which makes it
difficult to guarantee the accuracy of the model in practical applications. Furthermore,
SOH cannot be directly measured, often relying on certain technical means for the correct
extraction of the internal parameters and characteristic relationships of the battery to esti-
mate SOH [18–20]. Data-driven and predictive model building-based approaches usually
extract typical features from degraded data, and, using currently popular machine learning,
models can construct state mapping relationships between degraded data and health states
to overcome the problems of sample size and nonlinearity of data, thus, achieving SOH
and RUL prediction tasks. Song Zhe et al. extracted eight degradation parameters, such as
equal time interval voltage difference, equal voltage drop discharge time, and root mean
square of discharge voltage value from voltage, current, and temperature profiles to jointly
predict the RUL of Li-ion batteries but ignored the redundancy and deficiency among
the degradation parameters [21]. Yang Zanshe et al. proposed a gray wolf optimization
support vector regression method to build a degradation model based on the life cycle data
of sample batteries to achieve the evaluation and prediction of the degradation state of
Li-ion batteries, but the battery capacity is difficult to measure directly and does not have
real-time functionality [22].

In addition, although PCA (principal component analysis), LDA (linear discriminant
analysis) and NMF (non-negative matrix factorization) are more effective in feature ex-
traction applications, they are all linear. However, they are linear models that can only
discover the global features of the data, and LDA is supervised and requires a given label
information during training. Recently, a large amount of research has started to focus on the
unsupervised domain. Researchers in different fields have found that data points in high-
dimensional space lie approximately on a sub-flowform in the embedded low-dimensional
space. To discover the nonlinear structure of the high-dimensional data space, some re-
searchers have proposed kernel methods, but they are computationally intensive and do
not take into account the intrinsic manifold structure of the original high-dimensional data.
However, the manifold-based methods can effectively solve the above problems.

To this end, this paper proposes an SOH estimation and RUL prediction algorithm
for lithium-ion batteries based on manifold learning and the LightGBM model, which
integrates each cycle curve of the battery to establish feature engineering. In this paper, we
choose to extract a total of three types of features from different perspectives, which are
capacity degradation features, entropy value features, and correlation coefficient features.
Among them, the capacity degradation features extract different feature parameters for
the discharge voltage curves in charge/discharge cycles, including the average voltage
decay and IC curve feature parameters; the entropy value features are the generalized
multiscale sample entropy of each attribute using the algorithm described in the previous
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paper to measure the information uncertainty; finally, the autocorrelation coefficient and
partial autocorrelation coefficient are extracted in the time domain. Then, the L-ISOMAP
manifold learning algorithm is used to dimensionally reduce the input feature set to solve
the dimensional explosion problem. Finally, LightGBM prediction models are established
to perform SOH prediction on different datasets, and multidimensional model superiority
assessment is performed, including the selection of different prediction models, the com-
parison of the selection of different manifold learning methods, and model generalization
validation experiments.

The approximate structure of this paper is as follows. Section 2 shows the algorithms
used for SOH prediction. It includes the algorithms used in data preprocessing, as well as
the principle of the generalized multiscale sample entropy algorithm, L-ISOMAP algorithm,
and the LightGBM regression prediction model. Section 3 shows the flow-based learning
and LightGBM prediction process constructed in this paper. Section 4 is an example valida-
tion of the datasets from different sources using specific battery data examples, combined
with the prediction model built in Section 3, and the analysis of the obtained prediction
results. Section 5 sets up multiple sets of experiments to validate the multidimensional
superiority of the model proposed in this paper. Section 6 concludes by summarizing the
whole paper.

2. Algorithm Principle
2.1. The Generalized Multiscale Sample Entropy
2.1.1. Multiscale Sample Entropy (MSE)

The MSE algorithm process is as follows:
For the time series {x(i), i = 1, 2, . . . , N}, define the coarse-grained sequence y(s) using

the following equation:

y(s) =
1
s

js

∑
i=(j−1)s+1

xi (1)

where s is the scale factor, 1 ≤ j ≤ N
s .

Calculate the sample entropy values of the coarse-grained sequence y(s) under different
scale factors s, i.e., the multiscale sample entropy, as follows:

EMSE(x, s, m, r) = ESE(y(s), m, r) = − ln(
n(m+1)

s

n(m)
s

) (2)

where m is the embedding dimension,r is the similarity tolerance, ESE() is the sample
entropy value, and n(m+1)

s and n(m)
s are the number of m + 1 and m dimensional vectors of

the coarse-grained sequence, respectively.

2.1.2. Generalized Multiscale Sample Entropy

In this paper, we extend the mean calculation of the MSE coarse-grain process to
second-order moments to overcome the deficiency of “neutralizing” the mutation behavior
of the original signal brought by the coarse-grain method of homogenized data, and then
propose a generalized multiscale sample entropy (GMSE) algorithm. The specific procedure
is as follows:

For the time series described in the previous section x(i), the following equation is
used to calculate the generalized coarse-grained series y(s)G :

y(s)G (j) =
1
s

js

∑
i=(j−1)s+1

(xi −
−
xi)

2
(3)

−
xi =

1
s

s−1

∑
h=0

xi+h (4)
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where 1 ≤ j ≤ N
s .

