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Abstract: Warts are a prevalent condition worldwide, affecting approximately 10% of the global
population. In this study, a machine learning method based on a dendritic neuron model is proposed
for wart-treatment efficacy prediction. To prevent premature convergence and improve the inter-
pretability of the model training process, an effective heuristic algorithm, i.e., the covariance matrix
adaptation evolution strategy (CMA-ES), is incorporated as the training method of the dendritic
neuron model. Two common datasets of wart-treatment efficacy, i.e., the cryotherapy dataset and
the immunotherapy dataset, are used to verify the effectiveness of the proposed method. The pro-
posed CMA-ES-based dendritic neuron model achieves promising results, with average classification
accuracies of 0.9012 and 0.8654 on the two datasets, respectively. The experimental results indicate
that the proposed method achieves better or more competitive prediction results than six common
machine learning models. In addition, the trained dendritic neuron model can be simplified using a
dendritic pruning mechanism. Finally, an effective wart-treatment efficacy prediction method based
on a dendritic neuron model, which can provide decision support for physicians, is proposed in
this paper.

Keywords: dendritic neuron model; CMA-ES; wart treatment; machine learning; computer-aided
diagnosis

1. Introduction

With the application of artificial intelligence in many fields of society, such as
industry [1], agriculture [2], bioinformatics [3,4], and biomedicine [5,6], the world has
witnessed great developments as a result of artificial intelligence technology [7]. Espe-
cially in the medical industry, artificial intelligence technology has significantly improved
healthcare and reduced costs [8–11]. Machine learning can combine medical data to
generate appropriate predictive models. Excellent machine learning models can quickly
and accurately predict diseases and assist doctors in making appropriate diagnoses for
patients [12,13]. Machine learning models have become highly adaptable in the field of
computer-aided diagnosis in recent years [14–16].

Warts are growths caused by human papillomavirus (HPV). There are many different
types of warts that can result in different degrees of harm to the body [17–19]. HPV also
has the potential to induce cancer when it infects specific areas of the body [20]. Due to
the impact of warts on patients’ lives, they usually need urgent treatment. Current clinical
treatments for wart dermatosis include cryotherapy, immunotherapy, and destructive
therapy. Different patients suffering from the same type of wart skin disease can have
varying responses to the same treatment because of different symptoms and individual
differences [21]. The cost of treatment and the pain experienced by the patient during the
treatment process vary from one treatment method to another [22]. Therefore, choosing the
right method can save patients money and reduce their pain during treatment. However,
in clinical practice, physicians usually choose a treatment method for their patients using
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subjective judgment. In many cases, patients may require multiple treatments before
achieving a cure.

The wart-treatment efficacy prediction problem, i.e., predicting whether a selected
wart-treatment method is effective or not, remains a challenging task in computer-aided di-
agnosis. Machine learning methods can predict the appropriate treatment for wart patients,
effectively eliminating their symptoms and avoiding repeated treatments. Khozeimeh et al.
used a rule-based fuzzy logic system to predict the efficacy of different treatments for
warts [23]. Akben et al. used an ID3 decision tree for wart-treatment efficacy prediction [24],
where they converted the decision path generated by the decision tree into a fuzzy infor-
mation graph. On the other hand, since data are key to machine learning-assisted medical
diagnosis, Abdar et al. noticed that traditional machine learning models were less robust
when performing wart-treatment efficacy prediction [25] because they could not effectively
handle sample attributes with small values. To improve the accuracy of wart-treatment
efficacy prediction, they proposed combining an adaptive particle swarm algorithm with
an artificial immune recognition system to generate prediction models. The effect of data on
prediction accuracy was similarly noted by Jha et al. [26]. They developed a fuzzy-rough-
KNN algorithm based on efficient data feature generation and selection. In addition, the
data imbalance problem is very common in currently available medically relevant datasets.
Hu et al. used the Synthetic Minority Over-Sampling Technique (SMOTE) algorithm to
balance raw data, addressing the data imbalance problem in wart-treatment efficacy pre-
diction [27]. Although the above study improved the model from various perspectives to
improve the accuracy of wart-treatment efficacy prediction, a machine learning model with
higher accuracy and interpretability is still worthy of exploration by researchers.

