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Abstract: With the improvements in sensor accuracy, the spectral features of high-resolution remote
sensing images become more complex. As a result, the classification accuracy for land cover classifica-
tion decreases. Remote sensing image enhancements can improve the visual effect and the intra-class
consistency and enhance the characteristics of ground objects. These enhancements are important for
both image interpretation and improving image segmentation accuracy. In this study, we propose
a pseudo-tasseled cap transformation (pseudo-TCT) through an orthogonal linear transformation
of Gaofen-2 (GF-2) images using the untransposed tasseled cap transformation (TCT) coefficients,
and further, enhance the visual effect and the separability among ground objects by linear stretching
and percentage truncation stretching. To examine the separability among ground objects in the
pseudo-TCT image, we used K-Means clustering, ISODATA clustering and 3D visualization of the
spectral features of typical ground objects. The results show that the separability of buildings and
roads from background objects is better than in the original image and the TCT image, and typical
ground objects are effectively distinguished. Additionally, we visualized intra-class consistency by
calculating the mean Euclidean distance between the pixel values of each point and the pixel values
of its eight neighboring points and calculated the standard deviation of the intra-class consistency
images. The results indicate that the secondary textures of the objects were weakened, and edges
were made clearer, enhancing intra-class consistency. The pseudo-TCT is effective, at least in our
work, and could be a candidate for image enhancement under certain applications.

Keywords: image enhancement; pseudo-TCT; GF-2; K-Means; intra-class consistency; buildings
and roads

1. Introduction

Currently, the spatial resolution of remote sensing images has reached the sub-meter
level, and the high-resolution images contain more spectral characteristics of ground
objects. However, it also adds certain disturbing noise to the recognition and information
extraction of some ground objects. For example, the variation of tree canopy due to light
will be averaged out with the reduction of resolution, and the reduction of resolution
can instead improve the inter-class separability [1,2]. This is because the images are
enhanced, improving intra-class consistency and enhancing edges. Remote sensing image
enhancement techniques can compress data and enhance features of ground objects, making
the images easier to interpret manually or process by a machine. This is important for
improving the segmentation accuracy of remote sensing images.
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At present, the image enhancement techniques of remote sensing images are divided
into three major categories: One is the spatial domain method, which focuses on point-to-
point manipulation of the image; the second category is the frequency domain method.
Fourier transforms are used to transform the image into the domain of spatial frequency;
and the third category is color enhancement. Color enhancement techniques transform
the grey-level image into color image models, such as RGB, HIS and CMY, and for remote
sensing images, it is mainly the HIS Transform and Pseudo-Color Transform [3–6]. This
study focuses on the spatial domain method, which is more concerned with point-to-point
processing of remote sensing images, such as common NDVI, NDBI, linear stretching,
PCA, TCT, etc. Recently, Zhao et al. proposed a deep learning fusion network DSLN that
effectively utilizes NDVI to avoid the effects of few spectra, low inter-class separability
and large intra-class variations in high-resolution images. The average OA and average
Kappa coefficient of the classification accuracy reached 0.8069 and 0.7161, respectively, on
the GF-1 dataset [7]. Gu et al. improved the NDBI and proposed the normalized spectral
building index (NSBI) and differential spectral building index (DSBI), and both proposed
indices achieved good enhancement results for different building conditions [8]. Further-
more, Yi and Jianhui addressed the problem of the low accuracy of urban impervious
surface extraction by traditional linear spectral mixture analysis (LSMA) and improved
LSMA by combining high-resolution remote sensing images, PCA and NDBI, and the
improved LSMA extracted better accuracy of the impervious surface area [9]. Zeng et al.
used BR-Net to train GF-2 images with PCA dimensionality reduction for building recogni-
tion and extraction, and not only is the recognition accuracy higher than the traditional
machine learning model, but also the extracted buildings are more complete with clear
boundaries [10].