Calculate the sample entropy values for the generalized coarse-grained sequence y(s)G
at different scale factors s, as follows:

E(GMSE)(x, s, m, r) = ESE(y
(s)
G , m, r) = − ln(

n(m+1)
G,s

n(m)
G,s

) (5)

2.2. Landmark Isometric Mapping Algorithm (L-ISOMAP)

The basic idea of landmark-isometric mapping (L-ISOMAP) is similar to MDS, that
is, to find the “geodesic distance” between any two sample points from high-dimensional
data, and to achieve the “geodesic distance” in the low-dimensional space by mapping.
The “geodesic distance” remains approximately the same in the low-dimensional space.
Compared with the ISOMAP algorithm, L- ISOMAP has a faster operation rate and wider
application range and can represent the low-dimensional features of high-dimensional
data well.

The specific calculation steps of the L-ISOMAP algorithm are as follows:
Select the appropriate landmark points. Select n landmark points from N samples,

and then find the Euclidean distance between N all sample points and the selected n points
to obtain the matrix d, where dij represents the Euclidean distance between the sample
points xi and landmark points xj.

Construct the adjacency graph. Each edge weight in the adjacency graph G is dE(i, j),
and if the sample points xi and xj are connected in G, then the initial value of the shortest
path between them is dG(i, j) = dE(i, j); otherwise, dG(i, j) = ∞. Let q = 1, 2, . . . , N and
calculate the following equation:

dG(i, j) = min{dG(i, j), dG(i, q), dG(q, j)} (6)

From this, the geodesic distances between all sample point pairs can be formed into
a geodesic distance matrix at DG = {dG(i, j)} and the shortest paths can be calculated.

Compute the low-dimensional embedding coordinates. Applying the MDS algorithm
to the geodesic distance matrix DG, the following objective function is minimized to obtain
the low-dimensional embedding coordinates of the sample Y.

E =||τ(DG)− τ(DY)||L2 (7)

where τ(DG) = −HSH/2, Sij = D2
ij, H = I − 1

m eeT , and I denote the unit matrix and e
denotes the unit column vector. The optimal embedding coordinates of L-ISOMAP are
obtained by minimizing the objective function and finding the maximum eigenvector Y.

2.3. LightGBM Algorithm
2.3.1. Gradient Boosting Algorithm (GBDT)

Gradient boosting is a machine learning algorithm of the boosting class. GBDT is
based on the principle of addition, which accumulates the results of multiple regression
trees to obtain the final result, and effectively avoids the problem of easy overfitting of
a single tree by controlling the weights of the regression tree results in each round of
iteration [23].

The steps of the GBDT algorithm are as follows:
Step 1: Input the training dataset, as follows:

T = {(x1, y1), (x2, y2), . . . , (xn, yn)} (8)

where xi ∈ X ⊆ Rn, yi ∈ Y ⊆ Rn.



Appl. Sci. 2023, 13, 6540 5 of 21

Step 2: Initialize the weak learner f0(x), and define the prediction function of the
model f (x), as follows:

f0(x) = Arg minc

m

∑
i=1

L(yi, c) (9)

f (x) =
N

∑
i=0

fi (10)

Step 3: Construct a weak learner for each round in the iteration number t = 1, 2, . . . , T
with the training sample D = {xi, yi}N

1 and the corresponding loss function L(yi, f (xi)) =

(yi − f (xi))
2 to solve for the negative gradient, as follows:

rti = −[
−∂L(yi, f (xi))

∂ f (xi)
]

f (x)= ft−i(x)
(11)

Step 4: Using the solved negative gradients rti and xi(i = 1, 2, . . . , N), a CART regres-
sion tree is fitted according to the squared error minimization training decision tree to
obtain the tth regression tree, whose corresponding leaf region is Rti(j = 1, 2, . . . , J), where
j is the number of leaf nodes of the regression tree t, as in the following Equation (12):

Ctj = Arg minc ∑
xi∈Rtj

L(yi, ft−1(xi) + c) (12)

Step 5: Update the strong learner, as follows:

ft(x) = ft−1(x) +
J

∑
j=1

Ctj I(x ∈ Rtj) (13)

If the corresponding decision function satisfies the convergence condition, the iteration
stops and the expression of the final strong learner f (x) is as follows:

f (x) = f0(x) +
T

∑
t=1

J

∑
j=1

Ctj I(x ∈ Rtj) (14)

2.3.2. LightGBM Algorithm

The traditional GBDT algorithm has some limitations in implementation, such as poor
performance on high-dimensional sparse datasets, serial training process, and relatively
poor parallelism capability. Therefore, the LightGBM (light gradient boosting machine)
algorithm is further proposed on the basis of GBDT. In model building, the basic idea is
the same as GBDT, but the computational cost and complexity of the model are reduced
compared with GBDT, and the performance and performance is better than the commonly
used machine learning algorithms.

LightGBM uses a histogram to optimize the sample processing speed by pre-constructing
a training function to transform the continuous eigenvalues into discrete K box eigenvalues
before training, thereby building a histogram with K entries that traverses the entire sample.
In this process, LightGBM accumulates statistics in the histogram with K discrete values
and finally finds the best splitting point from the discrete values [24]. LightGBM starts with
a constant tree model and minimizes the loss function by training a new tree model, as
follows [25–27]:

Y(t)
i = Y(t−1)

i + ft(xi) (15)
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where Y(t)
i is the new model, Y(t−1)

i is the tree model of the previous iteration, and ft(xi) is
the tree model to be added in the next step, denoted as follows:

ft = minL = min(
n

∑
i=1

l(yi, Yi)) (16)

where L is the loss function of the algorithm, denoted by the predicted value Yi and the
true value yi of the ith sample. In addition, the leaves of the GBDT algorithm use level-wise
growing by layer, which treats the leaves of the same layer indiscriminately, while in fact
many leaves have low splitting gain and there is no need for splitting. To address this
shortcoming, the LightGBM algorithm uses a more efficient leaf-wise algorithm to find the
leaf with the largest splitting gain from a layer and repeat it over and over again to obtain
a higher accuracy with the same number of splits.