Using the dendritic neuron model as a machine learning model has attracted signifi-
cant attention in recent years. Ji et al. proposed using this model to address the classification
problem [28] but noted that the performance of the model was limited due to the back-
propagation algorithm easily falling into local convergence. To improve the classification
performance of the model, Ji et al. used the states-of-matter search algorithm to improve the
performance of the model [29]. Gao et al. also used a heuristic algorithm (a biogeography-
based optimization algorithm) to train the dendritic neuron model [30]. Luo et al. used a
decision-tree-based algorithm to initialize the weights of the dendritic neuron model [31],
which effectively prevented the backpropagation algorithm from converging prematurely.
The development of dendritic neuron models in several application areas has also attracted
significant attention. Song et al. applied dendritic neuron models to wind-speed predic-
tion and achieved excellent results [32]. He et al. improved the model structure based
on the dendritic neuron model and applied the improved model to financial time-series
prediction [33]. Tang et al. proposed the evolutionary dendritic neuron model, which
has demonstrated good performance in the field of computer-aided diagnosis [34]. The
performance of the dendritic neuron model has been greatly improved and successfully
applied in several fields. However, to the best of the authors’ knowledge, applying the
dendritic neuron model to wart-treatment efficacy prediction has not yet been well explored.
This motivates us to use the dendritic neuron model to address the wart-treatment efficacy
prediction problem.

In this study, to further improve the performance of wart-treatment efficacy prediction,
we used the covariance matrix adaptation evolution strategy (CMA-ES) to optimize the
dendritic neuron model (DNM). The CMA-ES is considered more interpretable than other
heuristic algorithms and has powerful optimization performance. The experimental results
show that the improved DNM outperforms other comparable machine learning models in
six metrics. It is worth mentioning that the specific pruning mechanism of the DNM can
simplify the structure of the trained model. The proposed method can provide appropriate
decision support for physicians. The contribution of this paper is threefold. First, a novel
machine learning model, the DNM, is proposed for wart-treatment efficacy prediction.
Second, the CMA-ES is incorporated as the training method of the DNM. Third, the
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experimental results demonstrate the advantages of the proposed CMA-ES-based dendritic
neuron model in wart-treatment efficacy prediction.

The remainder of this paper is organized as follows. Section 2 presents a description
of the DNM. Section 3 explains how the CMA-ES trains the DNM to address the wart-
treatment efficacy prediction problem. Section 4 provides the experimental studies and
discussion. Finally, the conclusions of this paper are presented in Section 5.

2. Materials

The proposed dendritic neuron model consists of four parts: the synaptic layer Y, the
dendritic layer Z, the membrane layer V, and the cell body O. Its logical structure is shown
in Figure 1.
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Figure 1. Logical structure of the proposed dendritic neuron model.

The synapse in the synaptic layer receives the input signal xi and outputs Yi,b to the
corresponding dendritic branch. The output Yi,b of the i-th (i = 1, 2, . . . , I) synapse at the
b-th (b = 1, 2, . . . , B) dendritic branch can be expressed as follows:

Yi,b =
1

1 + e−k(wi,bxi−qi,b)
(1)

where k is a predefined constant. wi,b and qi,b are the synaptic parameters to be optimized.
Four different synaptic connection states can be identified according to the different wi,b
and qi,b values, as shown in Figure 2. The different synaptic connection states affect the
simplified pruning operation of the model. The determination of the different connection
states can be found in the literature [35].