TCT is an empirical orthogonal linear transformation of images made by Kauth and
Thomas in 1976 and is based on the structure of the information distribution of the spectral
information of soil and vegetation in multidimensional space, named because of the “tassel
hat” shape of the spectra after the orthogonal linear transformation [11]. As the components
formed by the TCT are not only independent of each other but also can better distinguish
the main ground objects, the TCT is widely used in various fields. For instance, Chen et al.
successfully extracted coastline using the greenness component and moisture component
of the TCT with producer and user accuracy of 0.95 and 0.91, respectively, and higher
accuracy for shorelines in areas with high sand content [12]. Liu et al. monitored the
desertification process on the Mongolian plateau based on MODIS images processed by
TCT and TGSI time series, which provided a new method for desertification research [13].
Chen et al. successfully achieved a high-precision extraction of water bodies using GF-1
images processed by TCT to attenuate the effects of shadows and dense vegetation [14].
Liu et al. combined TCT and support vector machines (SVMs) for land cover classification
of Landsat 8 OLI images [15]. Li et al. used partial least squares regression (PLSR) to
estimate the leaf area index (LAI) by adding the greenness component of TCT to achieve
an estimate of LAI with a minimum number of features [16]. Chao et al. proposed a
method to extract the flooded area of farmland based on TCT, to solve the low accuracy
of traditional water body extraction methods due to the high-water content of crops after
disasters [17]. The application of TCT has long gone beyond the initial proposal for crop
growth monitoring, but the existing applications on TCT, although with high accuracy, lack
controlled experiments.

The TCT uses the transpose of the TCT coefficients to achieve an orthogonal linear
transformation of the image, while the orthogonal linear transformation of the image by
the TCT coefficients without transposition and further enhanced by linear stretching and
percentage truncation stretching (PTS) is the pseudo-TCT [18–22]. Currently, the assessment
of the effects of image enhancement algorithms are mainly divided into two categories, one is
the subjective image quality assessment (IQA), in which the image quality is observed and
assessed manually; the other is the objective IQA, which uses algorithms to assess the image
quality [23,24]. The objective IQA can be divided into three categories according to their
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dependence on the high-quality (HQ) reference image: the first category is the full-reference
(FR) IQA, using all the information of the HQ reference image for IQA; the second category is
reduced-reference (RR) IQA, which only requires comparison with some statistical features
of the HQ reference image; and the third category is no-reference (NR) IQA, which does not
require the HQ reference image [25–31]. Bosse et al. proposed an NR IQA method based
on a deep convolutional neural network (CNN). They evaluated the network on the LIVE
database and achieved a liner Person correction that outperformed state-of-the-art reference
image IQA methods [32]. Liu et al. developed an efficient general-purpose NR IQA model,
dubbed spatial-spectral entropy-based quality (SSEQ) index [33]. Although FR IQA and RR
IQA are easier to use and more sophisticated, the HQ images cannot be obtained as reference
images in many cases. To test the effects of the pseudo-TCT, we also assessed the pseudo-TCT
image quality from both subjective IQA and objective IQA.

Although the TCT coefficients of IKONOS were proposed in 2003, its property of
making ground objects, such as man-made objects, water and vegetation, more visible
was only analyzed in terms of brightness. We have not only proposed the pseudo-TCT
but also designed a series of experiments to verify the image enhancement effects of the
pseudo-TCT. We compared the visual effects of different ground objects in different images
to determine whether the contrast between the ground objects increased. To examine the
separability of typical ground objects from pseudo-TCT images, K-Means and ISODATA
clustering were used to examine the separability of buildings and roads from background
ground objects [34–37]. Additionally, the spectral characteristics of each typical ground
object were visualized by 3D visualization. To verify whether the intra-class coherence and
edges of the ground objects were enhanced, the intra-class coherence was visualized by
calculating the mean Euclidean distances between the pixel values of each point and the
pixel values of eight neighboring points. In addition, we graded the intra-class coherence
display to make the effect of edge enhancement clearer and also calculated the standard
deviation metric in the NR IQA of the intra-class consistency images. The experimental
results showed that the pseudo-TCT can enhance the GF-2 image, increase the separation
of typical ground objects and make the edges of typical ground objects clearer. However,
we cannot guarantee that pseudo-TCT is useful for some feature extraction algorithms or
machine learning methods since we have not verified the effectiveness of pseudo-TCT in
practical applications.