3. Li-Ion Battery SOH Prediction Process

For Li-ion battery SOH prediction, this paper designs a Li-ion battery SOH prediction
flow based on manifold learning and LightGBM. This prediction flow is shown in Figure 1.
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As can be seen from Figure 1, the battery SOH prediction model proposed in this
paper includes four major parts: data acquisition, feature engineering establishment, man-
ifold learning, and model prediction. Firstly, the battery charging and discharging cycle
experiment is designed to obtain the dataset B. Secondly, the feature engineering is estab-
lished, and this paper chooses to extract a total of three types of features from different
angles, which are the capacity degradation features, entropy value features, and correlation
coefficient features. Among them, the capacity degradation features mainly focus on the
discharge voltage curve in the charge/discharge cycle and extract different feature param-
eters, including the average voltage decay and IC curve feature parameters; the entropy
value features are the generalized multiscale sample entropy of each attribute using the
algorithm described in the previous paper, which measures the information uncertainty;
finally, the autocorrelation coefficients and partial autocorrelation coefficients are extracted
in the time domain; then, the L-ISOMAP manifold learning algorithm is used. Dimensional
simplification is performed on the input feature set to solve the dimensional explosion
problem; finally, a LightGBM prediction model is established to perform SOH prediction
on different datasets, and model evaluation is performed.
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4. Data Acquisition
4.1. Experimental Protocol
4.1.1. Instrumentation

The following apparatus were used: battery tester, thermostat, upper computer, and
alligator clips.

In this paper, a battery tester is used to perform cyclic charge/discharge experiments
on the battery and to detect parameters, such as voltage, current, power, and capacity
during the process to construct the dataset B. The battery is an NCM battery, which is also
the most widely used battery in method vehicles, and a thermostat is used to create an
experimental environment of 15 ◦C [16]. The experimental equipment is shown in Figure 2.
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The battery to be tested is an 18650 Li-ion battery, and its details are shown in Table 1.

Table 1. Battery detailed parameter table.

Projects Specification Projects Specification

Housing material Nickel-plated steel
Charging strategy

(CC/CV)

Standard 0.5C_5A × 7.5 h
Nominal capacity 1300 mAh Fast 1C_5A × 2.5 h

Rated capacity 3.7 V Charging 0~45 ◦C
32~113 ◦FCharging voltage (Max) 4.2 V

Discharge cut-off voltage 2.7 V

Operating temperature
Discharge −15~60 ◦C

5~140 ◦FCharging current (Max) 1C A5
Discharge current (Max) 3C5 A Storage −20~60 ◦C

−4~113 ◦FInternal resistance (Max at 1000 Hz) ≤25 mΩ

4.1.2. Experimental Steps

The experimental procedure is shown in Figure 3.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 23 
 

incubator

Neutral 
machine

test machine

upper 
computer

alligator clip

 
Figure 2. Experimental equipment. 

The battery to be tested is an 18650 Li-ion battery, and its details are shown in Table 1.  

Table 1. Battery detailed parameter table. 

Projects Specification Projects Specification 
Housing material Nickel-plated steel 

Charging strategy 
(CC/CV) 

Standard 0.5C_5A × 7.5 h 
Nominal capacity 1300 mAh Fast 1C_5A × 2.5 h 

Rated capacity 3.7 V Charging 0~45 °C 
32~113 °F Charging voltage (Max) 4.2 V 

Discharge cut-off voltage 2.7 V 
Operating temper-

ature 

Discharge 
−15~60 °C 
5~140 °F Charging current (Max) 1C A5 

Discharge current (Max) 3C5 A 
Storage 

−20~60 °C 
−4~113 °F Internal resistance (Max at 1000 Hz) ≤25 mΩ 

4.1.2. Experimental Steps 
The experimental procedure is shown in Figure 3. 

1.3A constant 
current charge to 

4.2V

Allow to stand 
for 10 minutes

3.9A constant 
current 

discharge

4.2 V constant 
voltage charge 
to less than 0.2 

A current

>147 Cycles ? Yes
Allow to 

stand for 20 
minutes

Start End

No

 
Figure 3. Experimental procedure. 

4.2. Introduction to the Dataset 
To verify the prediction effect of the proposed algorithm for Li-ion batteries under 

different charging and discharging strategies, two datasets are selected for the experi-
ments, which are noted as dataset A and dataset B. 

Dataset A: Lithium-ion battery test data from the NASA prediction center (prognos-
tics center of excellence, PCoE). The battery used is the 18650 battery, with a rated capacity 
of 2 Ah. Take the B0005, B0006, and B0007 battery data as experimental data, including 
the battery cycle charge and discharge process voltage. The experimental process is as 
follows. During the charging process, the battery is charged with 1.5 A constant current, 

Figure 3. Experimental procedure.



Appl. Sci. 2023, 13, 6540 8 of 21

4.2. Introduction to the Dataset

To verify the prediction effect of the proposed algorithm for Li-ion batteries under
different charging and discharging strategies, two datasets are selected for the experiments,
which are noted as dataset A and dataset B.

Dataset A: Lithium-ion battery test data from the NASA prediction center (prognostics
center of excellence, PCoE). The battery used is the 18650 battery, with a rated capacity of
2 Ah. Take the B0005, B0006, and B0007 battery data as experimental data, including the
battery cycle charge and discharge process voltage. The experimental process is as follows.
During the charging process, the battery is charged with 1.5 A constant current, and when
the voltage reaches 4.2 V, it is switched to constant voltage charging until the charging
current is less than 20 mA to stop charging; during the discharging process, the battery is
discharged with 2.0 A constant current until the voltage is less than 2.5 V. According to the
above process, the battery is charged and discharged for 168 cycles [28–30].