Random Direct Inverse Constant 0 Constant 1

Training

0 1
Figure 2. The random synaptic connection state is transformed into one of four synaptic connection
states after training.
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The dendritic layer receives signals from the synaptic layer and outputs Zb to the
membrane layer by performing a cumulative multiplication operation. The b-th dendritic
branch can be expressed as follows:

Zb =
I

∏
i=1

Yi,b (2)

The membrane layer gathers the signals of all of the dendritic branches and transmits
them to the cell body. The membrane layer can be represented by a large-scale summation
operation, which is expressed as follows:

V =
B

∑
b=1

Zb (3)

The cell body receives the output V of the membrane layer and transforms the signal
V into the probability O using a sigmoid function, which is expressed as follows:

O =
1

1 + e−k(V−γ)
(4)

where γ is defined as the threshold of the cell body.
The pruning strategy of the dendritic neuron model is based on the effect of the

synapses in the constant 0 connection state. The constant 0 connection causes the output
value of the dendritic branch to be close to zero, according to Equation (2). Since this
dendritic branch has a minimal effect on the calculation of the membrane layer according
to Equation (3), this dendritic branch connected with a synapse in the constant 0 connection
state can be pruned. An example of the specific dendritic pruning mechanism is shown in
Figure 3. Figure 3a shows the trained DNM before pruning. Figure 3b shows the structure
of the pruned DNM where the dendritic branches connected with the synapses in the
constant 0 connection state are pruned.

(a)

Soma
0

0

1

1

x1     x2     x3

Soma

x1     x2     x3

(b)

1

Figure 3. An example of the specific dendritic pruning mechanism for the proposed dendritic neuron
model. The trained DNM is shown in (a), and the pruned DNM is shown in (b).

3. Methods

The training process of the dendritic neuron model is shown in Figure 4. First, the
original data are normalized. Then, the synaptic parameters of the DNM are optimized
using the CMA-ES. Finally, a DNM for wart-treatment efficacy prediction is obtained.
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Figure 4. The flow chart of training the DNM using the CMA-ES.

3.1. Covariance Matrix Adaptation Evolution Strategy

The backpropagation algorithm is the most widely used optimization algorithm but
it easily falls into local convergence in the process of DNM optimization. To prevent
premature convergence of the model optimization process, Ji et al. attempted to optimize
the dendritic neuron model using heuristic algorithms [29,30,35]. These heuristic algorithms
can effectively help multivariate functions escape from local convergence. However, these
heuristic algorithms are considered to lack interpretability. The CMA-ES is a powerful
evolutionary algorithm and its optimization process can be interpreted as a form of natural
gradient descent [36,37]. In actual optimization problems, multivariate functions are often
very complex and it is difficult to obtain the corresponding Hessian matrix. The CMA-ES
adjusts the covariance matrix of the multivariate function to approximate the Hessian
matrix of the multivariate function [38,39]. The CMA-ES draws on the exploration and
exploitation of the search strategy. Using the CMA-ES to optimize the DNM can effectively
avoid local convergence. The key components of the CMA-ES are described below.

Optimization prerequisites: The Hessian matrix is positive definite, and the fitness
function has a minimal value. The covariance matrix and Hessian matrix are inverse
matrices of each other. The CMA-ES obtains the minimal value by updating the covariance
matrix, and each update of the covariance matrix must satisfy the matrix positive definite,
i.e., the matrix eigenvalues λmax/λmin ≥ 1.

Candidate solution update: The CMA-ES has ω candidate solutions, where ω = 4 +
b3lnnc and n is the dimensionality of the solution vector. Each candidate solution αλ is
generated according to the corresponding multidimensional Gaussian distribution yλ ∼
N(m, C). m is the mean vector of yλ. C is the covariance matrix of yλ, which determines
the Gaussian distribution. Each candidate solution is updated, as shown in Equation (5).
The calculations of C and σ are described later.