2. Materials
2.1. Remote Sensing Data

The base data used in this experiment were two GF-2 images, denoted as image A
and image B. Image A was imaged on 19 February 2021, with a fused resolution of 1 m, a
longitude of 111.8◦ E and a latitude of 34.7◦ N at the center point, and the number of rows
and columns being 27,403 × 28,616. Due to the limitation of computer performance, it is not
possible to process the whole image, so a part of the area was selected as the data set. To
verify the universality of the pseudo-TCT, the selected area required rich types of ground
objects, including mountains, lakes, fields, bare soil, rural areas, cities, etc., and a rich variety
of building and road styles. The location of each region is shown in Figure 1, which are region
1 (suburban), region 2 (rural with lake), region 3 (mountain) and region 4 (suburban) with the
size of 3001 × 3001; region 5 (urban) was the size of 3000 × 3000; mountain 1 (mountain) was
the size of 2147 × 2534; and mountain 2 (mountain) was the size of 2629 × 1370.

Image B was from the Gaofen image dataset (GID) [38], a land cover classification
datasets produced by Wuhan University, and the images in the GID have been specially
processed without latitude and longitude information. It was a GF-2 image, with a resolu-
tion of roughly 3–4 m and a dimension of 6800 × 7200 pixels, as shown in the following
Figure 2. GID has no resolution information, which was the resolution we infer from the
size of the ground objects.
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Figure 2. A remote sensing image from GID. (a) original image; (b) land cover label; (c) built-up 
label. 

Figure 1. Selected remote sensing data. (a) whole GF-2 image; (b) region 1, corresponding to B
in (a); (c) region 2, corresponding to C in (a); (d) region 3, corresponding to D in (a); (e) region 4,
corresponding to E in (a); (f) region 5, corresponding to F in (a); (g) mountain 1, corresponding to G
in (a); (h) mountain 2, corresponding to H in (a).
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Figure 2. A remote sensing image from GID. (a) original image; (b) land cover label; (c) built-up label.

Image B corresponded to a 5-category land cover classification label, in Figure 2b.
Since we evaluate the effect of image enhancement through the clustering effect of buildings
and roads, Figure 2c was a label image in which the pixel value of built-up was assigned 1,
and the pixels of other categories were assigned 0.
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2.2. Data Preprocessing

The objective of atmospheric correction is to determine the true surface reflectance
values by removing atmospheric effects from satellite images, while the derivation of the
TCT coefficients is generally based on surface reflectance. Although orthorectification and
image fusion does not affect the effect of pseudo-TCT, orthorectification can reduce the
distortion of remote sensing images and improve the image fusion effect, and image fusion
can improve the resolution of images and facilitate the subsequent observation of the details of
the enhanced images. Therefore, atmospheric correction, orthorectification and image fusion
were performed on image A. It should be noted that when the resolution of multispectral
images is 4 times that of panchromatic images, and their resolutions were integers, the effects
of image fusion will be better. During orthorectification, the resolutions of multispectral
images and panchromatic images would be resampled to 4 m and 1 m, respectively. Image B
did not have a panchromatic image, so no image preprocessing was performed.

3. Pseudo-TCT and Verification Experiment

Here, we propose the pseudo-TCT based on the orthogonal linear transform, linear
stretching and percentage truncation stretching. The orthogonal linear transformation can
obtain new disjoint bands, and the linear stretching and percentage truncation stretching
can not only eliminate the negative grey values generated by the orthogonal linear transfor-
mation but also further increase the contrast of the remote sensing image and make the
effective information of the remote sensing image more concentrated.

Since both buildings and roads were man-made features, we treat buildings and roads
as one class. We verify whether the inter-class separability of the enhanced GF-2 images
increased by the clustering effects of K-Means clustering and ISODATA clustering on
buildings and roads. In addition, we not only directly observed whether the contrast be-
tween ground objects of the enhanced remote sensing images increased, but also visualized
classical ground objects and intra-class consistency.