Dataset B: Dataset B is the data obtained from the measurements according to the
experimental procedure in Section 4.1, including the battery data of voltage, current, and
power during charging, resting, and discharging. The parameters of 148 cycles of the
battery are obtained after processing.

5. Instance Validation

In this paper, we take dataset A as the research object, perform feature extraction,
and then build a prediction model to predict SOH and RUL of each group of batteries.
Meanwhile, to verify that the feature engineering proposed in this paper has strong gener-
alization ability, we take dataset B as the validation object, build feature engineering again
for dataset B, and build a prediction model to observe the prediction effect.

5.1. Feature Extraction

The dataset selected in this paper includes charging and discharging cycles, including
voltage measured, current measured, temperature measured, current load, and voltage
load for charging experiments, and voltage measured, current measured, temperature mea-
sured, and current load, voltage load for discharging experiments, as well as temperature
measured, current load, and voltage load, a total of 10 attributes. Some of the discharge
voltage curves are shown in Figure 4.
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Figure 4. Discharge voltage curves under different cycles.

As can be seen from Figure 4, each curve represents the change in the discharge
voltage property in the discharge experiment under different cycles. Since the capacity of
each charge and discharge is different, the sampling length of each curve is inconsistent,
resulting in inconsistent lengths of the data sequence measured by the instrument, so it
is difficult to directly input the property as a feature quantity directly into the prediction
model for battery life prediction, and feature extraction must be performed on it.
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5.1.1. Capacity Degradation Characteristics

The capacity of a Li-ion battery is related to its complex internal physicochemical and
thermal effects. It is necessary to find the health factors that replace the degradation state
of the battery, so it is necessary to extract the characteristic sequence of the degradation
state of the lithium battery for the parameters that can be easily monitored and to construct
the set of health factors.

First is the voltage decay characteristic. The time used by a brand new fully charged
battery to discharge the power will gradually decrease with the increase in the number
of discharge cycles. As can be seen from the discharge voltage curves in Figure 4, within
500~1500 s, the value of the voltage drop in different cycle curves increases with the number
of cycles, i.e., the distance between the nominal voltage and the real-time voltage increases,
so the voltage decay can be used to quantify the capacity decay. Several discharge voltage
curves in Figure 4 were randomly selected, and the discharge voltage decay schematic is
shown in Figure 5.
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As shown in Figure 5, in order to describe the voltage decay more comprehensively,
this paper chooses to use the mean voltage decay (MVF) as the health factor. Specify
500~1500 s as the time range for extracting the health factor, and define MVF by averaging
50 voltage points within the defined time range, with each sampling time point defined as
j, where the MVF during the ith discharge cycle can be expressed as follows:

MVFi =

50
∑

j=1

∣∣Vn −Vj
∣∣

50
(17)

where MVFi is the discharge voltage drop of the ith charge/discharge cycle; Vj is the jth
discharge voltage point in the defined time range; Vn is the nominal voltage of 4.2 V.

In addition to the average voltage drop sequence, there are some physical quantities
that can also reflect the battery capacity degradation state, such as the capacity increment
curve [31]. The essence of the capacity increment curve is the differentiation of the capacity
Q charged or discharged by the battery during charging and discharging against the
voltage V, which is the magnitude of the capacity change corresponding to the unit voltage
change in the battery when it occurs. The voltage plateau appearing in the charging and
discharging voltage change curve can be transformed into the capacity increment with
significant characteristics (dQ/dV). The specific equation for the IC in the discharging
mode is as follows:

dQ
dV
≈ ∆Q

∆V
=

Qv2 −Qv1

V2 −V1
(18)
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where Qv1 represents the battery capacity at V1 and Qv2 represents the battery capacity at
V2. The IC curves in the discharge experiment are shown in Figure 6a.
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Figure 6. Discharge IC curves. (a) Original discharge IC curve; (b) discharge IC curve after filtering.

As can be seen from Figure 6a, with the decline in the battery, there is a more obvious
change in the IC curve, and the change is more significant at the peak of the IC curve and
its corresponding position.

To quantitatively analyze the battery aging state by using the capacity increment
curve, it is also necessary to filter and smooth the curve, so that it is easier to find the
characteristics and change patterns of the curve. In this paper, the generalized moving
average method is chosen to smooth and filter the curve. The filtered discharge IC curve is
shown in Figure 6b.

As can be seen from Figure 6b, the IC curve after filtering is obviously smooth and
the peak height is clearly visible, and the peak height shows a better correlation with
capacity decline as the battery aging degree deepens. Meanwhile, analyzing the IC curve
characteristics of different aging degrees during the battery cycle aging process, such as the
left and right positions, the area contained in the peak, and other parameters, the mode and
mechanism of battery aging decline can be analyzed and judged, and then the health status
of the battery can be diagnosed [31,32]. Taking the fifth discharge cycle as an example, the
schematic representation of each parameter in its capacity increment curve is shown in
Figure 7.
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As shown in Figure 7, the feature parameters selected for extraction in this paper
include the peak height, the position of the crest (the voltage value corresponding to the
horizontal axis at the peak), the area contained in the crest, and the slope of the left and
right sides of each peak. Among them, the peak height and the position of each peak are
the peak at the highest point in the IC curve and its corresponding voltage value. For the
left and right slope of the peak, we need to determine the voltage point on the left and right
side. From the IC curves under different cycles in Figure 7, we can see that the curve rises
sharply at about 3.3 V, indicating that it is greatly influenced by the discharge voltage at
this time, so the voltage on the left side of the wave peak is determined to take the value of
3.3 V; the voltage point on the right side is calculated by calculating the position where the
first trough appears and taking it as the voltage on the right side of the wave peak. The
area contained in the wave crest is calculated as the area enclosed by the IC curve and the
voltage points on the left and right side.