αλ = m + σyλ ∼ N(m, C) (5)

Then, all of the candidate solutions are evaluated using the fitness function.
Overall Gaussian distribution update: To enable the fitness function to converge quickly,

αλ corresponding to yλ needs to be ranked, and those ranked after µ need to be filtered out,
where µ = ω/2. A weight w′i is assigned to the remaining excellent Gaussian distribution.
The top µ weight w′i is normalized to wi. The overall Gaussian distribution < y >w is
updated based on the top µ excellent Gaussian distribution yi:w. The formula for calculating
the weight w′i is shown in Equation (6) and the formula for calculating < y >w is shown in
Equation (7).

w′i =
ln(λ + 1)

2
− lni , i = 1, 2, . . . , µ (6)
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< y >w=
µ

∑
i=1

wiyi:w , where
µ

∑
i=1

wi = 1 (7)

Covariance matrix update: The covariance matrix C update needs to combine the update
history path of C, which is also called the covariance matrix evolution path Pc. The Pc
update needs to combine < y >w. The evolution path Pc is updated using Equation (8).
The covariance matrix C update requires a combined calculation of Pc and yi:w, which is
calculated using Equation (9).

Pc ← (1− c1)Pc + hσ

√
cc(2− cc)µe f f < y >w (8)

C← (1 + c1δ(hσ)− c1 − cµ ∑ wj)C + c1PcPT
c + cµ

ω

∑
i=1

wiyi:wyT
i:w (9)

The learning-rate parameters c1, cµ, and cc are controlled by the parameter µe f f [40].
hσ is the Heaviside function, which takes different values according to σ and the number of
iterations g. δ(hσ) is the parameter that automatically selects the exploration search strategy
or the exploitation search strategy by adjusting the covariance matrix. It is calculated
as follows:

δ(hσ) = (1− hσ)cc(2− cc) (10)

Step-size update: The update strategy of the step size σ is similar to the C update
strategy. It needs to combine the step-size evolutionary path Pσ. The Pσ update requires a
combination of C and < y >w. The step size σ is updated according to the ratio of Pσ to Pσ

expectation E‖N(0, I)‖, where I is the unit matrix. The step-size evolutionary path Pσ is
updated using Equation (11) and the step size σ is updated using Equation (12).

Pσ ← (1− cc)Pσ +
√

cc(2− cσ)µe f f C−1/2 < y >w (11)

σ← σexp(
cσ

dσ

‖Pσ‖
E‖N(0, I)‖ − 1) (12)

where the learning-rate parameters cσ and dσ are set according to the literature [40].

3.2. Applying the CMA-ES to Train the DNM

Figure 4 shows the training process of the DNM using the CMA-ES. The CMA-ES
follows the general framework of evolutionary algorithms. It optimizes the problem
by iteratively evolving a population of candidate solutions using the aforementioned
operations. Since the DNM has two parameter vectors, w and q, to be optimized, these
two vectors form the solution vector of the CMA-ES algorithm as follows:

αλ = {x1
λ, x2

λ, . . . , x2·I·B
λ } = {w1,1, w1,2, . . . , wI,B, q1,1, q1,2, . . . , qI,B} (13)

where αλ is the λ-th candidate solution in the population of the CMA-ES. The loss function
of the DNM is calculated as the fitness value of αλ. Finally, the CMA-ES terminates when
the stopping criterion is met, and the optimal solution mbest is outputted.

The mean square error (MSE) is commonly used as the loss function of the DNM. It
can be calculated as follows:

MSE =
1

2S

S

∑
i=1

(Oi − Ti)
2 (14)

where Oi is the actual output of the DNM, Ti is the label value, and S is the number of
data samples.
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When the dataset is unbalanced and the MSE function is used as the loss function,
it makes the machine learning model more inclined to predict classes with large sample
numbers [41]. Data sampling is commonly used in many studies to address data imbalance,
but such methods can have an unexpected impact on the data: undersampling can result in
missing data, oversampling is blind in generating the data, and data sampling, in general,
can easily marginalize data [42–44]. In this study, we attempted to use a focal loss (FL) [45]
to address the data imbalance problem. The FL function makes is designed to bring
attention to the imbalanced data during the model training process, allowing the model to
focus more attention on a fewer number of class samples in the dataset. It can improve the
accuracy of the hard-to-classify samples by increasing the weights of fewer samples. For
binary classification, the FL adds a power modifier (1− pi)

u to the cross entropy and can
be calculated as follows:

FL = − 1
S

S

∑
i=1

(1− pi)
ulog(pi) (15)

pi =

{
Oi , if Ti = 1
1−Oi , otherwise

(16)

where the output Oi of the DNM indicates the probability of the prediction with the label
Ti = 1. u is a positive constant and is set to 2. A larger value of pi indicates that the model’s
prediction is closer to the ground truth.