3.1. Pseudo-TCT
3.1.1. Orthogonal Linear Transform

The TCT is an empirical orthogonal linear transform of multi-band images proposed
by Kauth and Thomas after analyzing the data structure of Landsat MSS images reflecting
crop and vegetation growth processes. The TCT relies on the characteristics of the sensor
itself, and the TCT coefficients are not universal for different sensors [39]. However, since
the parameters of GF-2 and IKONOS were very similar, the TCT coefficients of IKONOS
images derived by Horne were directly used as the TCT coefficients of the GF-2 images [40],
and the TCT was calculated as follows:

u = RTx + r (1)

where u are the bands of the TCT; and R is the TCT coefficients; the superscript T indicates
transpose; x is the reflectance of each band; and r is a constant offset to avoid negative
values of u after the transformation.

The TCT is a linear combination of different components of different bands, and
we want to verify whether there will be better image enhancements if we change the
components of these bands, which was the reason why we propose the pseudo-TCT.
Since both R and RT are orthogonal matrices, both can perform an orthogonal linear
transformation of the image, so the TCT coefficient matrix without transposition can
change the components of different bands and recombine them, so the pseudo-TCT was
calculated as follows:

u = Rx (2)

where u are the bands of the pseudo-TCT; R is the TCT coefficients (same as R in (1)); and x
is the reflectance of each band.
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3.1.2. Linear Stretching and Percentage Truncation Stretching

After TCT and the pseudo-TCT, there were negative grey values, and the grey values
at the two ends of the grey histogram were very small, which reduced the contrast of the
image, and the traditional solution is to add a constant offset, r. Since the pseudo-TCT is an
orthogonal linear transformation of the GF-2 image, the correlation between the bands is
removed, and the stretching can not only remove the negative grey values but also enhance
the contrast of the image [18]. Therefore, the linear stretching of the pseudo-TCT image
was performed, and the linear stretching was calculated as follows:

result =
(grey − minin)

maxin − minin
× (maxout − minout) + minout (3)

where the result is the grey value after stretching; grey is the grey value of the input image;
minin and maxin are the minimum and maximum grey values of the input image; and
minout and maxout are the minimum and maximum grey values of the output image.

Although linear stretching was performed on the pseudo-TCT image, the contrast of
the image was not strong enough and visually dark due to too few values at both ends of
the original image grey histogram, so percentage truncation stretching was used to further
enhance the image contrast. Percentage truncation stretching is similar to linear stretching
in that the grey values are first truncated at the desired scale and then linearly stretched.

3.2. Verification Experiment of Inter-Class Separability
3.2.1. K-Means Clustering and ISODATA Clustering

Unsupervised classification is often used for remote sensing image classification be-
cause the acquisition of prior knowledge is tedious. The two commonly used unsupervised
classification methods in remote sensing are K-Means clustering and ISODATA clustering,
which can divide data with common features into meaningful clusters. This means that
ground objects with strong intra-class consistency and high inter-class separability in the
image are clustered into one class. Thus, the enhancement effects of the pseudo-TCT can be
examined based on the clustering effect on buildings and roads.

The main idea of K-Means is, that given K values and K initial cluster centroids, each
point is assigned to the nearest cluster, and then the cluster class centers are recalculated,
and then the cluster class centers are assigned and updated in iterations until the class
cluster centers are unchanged or the specified number of iterations is reached. Generally,
the distance to the cluster center was calculated using the Euclidean distance, which was
calculated as follows:

D(x, y) =

√
n

∑
i=1

(xi − yi)
2 (4)

where D(x, y) is the distance between points x and y; n is the data dimension of x and y; xi
is the value of the i-th dimension of point x; yi is the value of the i-th dimension of point y.

ISODATA clustering is similar to K-Means clustering, but ISODATA clustering has
some improvements compared to K-Means clustering. The ISODATA clustering is based
on the K-Means clustering and adds two operations of “merging” and “splitting” to the
clustering results, that is, when the value of two cluster centers is less than a certain
threshold, the two cluster centers are merged into one, when the standard deviation of
a cluster is less than a certain threshold or the number of samples in a cluster exceeds
a certain threshold, the cluster is split into two clusters, and even when the number of
samples in a cluster is less than a certain threshold, the cluster is cancelled. In addition,
ISODATA clustering does not need to set a specific number of categories.