In summary, the characteristic parameters in the MVF and discharge IC curves are
selected as the first type of capacity degradation characteristics in this paper.

5.1.2. Generalized Multiscale Sample Entropy

Entropy is a measure of information uncertainty, so entropy features are often used
as a class of effective features for feature extraction in regression models. To measure the
uncertainty and complexity of the signal distribution, the entropy of different frequency
bands can be used to quantify the information contained in the signal. The mean value
feature of entropy can reflect the complexity of the information within the system as well
as the error orientation.

The most commonly used entropy functions include scatter entropy, fuzzy entropy, and
sample entropy, as well as the derived multiscale entropy. Among them, the generalized
multiscale sample entropy, which is improved on the basis of multiscale sample entropy, has
the advantages of robustness, simple calculation, and fast operation, which can overcome
the shortage brought by the coarse-grained method of using homogenized data in the
calculation process on the sample.

In this paper, the generalized multiscale sample entropy is selected as the entropy
feature, and the optimal scale factor is selected by analyzing the change trend of the
GMSE mean value under different scales s. Figure 8 shows the GMSE mean values of the
discharge voltage attributes under different cycles when different scale factors are selected,
and the most suitable scale is selected based on the scale–mean decay relationship, i.e., the
dimensionality of the entropy feature vector is determined.
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Figure 8. Mean values of GMSE at different scale factors.

As can be seen from Figure 8, with the increase in the scale factor, the mean GMSE
values of the discharge voltage signals of each cycle show a continuous increasing trend,
and at the scale factor of 5, the voltage curves of different cycles appear to overlap and
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cross. Considering that the dimensionality of the feature set is closely related to the aging
information, a smaller scale factor cannot fully extract the feature information and is prone
to information overlap; a larger scale factor will cause redundancy of feature information
and affect the model prediction effect. Therefore, the GMSE values of the first six scale
factors constitute the entropy feature sample set, which is used as the second type of
entropy feature input.

5.1.3. Autocorrelation Coefficient Characteristics

In time series forecasting, the autocorrelation and partial autocorrelation coefficients
can be used to measure the correlation between current and past series values and to
indicate the most useful past series values for predicting future values.

Autocorrelation is the correlation of a signal with itself at different points in time,
and it can identify repetitive signals (such as periodic signals masked by noise), as well
as fundamental frequencies that disappear implicitly in the harmonic frequencies of the
signal. The partial autocorrelation is a summary of the relationship between the time series
and the previous time series after the interference is removed.

The autocorrelation coefficients and partial autocorrelation coefficients of each at-
tribute are extracted to form the timing characteristics. The autocorrelation coefficients and
partial autocorrelation coefficients of the discharge voltage attributes in the first cycle are
shown in Figure 9.
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Figure 9. Autocorrelation coefficient and partial autocorrelation coefficient. (a) Partial autocorrelation
coefficient; (b) autocorrelation coefficient.

In Figure 9, The upper and lower blue horizontal lines indicate the upper and lower
limits of the autocorrelation coefficient and the partial autocorrelation coefficient, respec-
tively., and the part beyond the bounds indicates the existence of a correlation. As can be
seen from Figure 9, The red line represents the magnitude of the value at different lags the
absolute value of the autocorrelation coefficient maintains a large value for a long time,
and there is a gradually decreasing trend, which indicates the phenomenon of “trailing”.
The partial autocorrelation plot, on the other hand, fluctuates around the value of zero after
the second order, i.e., the “truncated tail” phenomenon, which indicates that the time series
is a smooth series. In this paper, the autocorrelation coefficient and partial autocorrelation
coefficient of each attribute are selected as the third type of characteristics.

5.2. L-ISOMAP Manifold Learning

Manifold learning is used to recover the structure of low-dimensional stream shapes
from high-dimensional sampled data, i.e., to find low-dimensional stream shapes in high-
dimensional space and find the corresponding embedding mappings for dimensional
simplification or data visualization. It is used to find the essence of things from observed
phenomena and to find the inner laws that generate data.
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ISOMAP is an unsupervised streamlining method that can maintain global charac-
teristics and is a generalization of the MDS (multi-dimensional scaling) algorithm for
nonlinear feature extraction. The ISOMAP algorithm uses nonlinear geodesic distances
instead of Euclidean distances as the similarity degree between sample points. The L-
ISOMAP (landmark ISOMAP) algorithm is an improved algorithm based on ISOMAP,
which only calculates the geodesic distances from each sample point to landmark points
to generate the dimensional matrix and obtain the Euclidean embedding of the observed
data. In this paper, we use L-ISOMAP to dimensionally approximate the results of feature
extraction described in the previous paper, and, as such, achieve the purpose of solving the
dimensional disaster and overfitting problems.