4. Experimental Studies
4.1. The Datasets of Wart-Treatment Efficacy

Two datasets collected from patients with wart skin disease were obtained from the
Dermatology Department of Ghaem Hospital in Mashhad [46]. They can be accessed via the
UCI Machine Learning Repository. The first dataset contained data from 90 patients treated
with cryotherapy and each sample contained 6 features. The second dataset contained
data from 90 patients treated with immunotherapy and each sample contained 7 features.
The details of the cryotherapy dataset and the immunotherapy dataset are shown in
Tables 1 and 2, respectively. There are 48 successful treatment cases and 42 unsuccessful
treatment cases in the cryotherapy dataset. The immunotherapy dataset is subject to data
imbalance, and there are 71 and 19 successful and unsuccessful treatment cases, respectively.

Table 1. The features of the cryotherapy dataset.

Feature No. Feature Name Value (Amount)

1 Gender Man (47); Woman (43)
2 Age 15–67

3 Time elapsed before treatment
(months) 0–12

4 Number of warts 1–12
5 Type of wart (count) Common (54); Plantar (9); Both (27)
6 The surface area of warts (mm2) 4–750

Table 2. The features of the immunotherapy dataset.

Feature No. Feature Name Value (Amount)

1 Gender Man (41); Woman (49)
2 Age 15–56
3 Time elapsed before treatment (months) 0–12
4 Number of warts 1–19
5 Type of wart (count) Common (47); Plantar (22); Both (21)
6 The surface area of warts (mm2) 6–900
7 Induration diameter of initial test (mm) 5–70
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4.2. Experimental Configuration

All algorithms in this study were implemented using Python 3.8. The experiments
were executed on a Windows 10 computer with an AMD Ryzen7 3.59 GHz CPU. The
comparison algorithm used in this study was based on the scikit-learn library [47]. The
evaluation metrics included classification accuracy, sensitivity, specificity, precision, F1
score, and AUC value. The confusion matrix is shown in Table 3. The formulae for the
above metrics are shown in Equations (17)–(21). Each dataset was randomly divided into a
training set and a test set (70%∼30%). In addition, the DNM input signals (data features)
of each dataset were normalized within the range of [0,1] before training.

Table 3. Confusion matrix.

Predicted

Actual
Treatment Success Treatment Failure

Treatment success TP FP
Treatment failure FN TN

accuracy =
TP + TN

TP + FP + FN + TN
(17)

sensitivity = recall =
TP

TP + FN
(18)

speci f icity =
TN

FP + TN
(19)

precision =
TP

TP + FP
(20)

F1score =
2 · precision · recall
precision + recall

(21)

4.3. Optimization Performance of CMA-ES

The DNM has three hyperparameters: the constant parameter k, the number of den-
dritic branches B, and the threshold γ. In the experiments, the standard L16(43) orthogonal
array of Taguchi’s method [48] was used to select the appropriate hyperparameters. Each
hyperparameter has four different values, which are listed in Table 4. According to the
orthogonal array, there were 16 parameter combinations. Each parameter combination was
repeated 30 times to verify its stability, and in each experiment, the optimization algorithm
underwent 100 iterations. The hyperparameters with the best classification results were
selected based on the accuracy of the data obtained from the validation experiments. The
results of the tuned hyperparameters are shown in Table 5.

Table 4. Values of the hyperparameters of the DNM.

Hyperparameter Value 1 Value 2 Value 3 Value 4

k 2 5 8 10
B N

a

f ea N f ea +2 N f ea +4 N f ea +6
γ 0.2 0.4 0.6 0.8

a the number of features.

Table 5. The hyperparameter settings of the DNM.