3.2.2. Three-Dimensional Visualization and Intra-Class Consistency Visualization

To observe the spectral features of the pseudo-TCT images and check the separability
of ground objects, seven typical ground objects were sampled at the same locations of the
original image, TCT image and pseudo-TCT image: bare soil (including uncultivated fields),
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buildings, mountains, roads, shadows, vegetation (including cultivated fields) and water
bodies. The first three bands of the original image, the TCT image and the pseudo-TCT
image were composed into 3D spectral feature space, and the 3D scatter plot of the ground
objects was drawn.

The purpose of image enhancement is to increase intra-class consistency and improve
separability between classes, making them easier for manual interpretation and machine
processing. Compared with similar evaluation metrics, such as cosine similarity, Euclidean
distance can take into account the differences in the distance and direction of variables. To
verify whether the intra-class consistency of the ground objects of the pseudo-TCT images
increased, the Euclidean distance between the pixel values of each point and the pixel
values of eight neighboring points, each point with four pixel values, was calculated, and
the average of the eight Euclidean distances was used to represent the similarity of the point
to the surrounding eight points. This enables the visualization of intra-class consistency,
where the grey value of the image is inversely proportional to the intra-class consistency,
and a larger grey value indicates a poor intra-class consistency of the ground object. The
formula for calculating Euclidean distance is the same as (4), so the formula for calculating
the mean value of 8-neighborhood Euclidean distance is as follows:

Greyx =
∑8

1 D(x, yi)

8
(5)

where: Greyx is the mean Euclidean distance between the grey values of x point and the
grey value of the eight neighboring points; D(x, yi) is the distance between points x and yi;
x is the central point; and yi is the i-th neighborhood point.

4. Experiments and Results
4.1. Pseudo-TCT of GF-2

From Table 1 it can be seen that the sensor parameters of GF-2 and IKONOS are highly
similar, so the TCT coefficients of IKONOS are used directly for GF-2. From the paper “A
Tasseled Cap Transformation for IKONOS Images” we know R as follows:

R =


0.326 −0.311 −0.612 −0.650
0.509 −0.356 −0.312 0.719
0.560 −0.325 0.722 −0.243
0.567 0.819 −0.081 −0.031

 (6)

Table 1. Main parameters of GF-2 and IKONOS.

Main Parameters Spectra GF-2 IKONOS

Type of orbit Regression Sun-synchronous orbit Sun-synchronous orbit
Orbit height 631 km 681 km

Orbital inclination 97.9080◦ 98.1◦

Spectral range Panchromatic 0.45–0.90 µm 0.45–0.90 µm
Multispectral 0.45–0.52 µm 0.45–0.53 µm

0.52–0.59 µm 0.52–0.61 µm
0.63–0.69 µm 0.64–0.72 µm
0.77–0.89 µm 0.77–0.88 µm

Spatial resolution Panchromatic 0.8 m (1 m after orthorectification) 1 m
Multispectral 3.2 m (4 m after orthorectification) 4 m

To avoid negative grey values after pseudo-TCT, each band of the pseudo-TCT image
was linearly stretched to [0, 65,535], since the GF-2 image is a 16-bit image. Since the original
image has fewer values at the ends of the grey histogram, the overall image perception is
still dark after linear stretching. Therefore, the image was then stretched with a percentage
truncation, with a minimum and maximum exclusion ratio of 10% and a stretching range
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of [0, 255]. The grey value corresponding to 10% and the grey value corresponding to
90% of each band were calculated, and the two values were regarded as the minimum
and maximum of the grey values of the corresponding band, and the grey values located
between 10% and 90% was linearly stretched to [0, 255], and the grey values smaller than
the minimum was directly assigned to 0, and the grey values larger than the maximum was
assigned to 255.