As can be seen from Figure 10, firstly, after the landmark points are selected, the
neighbor-joining graph is constructed based on the high-dimensional health factor se-
quences obtained in the previous section to obtain its representation in the low-dimensional
space, and the six-dimensional feature subset is finally obtained after L-ISOMAP manifold
learning. The Spearman correlation coefficient is then used to characterize the intrinsic
correlation between the feature set and the capacity after feature screening, and for the
variables xi, yi, its Spearman correlation coefficient is calculated as follows:

ρ = 1−
6

n
∑

i=1
(Ri −Qi)

n(n2 − 1)
(19)

where represents the rank of Rixi, Qi represents the rank of yi, Ri −Qi is the difference in
the rank of the variables, xiyi, and n denotes the number of samples. Figure 11 shows the
Spearman correlation coefficient plot between the six-dimensional health factor and the
capacity obtained after L-ISOMAP manifold learning.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 23 
 

seen from Figure 9, The red line represents the magnitude of the value at different lags 
the absolute value of the autocorrelation coefficient maintains a large value for a long time, 
and there is a gradually decreasing trend, which indicates the phenomenon of “trailing”. 
The partial autocorrelation plot, on the other hand, fluctuates around the value of zero 
after the second order, i.e., the “truncated tail” phenomenon, which indicates that the time 
series is a smooth series. In this paper, the autocorrelation coefficient and partial autocor-
relation coefficient of each attribute are selected as the third type of characteristics. 

5.2. L-ISOMAP Manifold Learning 
Manifold learning is used to recover the structure of low-dimensional stream shapes 

from high-dimensional sampled data, i.e., to find low-dimensional stream shapes in high-
dimensional space and find the corresponding embedding mappings for dimensional 
simplification or data visualization. It is used to find the essence of things from observed 
phenomena and to find the inner laws that generate data. 

ISOMAP is an unsupervised streamlining method that can maintain global charac-
teristics and is a generalization of the MDS (multi-dimensional scaling) algorithm for non-
linear feature extraction. The ISOMAP algorithm uses nonlinear geodesic distances in-
stead of Euclidean distances as the similarity degree between sample points. The L-ISO-
MAP (landmark ISOMAP) algorithm is an improved algorithm based on ISOMAP, which 
only calculates the geodesic distances from each sample point to landmark points to gen-
erate the dimensional matrix and obtain the Euclidean embedding of the observed data. 
In this paper, we use L-ISOMAP to dimensionally approximate the results of feature ex-
traction described in the previous paper, and, as such, achieve the purpose of solving the 
dimensional disaster and overfitting problems. 

As can be seen from Figure 10, firstly, after the landmark points are selected, the 
neighbor-joining graph is constructed based on the high-dimensional health factor se-
quences obtained in the previous section to obtain its representation in the low-dimen-
sional space, and the six-dimensional feature subset is finally obtained after L-ISOMAP 
manifold learning. The Spearman correlation coefficient is then used to characterize the 
intrinsic correlation between the feature set and the capacity after feature screening, and 

for the variables ix , iy , its Spearman correlation coefficient is calculated as follows: 

1
2

6 ( )
1

( 1)

n

i i
i
R Q

n n
ρ =

−
= −

−


 

(19)

where represents the rank of iR ix , iQ  represents the rank of iy , i iR Q−  is the differ-

ence in the rank of the variables, ix iy , and n denotes the number of samples. Figure 11 
shows the Spearman correlation coefficient plot between the six-dimensional health factor 
and the capacity obtained after L-ISOMAP manifold learning. 

Capacity degradation 
features

Entropy value features

Autocorrelation 
coefficient features

Adjacency 
DiagramFeatures

Low dimensional 
representation

 
Figure 10. L-ISOMAP algorithm flow.
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A through F in the horizontal and vertical axes in Figure 11 characterize the six-
dimensional health factors above, in that order. In addition, blue indicates that the correla-
tion coefficient is less than 0 and red indicates that the correlation coefficient is greater than
0. The darker the color, the larger the value. From the definition of Spearman correlation
coefficient, it is clear that the absolute value of the correlation coefficient is approximately
close to 1, which represents a higher correlation, and 0 indicates no correlation. From
Figure 11, it can be seen that the Spearman correlation coefficient values between the
six-dimensional health factor sequences obtained by manifold learning and the capacity
are larger, indicating that the correlation between them is higher, which is conducive to the
subsequent input model and achieving accurate prediction of SOH.

5.3. SOH Prediction Based on LightGBM Model

In this paper, the cell capacity is used to describe the SOH of the cell, defined as follows:

SOH = 1− Cinit − Cbatt
0.2Cinit

(20)

where Cinit represents the rated capacity, Cbatt represents the actual capacity, and
0.2 < Cbatt < Cinit.

Battery RUL indicates the number of cycles between the capacity decay of a lithium
battery and its 80% capacity. According to the EOL standard, the failure thresholds of
B0005, B0006, and B0007 batteries are set to 1.38 Ah, 1.38, Ah and 1.5 Ah, respectively,
which can be calculated as 128 cycle count points for B0005 to reach the failure threshold
point for the first time, 112 cycle count points for B0006 to reach the failure threshold point
for the first time, and 125 cycle count points for B0007 to reach the failure threshold point
for the first time.

The six-dimensional health factor sequence obtained above is used as the input of the
LightGBM model for battery SOH prediction. For the 168 cycles of battery B0005, B0006,
and B0007 data obtained after feature processing, the first 84 cycles were taken as the
training set and the 85th to 168th cycles were taken as the test set. Here, the grid search
method is used to find the optimization of the hyperparameters of the LightGBM model.
The num_leaves, learning_rate, and n_estimators of the LightGBM model are selected
as the grid search parameters, and five-times cross-validation is used in the adjustment
process of each parameter to obtain the optimal LightGBM model with negative mean
square error (NMSE) as the objective function. The optimal values of the above parameters
for the LightGBM model were obtained after the grid search method to find the optimal
values, as shown in Table 2.