Dataset k B γ

Cryotherapy 2 12 0.8
Immunotherapy 8 13 0.4
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In this study, we attempted to improve the performance of the dendritic neuron model
using the CMA-ES. Based on the above tuning results, the performance of the CMA-ES,
differential evolution (DE), particle swarm optimization (PSO), genetic algorithm (GA),
Harris hawks optimization (HHO) [49], and backpropagation (BP) in training the DNM
were compared. To be as fair as possible in the comparisons, the number of iterations of
these heuristic algorithms was set to 100 and the epoch of BP was set to 2000. With this
configuration, the training time required for the BP algorithm was longer. The convergence
curves of the optimization algorithms generated using the MSE function and the FL function
are shown in Figures 5 and 6, respectively. The convergence values of each algorithm with
the different loss functions are shown in Table 6. The classification accuracies of these
optimization algorithms are compared in Table 7.
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Table 6. Comparison of the convergence results of the six optimization algorithms.

Dataset Algorithm
Loss Function

MSE FL

Cryotherapy

CMA-ES 3.57× 10−2± 5.32× 10−3 5.37× 10−2± 8.41× 10−3

DE 5.35× 10−2± 6.02× 10−3 8.86× 10−2± 6.82× 10−3

PSO 4.76× 10−2± 1.48× 10−2 9.21× 10−2± 3.26× 10−2

GA 7.59× 10−2± 1.27× 10−2 8.54× 10−2± 3.28× 10−2

HHO 7.24× 10−2± 2.69× 10−2 8.90× 10−2± 1.74× 10−2

BP 5.55× 10−2± 2.17× 10−2 9.33× 10−2± 4.61× 10−2

Immunotherapy

CMA-ES 4.69× 10−2± 8.68× 10−3 1.00× 10−1± 2.08× 10−2

DE 4.25× 10−2± 3.76× 10−3 9.15× 10−2± 1.25× 10−2

PSO 3.87× 10−2± 1.45× 10−2 1.08× 10−1± 2.51× 10−2

GA 4.69× 10−2± 1.05× 10−2 1.14× 10−1± 2.62× 10−2

HHO 4.24× 10−2± 1.62× 10−2 1.01× 10−1± 2.10× 10−2

BP 6.63× 10−2± 1.83× 10−2 2.04× 10−1± 7.70× 10−2

Table 7. Comparison of the classification accuracies of the six optimization algorithms.

Dataset Loss Function CMA-ES DE PSO GA HHO BP

Cryotherapy MSE 0.8894 0.8667 0.6649 0.8070 0.8238 0.7904
FL 0.9012 0.8368 0.6894 0.7403 0.8333 0.8388

Immunotherapy MSE 0.8404 0.8350 0.7403 0.8157 0.8023 0.8047
FL 0.8654 0.8526 0.7263 0.7561 0.8357 0.8166

Based on the convergence curves shown in Figures 5a and 6a, the cryotherapy dataset
exhibited the fastest convergence rate in terms of both the MSE function and the FL function
when using the CMA-ES. For the immunotherapy dataset, as illustrated in Figure 5b, PSO
exhibited the fastest convergence rate among all the algorithms. Additionally, Figure 6b
demonstrates that the CMA-ES was nearly as fast as the fastest converging DE on the FL
function. The convergence results for each algorithm are summarized in Table 6. The
CMA-ES achieved the minimum value for the MSE and FL functions on the cryotherapy
dataset. For the immunotherapy dataset, PSO reached the minimum convergence value of
the MSE function, whereas the CMA-ES almost reached the minimum convergence value of
the FL function. These findings indicate that the CMA-ES exhibited powerful optimization
performance in training the DNM.

According to the comparison of the classification accuracies of these training algo-
rithms shown in Table 7, the CMA-ES was the best-performing algorithm among the six
algorithms because it achieved the highest classification accuracy. In addition, incorpo-
rating the FL further improved the prediction accuracy of the CMA-ES, indicating that
incorporating the FL as the loss function was necessary.