Since each band of the pseudo-TCT image no longer has the physical meaning of each
band of the TCT image, it is not necessary to calculate the pseudo-TCT according to the
original band order of the TCT, and the four bands can be arranged and combined to obtain
24 pseudo-TCT combinations. For the convenience of description, the blue band is 0, the
green band is 1, the red band is 2 and the NIR band is 3. For example, the 0123 combination
is as follows:

u1 = 0.326x0 − 0.311x1 − 0.612x2 − 0.650x3 (7)

u2 = 0.509x0 − 0.356x1 − 0.312x2 + 0.719x3 (8)

u3 = 0.560x0 − 0.325x1 + 0.722x2 − 0.243x3 (9)

u4 = 0.567x0 + 0.819x1 − 0.081x2 − 0.031x3 (10)

where u1, u2, u3 and u4 denote the bands of the pseudo-TCT, and x0, x1, x2 and x3 denote
the blue band, green band, red band and near-infrared band, respectively.

Region 2, region 3 and region 4, which are rich in types of ground objects and relatively
representative, were selected to demonstrate the visual effect of the pseudo-TCT. The
original images, TCT images and a portion of the corresponding pseudo-TCT images are
shown in Figure 3.
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It can be seen from Figure 3 that the visual effect of the images is improved in both the
0123 combination images and the TCT images relative to the original images. It can also
be seen from Figure 3 that shadows and water bodies are relatively similar in the images,
which is consistent with other image segmentation studies that shadows and water bodies
are easily confused. In addition, buildings and roads are enhanced in both the TCT images
and the 0123 combination images.

4.2. High Precision Label Making

The separability check of the pseudo-TCT image requires a high-precision label of
buildings and roads, and traditional labeling is usually performed manually. Manual
labeling can easily miss small buildings and roads, or buildings and roads are labeled with
background information, which can lead to inaccurate accuracy evaluation results [41–44].

To solve the problem whereby it is difficult to produce a large high-precision label by
traditional methods, a combination of pseudo-TCT images, such as the 0123 combination,
was selected and clustered into 10 classes using K-Means. The classes containing buildings
and roads in the K-Means classification were converted to vector files and then further
edited in ArcGIS to obtain the label. The label was manually edited to eliminate the effect of
the 0123 combination. The K-Means clustering results and vector labels for region 2, region
3 and region 4 (containing more than 99% of buildings and roads) are shown in Figure 4.
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4.3. Inter-Class Separability and Intra-Class Consistency Validation Experiments
4.3.1. K-Means Clustering and ISODATA Clustering Test for Inter-Class Separability

Region 2, region 3, region 4 and image B were selected as the regions to test the inter-class
separability of the pseudo-TCT images. K-Means clustering was used for region 2, region 3
and region 4, and ISODATA clustering was used for region 4 and image B. The clustering
effect is the best when the number of cluster centers K is generally slightly larger than the
number of categories, so in this experiment, the K-Means were clustered into 10 categories
and the number of iterations was set to 1. The categories in the clustering results were selected
until the selected categories contained more than 99% of buildings and roads. The evaluation
of clustering effects is usually performed with internal evaluation and external evaluation.
Internal evaluation is usually used to evaluate the impacts of different algorithms or different
ways of running algorithms on the clustering results based on the same raw data and is
highly biased toward certain types of clustering models [45]. External evaluation requires
knowing the category to which each pixel point belongs, which is very difficult in remote
sensing image classification. Therefore, they cannot be used to evaluate the clustering results
of this experiment. Since there are labels for buildings and roads, then the evaluation metrics
commonly used in classification can be used to evaluate the clustering effects of buildings and
roads. A better evaluation result can only indicate that the selected categories contain more
buildings and roads and fewer background ground objects. The accuracy of the buildings
and roads extracted by K-Means was evaluated using Accuracy, Precision, Recall, F1-score,
IoU, Kappa, Recall of buildings and roads (1_Recall) and the number of categories. The image
with the highest F1-score and the lowest number of selected categories is the one with the
best separation of buildings and roads from the background ground objects. The evaluation
metrics were defined as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2 × TP