Table 2. Optimization search results.

Battery Number Num_Leaves Learning_Rate n_Estimators

5 17 0.1837 60
6 26 0.0163 60
7 10 0.1563 71

Parameter range [2, 50] [0.001, 0.5] [1, 100]

The prediction results for their test set SOH and RUL are shown in Figure 12. To
demonstrate that statistical significance is reflected, a 95% confidence interval is added
to the prediction results as an indication that there is only a 5% or smaller margin of
probability that the true results will occur outside the confidence interval.

As can be seen from Figure 12, on the test set results of dataset A, the fit of each
prediction curve is good, the overlap between the prediction curves and the true capacity
curves is high, the overall prediction curves fit the true values well, and the true values of
the capacities all fall within the 95% confidence interval predicted by the LightGBM model,
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indicating that the model can achieve the prediction purpose well on the SOH estimation
and RUL prediction in dataset A.
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In order to show the prediction accuracy of each cell in more detail, mean square error
(MSE), mean absolute error (MAE), and goodness-of-fit (R-Squared, R2) are chosen as the
prediction models. The prediction results are evaluated by the evaluation indexes. The
specific information and error distribution of the prediction evaluation indexes are shown
in Table 3 and Figure 13, respectively.

Table 3. Specific information on predictive evaluation indicators.

Battery Number MSE MAE AE R2

5 1.2740 × 10−4 0.0076 0 0.9889
6 5.4299 × 10−4 0.0175 1 0.9865
7 9.0437 × 10−5 0.0069 0 0.9921
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Here, MSE, MAE, and R2 are characterized by the following formulas, respectively:

MSE =
N

∑
i=1

1
N
( f (xi)− yi)

2 (21)

MAE =
1
N

m

∑
i=1
| f (xi)− yi| (22)

R2 = 1− SSresidual
SStotal

(23)

In the above equation, f (xi) is the true value; yi is the predicted value;i = 1, 2, . . . , N,
N is the sample size; R2 is a measure of the overall fit of the regression equation, which
takes values between [0, 1]; SSresidual represents the regression sum of squares; SStotal
represents the total sum of squares.

AE in Table 2 indicates the absolute value of the difference between the actual RUL
and the predicted RUL of the cell.

Figure 13 characterizes the prediction error distribution of batteries 5, 6, and 7, the
horizontal axis represents the error between the predicted value and the true value, and
the vertical axis is the frequency of the occurrence of this error interval. Combined with
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Figure 12 and Table 3, for R2, the effect of all three groups of batteries was above 0.98, with
a mean value of 0.9892; for AE, an index for evaluating the predictive effect of RUL, the
error of both battery 5 and battery 7 was 0, while battery 6 showed an error of one cycle
from the true RUL. The error intervals of the three batteries are basically concentrated
between 0 and 0.05, especially for battery No. 5, whose error is basically below 0.02 Ah. It
can be proved that the feature engineering and LightGBM model established in this paper
still have greater advantages in the field of SOH estimation.

5.4. Multidimensional Superiority Assessment

To verify the superiority and effectiveness of the algorithms used in different stages of
this paper in the field of SOH estimation, multidimensional model superiority assessment
experiments are conducted in this section, which include the comparison of the selection
of different prediction models, the comparison of the selection of different stream shape
learning methods, and the verification of model generalization.

5.4.1. Comparison of the Effects of Different Models

XGBoost provides an integrated decision tree-based learning method that excels in
accuracy and automatically handles missing values and outliers, and which also supports
parallel computation [33]. XGBoost’s ability to process high-dimensional sparse data
quickly and accurately with high operational efficiency and parallel processing makes
it one of the very popular algorithms in the field of machine learning, performing well
on multiple datasets. Random forest is an integrated learning method based on decision
trees, which consists of multiple decision trees and is “randomized” to improve model
performance and stability [34]. First, each base tree is sampled by “bootstrap aggregating”
with put-back sampling, and second, each base tree uses “feature randomization” to
randomly select only a portion of features for splitting when selecting nodes for splitting.
This will reduce the correlation between each base decision tree and increase the stability
of the algorithm. Random forests are widely used in modern machine learning in various
fields, such as finance, healthcare, and natural language processing.

As well as0 ensemble learning models, regression models commonly used in machine
learning, such as ELM and LSTM, are also widely applied in the field of SOH prediction.
An ELM (extreme learning machine) [35] is a fast neural network algorithm that differs
from other neural network algorithms in that ELM no longer requires initialization and
iterative optimization of weight parameters in the network. It directly transmits randomly
generated input weights from the input layer to the hidden layer through matrix operations,
and then forms output weights by linearly combining the output vectors generated by the
input layer in the hidden layer, thereby achieving the classification, regression, or clustering
of data samples. The LSTM (long short-term memory) is a recurrent neural network (RNN)
commonly used to process sequential data. The LSTM algorithm uses a series of gates to
filter the input and control the flow of information, effectively maintaining and updating
the content and length of memory units, thus, avoiding the “gradient disappearance” and
“gradient explosion” problems encountered in the training process of traditional RNN
algorithms [36]. It improves the accuracy and generalization ability of the network when
processing long sequence data.

To verify the superiority of the LightGBM model selected in this paper, the ELM, LSTM,
random forest, and XGboost models were selected, and the capacity features obtained in
the previous paper were input to compare the prediction results with the LightGBM model
selected in this paper [37]. The next step is to compare the computational cost of each
model and characterize the operational efficiency by calculating the model run time. The
prediction results are shown in Table 4.
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Table 4. Comparison of multi-model prediction effects.