4.4. Comparison with Classic Machine Learning Models

To further verify the effectiveness of the proposed models, the DNM-FL and DNM-
MSE were compared with six popular machine learning models, including multilayer
perceptron (MLP), Bayesian classifier (Bayes), support vector machine (SVM), Ada boosting
(Ada), K-nearest neighbor (KNN), and decision tree (DT). The hyperparameters of these
machine learning models were set as described in Table 8. Six metrics (accuracy, sensitivity,
specificity, precision, F1 score value, and AUC value) were used to evaluate each model. The
above 6 metrics were averaged from 30 independent experiments. The p-value corresponds
to the Wilcoxon signed rank test, which was used to determine the significant differences in
accuracy between the DNM-FL and other machine learning models. The confidence level
was set at 0.05. Table 9 shows the performance of the eight machine learning models on the
two datasets.
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Table 8. The hyperparameter settings of the six machine learning models.

Classifier Parameter Setting

MLP Number of layers 3
Number of neurons in hidden layer 100

Bayes Assumption of distribution Gaussian

SVM Kernel RBF
Penalty parameter 0.5

Ada Number of estimators 100

KNN Number of neighbors 5

DT Maximum depth 8

Table 9. Comparison of the results of the machine learning models.

Dataset Classifier Accuracy p-Value Sensitivity Specificity Precision F1 AUC

Cryotherapy

MLP 0.8071 0.000015 0.8572 0.8693 0.7830 0.8087 0.8084
Bayes 0.7023 0.000002 0.7756 0.7633 0.7166 0.7288 0.7943
SVM 0.8738 0.133519 0.8156 0.8443 0.9429 0.8683 0.9338
Ada 0.8857 0.503208 0.8863 0.8961 0.9064 0.8914 0.9609
KNN 0.8119 0.000312 0.7946 0.8002 0.8663 0.8180 0.9004
DT 0.8464 0.001133 0.8865 0.8867 0.8385 0.8555 0.8452
DNM-MSE 0.8894 0.411553 0.8651 0.8850 0.9212 0.8900 0.9450
DNM-FL 0.9012 - 0.8964 0.8919 0.9302 0.9068 0.9630

Immunotherapy

MLP 0.7880 0.000043 0.9930 0.8172 0.7926 0.8797 0.6729
Bayes 0.7845 0.000012 1.0000 0.8258 0.7845 0.8779 0.5294
SVM 0.8107 0.002203 0.9845 0.8561 0.8202 0.8925 0.6922
Ada 0.7928 0.000294 0.8938 0.8461 0.8552 0.8697 0.7759
KNN 0.7857 0.000026 0.9324 0.8226 0.8269 0.8722 0.7004
DT 0.8011 0.001825 0.8770 0.8441 0.8725 0.8709 0.7163
DNM-MSE 0.8404 0.046729 0.9221 0.8437 0.8874 0.9019 0.7770
DNM-FL 0.8654 - 0.9265 0.8755 0.9101 0.9165 0.7965

Based on the results of the comparison experiments presented in Table 9, it is evi-
dent that the DNM-FL achieved superior results on the cryotherapy dataset, with values
of 0.9012, 0.8964, 0.8919, 0.9302, 0.9068, and 0.9630 for accuracy, sensitivity, specificity,
precision, F1 score, and AUC value, respectively. Ada boosting exhibited the highest
specificity of 0.8961 among all the classifiers. Furthermore, the DNM-MSE demonstrated
higher accuracy than the other non-DNM classifiers, indicating that the performance of
the DNM optimized using the CMA-ES was significantly improved. The DNM-FL outper-
formed all the compared classifiers in all metrics, except for specificity. As the cryotherapy
dataset’s samples were relatively balanced, there was no significant difference between the
performance of the DNM-FL and DNM-MSE.