2 × TP + FP + FN
(14)
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IoU =
Precision × Recall

Precision + Recall − Precision × Recall
(15)

Kappa =
p0 − pe
1 − pe

(16)

1_Recall =
1_TP

1_TP + 1_FN
(17)

In the classification, true positives (TPs) and true negatives (TNs) denote the number of
building and road pixels identified correctly and the number of background ground object
pixels identified correctly, respectively, whereas false positives (FPs) and false negatives
(FNs) denote the number of building and road pixels identified incorrectly and the number
of background ground object pixels identified incorrectly, respectively. All evaluation
metrics are calculated by macro-averaging, which calculates the corresponding evaluation
metric for each category, and then averages the results together, so 1_Recall denotes the
Recall of buildings and roads. The p0 in Kappa is the same as Accuracy and pe is the sum
of the product of the actual number of each class and the predicted number of each class
divided by the square of the total number of samples. The range of Kappa is [−1, 1]. If
Kappa is positive, a greater kappa indicates a higher classification accuracy; if Kappa is
negative, it indicates a particularly poor classification accuracy.

The classification evaluation results of the original images, the TCT images and the
pseudo-TCT images of each combination of region 2, region 3 and region 4 are shown in
Table A1. To show the differences between the images with the best evaluation result and
the rest of the images, we selected the second-best, medium and worst pseudo-TCT combi-
nation images for the evaluation result, as shown in Figure 5. There were 24 combination
images, so only region 2 was selected to be shown in Figure A1 to further demonstrate the
differences in the different combination images.
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Figure 5. Other combination images of region 2, region 3, and region 4. The combination images with
the second best, medium, and worst evaluation result accuracy are indicated from top to bottom,
respectively. (a) 0132 combination image of region 2; (b) 0132 combination image of region 3; (c) 0132
combination image of region 4; (d) 3102 combination image of region 2; (e) 3201 combination image
of region 3; (f) 3102 combination image of region 4; (g) 2310 combination image of region 2; (h) 2130
combination image of region 3; (i) 2130 combination image of region 4.

Although these images do not have the best evaluation result, they all have improved
visualization compared to the original images. Vegetation, buildings and roads are more
prominent in these images.

Because the 0123-combination image had the best clustering effect in K-Menas, so
regardless of other combinations, only the 0123-combination image of region 4 and image
B were selected for ISODATA clustering. The ground objects in remote sensing images
can be roughly divided into seven categories, which are bare soil, buildings, mountains,
roads, shadows, vegetation and water bodies, so the classification number of ISODATA
clustering is set from 4 to 10. The remaining parameters only need to ensure that the 0123
combination of region 4 is the same as that of image B, the number of iterations is set to five,
the change threshold is set to 5%, the minimum number of pixels in each category is set to
one and the maximum standard deviation of each category is set to one, and the maximum
value of merged classes is set to two. If the main part of a category is buildings and roads,
it is selected as the result of clustering. The clustering results are shown in Figure 6.

The accuracy of ISODATA clustering results was evaluated using the same metrics as
K-Means clustering, and the results were shown in Table 2.

Table 2. Evaluation of ISODATA clustering.

Image Accuracy Precision Recall F1 IoU Kappa 1_Recall

Region4
0123 0.9184 0.9124 0.8665 0.8862 0.8010 0.7729 0.7612

Original 0.8435 0.8593 0.7115 0.7466 0.6210 0.5058 0.4434
TCT 0.8822 0.8729 0.8029 0.8293 0.7197 0.6607 0.6420

Image B
0123 0.7237 0.6659 0.6885 0.6728 0.5213 0.3491 0.6122

Original 0.7492 0.6739 0.6485 0.6574 0.5161 0.3177 0.4306
TCT 0.7535 0.6818 0.6647 0.6716 0.5289 0.3444 0.4729

4.3.2. 3D Visualization of Typical Ground Objects and Visualization of Intra-Class
Consistency