Predictive Models Battery Number MSE MAE AE R2 Running Time (s)

ELM
5 0.0025 0.0421 4 0.9489 28.6184
6 0.1827 0.4158 5 0.9254 35.0837
7 0.0023 0.0374 4 0.9521 29.7031

LSTM
5 0.0033 0.0519 3 0.9675 42.9855
6 0.0012 0.0258 5 0.9405 49.3947
7 0.0016 0.0366 4 0.9677 36.0618

Random forest
5 4.5492 × 10−4 0.0169 2 0.9802 42.9855
6 8.0754 × 10−4 0.0209 3 0.9769 49.3947
7 3.0842 × 10−4 0.0112 2 0.9713 36.0618

XGBoost
5 1.3182 × 10−4 0.0081 2 0.9812 49.3246
6 6.8945 × 10−4 0.0225 1 0.9875 54.5812
7 1.4913 × 10−4 0.0072 1 0.9722 50.5719

LightGBM
5 1.2740 × 10−4 0.0076 0 0.9889 46.9862
6 5.4299 × 10−4 0.0175 1 0.9865 51.6523
7 9.0437 × 10−5 0.0069 0 0.9921 44.2364

From Table 4, it can be seen that the LightGBM, XGBoost, and random forest algo-
rithms all have good regression prediction ability, and the goodness-of-fit and root mean
square error of all three are relatively close, reflecting the good adaptability of the feature
engineering in this paper. However, the average MSE value of LightGBM for the three
batteries is 2.5361 × 10−4, which is 2.700 × 10−4 and 0.9685 × 10−4 lower than that of the
random forest and XGBoost, respectively. In addition, the prediction goodness-of-fit of the
LightGBM model is improved. Therefore, the LightGBM method can effectively improve
the SOH estimation accuracy and operation rate and has good SOH estimation performance.

5.4.2. Comparison of the Effect of Different Manifold Learning Methods

To verify the superiority of the L-ISOMAP manifold learning algorithm selected in
this paper, the data are now processed sequentially using the ISOMAP, LLE, and t-SNE
methods, and then input into the LightGBM model for prediction. Take the prediction of
battery No. 5 as an example; the prediction results of its test set are shown in Figure 14.
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As can be seen from Figure 14, the prediction effect using the t-SNE method is the
worst, while the prediction curve using the L-ISOMAP manifold learning algorithm has the
highest overlap with the true capacity curve and the best fitting effect, and its prediction
effect is significantly better than the prediction effect processed by the rest of the stream
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shape algorithms, indicating that the L-ISOMAP manifold learning algorithm used in this
paper has high superiority.

5.4.3. Model Generalizability Validation

To verify the generalization ability of the feature engineering and prediction model
proposed in this paper, feature extraction is performed again for dataset B and SOH
prediction based on the LightGBM model is performed in this paper. There are 148 cycles
of data in dataset B. The first 60 cycles are used as the training set and the last 88 cycles are
used as the test set, the model built in the previous paper is used to train and predict, and
the prediction results are shown in Figure 15.
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Figure 15. Prediction results analysis for the test set of dataset B. (a) Prediction results for the test set
of dataset B; (b) dataset B test set prediction error.

Combined with Figure 15, it can be seen that in dataset B, the LightGBM model also
achieves better prediction results in the feature engineering established in this paper, with
an MSE value of 0.1031, MAE value of 0.2655, and goodness of fit of 0.9898, all of which
achieve excellent prediction results; secondly, from the error distribution graph of dataset
B, it can be seen that the capacity errors are mostly gathered in the range of 0–0.2 mAh,
indicating that the model can achieve accurate SOH prediction under different datasets.

In summary, the prediction accuracy of the proposed manifold learning and LightGBM
prediction models in different datasets is good, indicating that the models established in
this paper have good generalization ability.

6. Conclusions

In order to solve the problem of low accuracy of SOH and RUL prediction caused
by the difficulty of establishing the feature engineering of Li-ion batteries, this paper
proposes an SOH and RUL prediction model based on manifold learning and LightGBM,
and conducts relevant experiments to obtain the following conclusions:

(1) In this paper, various features including average voltage decay, IC curve parameters,
generalized multiscale entropy values, and autocorrelation coefficients are extracted
from different angles, and the high-dimensional features are mapped to the low-
dimensional space based on the L-ISOMAP manifold learning method, which effec-
tively achieves dimensional simplification. The final obtained health factor sequences
have high Spearman correlation coefficients between them and the true capacity.

(2) In the field of battery SOH estimation, the feature engineering and prediction model
established in this paper can effectively achieve its accurate prediction. In dataset
A, the battery R2 is higher than 0.98. In dataset B, the feature engineering and model
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established in this paper also achieve good prediction results, which proves that the
method in this paper has good generalizability.

(3) Comparing with the random model and XGboost model commonly used for battery
SOH prediction, the LightGBM model used in this paper has better performance and
better results in several indicators, such as MSE and RMSE, and the MSE is reduced
by 2.700 × 10−4 and 0.9685 × 10−4 compared with the random forest algorithm and
XGBoost, respectively, where the AE indicators are all 0, indicating that the model has
a lower RUL prediction error.

(4) In the comparison experiments of different stream shape learning algorithms, the
L-ISOMAP stream shape learning method used in this paper significantly outperforms
the rest of the methods in terms of SOH prediction, and its prediction results have the
highest overlap with the true capacity curve and perform the best.
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