In contrast, on the immunotherapy dataset, which is a typical imbalanced sample
dataset, the DNM-FL outperformed the DNM-MSE, achieving values of 0.8654, 0.9265,
0.8755, 0.9101, 0.9165, and 0.7965 for accuracy, sensitivity, specificity, precision, F1 score,
and AUC value, respectively. In comparison, the DNM-MSE achieved values of 0.8404,
0.9221, 0.8437, 0.8874, 0.9019, and 0.7770 for the same six metrics. Both the DNM-MSE
and DNM-FL outperformed the other six comparison classifiers in all metrics, except
for sensitivity. The DNM-FL performed the best among all the comparison classifiers.
Importantly, the improvement in specificity reflects the improvement in correctly predicting
negative samples. The FL function effectively addressed the issue of the DNM’s inability to
correctly identify negative samples when the number of negative samples was small.
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4.5. Discussion of the Dendritic Pruning Mechanism

The proposed dendritic pruning mechanism was utilized on the trained DNM in this
experiment. The classification accuracies of the original DNM and the pruned DNM for
30 independent experiments are compared in Table 10. The typical structures of the pruned
DNM for the two datasets are plotted in Figure 7. According to the above-mentioned
hyperparameter settings, for the cryotherapy and immunotherapy datasets, the DNM had
12 and 13 dendritic branches before pruning, respectively. For the cryotherapy dataset, the
number of dendritic branches of the DNM was reduced from 12 to 5. Similarly, for the
immunotherapy dataset, the number of dendritic branches of the DNM was reduced from
13 to 2. The dendritic pruning mechanism is shown to simplify the structures of the DNM,
making them more concise. In Table 10, we can see that the accuracy loss of the pruned
DNM was less than 0.01, indicating that the proposed dendritic pruning mechanism is
effective. The simplified model has a simpler structure and fewer operations.

Table 10. Comparison of the classification accuracies of the original DNM and the pruned DNM.

Dataset Loss Function Original DNM Pruned DNM

Cryotherapy MSE 0.8894± 0.04 0.8841± 0.03
FL 0.9012± 0.05 0.8932± 0.04

Immunotherapy MSE 0.8404± 0.05 0.8366± 0.06
FL 0.8654± 0.03 0.8611± 0.04

(a) Cryotherapy

   
x6

   
x5

   
x4

   
x3

   
x2

   
x1

(b) Immunotherapy

x1 x2 x3  x4  x5 x6 x7

1 1 1

1 1 1 1
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Soma

11 1 1 1

1 1 1 1

1 1 1 1

1 1 1

1 1 1 1

Figure 7. The typical structures of the pruned DNM for the two datasets.

5. Conclusions

To help in the selection of appropriate treatment methods for patients and improve
the accuracy of wart-treatment efficacy prediction, in this study, we constructed a wart-
treatment efficacy prediction method based on an improved DNM. The covariance matrix
adaptation evolution strategy was combined with the DNM to improve the performance of
the DNM while taking into account the interpretability of the optimization process. Due to
the sample imbalance in the original dataset, a focal loss function was introduced to address
the problem of bias in the generated model toward the majority of samples. Two common
datasets of wart-treatment efficacy, the cryotherapy dataset and the immunotherapy dataset,
were employed as the benchmark datasets. The proposed CMA-ES-based dendritic neuron
model achieved promising results, with average classification accuracies of 0.9012 and
0.8654 on the two datasets, respectively. The superiority of the proposed method was
demonstrated by comparing it with six popular machine learning models. Based on the
specific pruning mechanism, the structure of the trained DNM can be greatly simplified.
The proposed method can help physicians make decisions and is a promising technique
that can be integrated into a clinical decision-support system. This study emphasized the
importance of artificial intelligence technology in improving medical treatments.
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Nevertheless, this study also has the following limitations. First, more datasets of
wart-treatment efficacy can be employed to verify the effectiveness of the proposed method.
Second, since we do not provide a software suite to implement the DNM, it is not easy to
integrate the proposed method into a clinical decision-support system.

In our future work, more comprehensive patient data will be incorporated into the
DNM to enhance its generalization ability. Applying the DNM in computer-aided diagnosis
will also be a focus of our future efforts.
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