Table A1 shows that the 0123-combination image has the best separability of buildings
and roads from background ground objects relative to the original image and the TCT image.
To analyze the spectral features of the original image, TCT image and 0123-combination
image, seven typical ground objects, which are bare soil, buildings, mountains, roads,
shadows, vegetation, and water bodies, were selected in region 1, region 2, region 3, region
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5, mountain 1 and mountain 2, respectively. The sampling point locations of the three
images are identical, and the duplicate values are excluded, and the results are as follows
in Table 3. The 0123-combination image has the least number of sampling points, which
also indicates that the 0123-combination image has the best intra-class consistency. The first
three components of the original image, the TCT image (the TCT image was also linearly
stretched, and percentage truncated to ensure a fair comparison with the pseudo-TCT) and
the 0123-combination image were linearly stretched to 0–255 and then mapped to the 3D
space, and the results are shown in Figure 7.
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Figure 6. ISODATA clustering results. (a) region 4 clustering result of the original image; (b) region 4
clustering result of TCT image; (c) region 4 clustering result of 0123 combination image; (d) image
B clustering result of the original image; (e) image B clustering result of TCT image; (f) image B
clustering result of 0123 combination image.

Table 3. Typical ground objects sampling points.

Image Bare Soil Building Mountain Road Shadow Vegetation Water Body Total

Original 48,190 18,010 24,169 12,394 8850 22,475 76,827 210,915
TCT 35,365 7389 20,578 9435 2767 14,302 175 90,011
0123 37,708 7368 18,388 7304 919 10,828 2648 85,163
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Figure 7. 3D scatter plot of typical ground objects. The dark orange dots, red dots, purple dots,
yellow dots, black dots, green dots, and blue dots indicate the bare soil, buildings, mountains, roads,
shadows, vegetation and water bodies, respectively. (a) 3D scatter plot of the original image; (b) 3D
scatter plot of the TCT image; (c) 3D scatter plot of the 0123-combination image.

To observe the intra-class consistency more visually and analyze whether the intra-
class consistency of the 0123-combination image is enhanced, the intra-class consistency of
the original image, the TCT image and the pseudo-TCT image in region 4 were visualized
hierarchically, and the results are shown in Figures 8 and 9.
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of 0123 combination image.
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Figure 9. Local images of intra-class consistency of different images. (a) local images of the original
image; (b) local images of intra-class consistency image of the original image; (c) local images of
intra-class consistency image of the TCT image; (d) local images of intra-class consistency image of
the pseudo-TCT image.

To quantify the effect of image enhancement, we calculated the standard deviations of
the intra-class consistency image of the original image, the intra-class consistency image
of the TCT image, and the intra-class consistency image of the pseudo-TCT image, which
were 8.93, 26.74, and 30.15, respectively.

5. Discussion
5.1. Visual Effect Comparison

From Figure 3, it can be seen that the contours of typical ground objects are enhanced,
intra-class consistency is significantly enhanced and minor textures are eliminated in the
pseudo-TCT image compared with the original image. Compared with the TCT image,
not only is the contrast of the ground objects further improved but also the contours of
the ground objects are clearer. Furthermore, the pseudo-TCT images are displayed in a
more realistic pseudo-color. Vegetation is shown in green, shadows and water bodies in
blue, buildings and roads in purple and orange, and bare soil in brown. Vegetation growth
and water transparency can be indicated by the color shades, which is more beneficial to
manual interpretation. From Figures 5 and A1, it can be found that different combinations
of the pseudo-TCT images can enhance the visual effects of ground objects, and all images
make buildings, roads, and vegetation more prominent. However, it is impossible to
find out which combination image has the best effect from the images only because some
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combination images have similar visual effects. With the continuous development of big
data and machine learning, remote sensing images also need more and more labeled data,
and the enhancement of visual effects is important to produce labeled data. Unfortunately,
due to the limited data in this experiment, it is impossible to verify whether the visual
effects on other images will be also enhanced by the pseudo-TCT.

5.2. Comparison of K-Means Clustering Results and ISODATA Clustering Results

The evaluation of the clustering results for buildings and roads can indicate how many
buildings and roads are included in the clustering results. From Table A1, we can find that
the 0123 combination only needs 7~8 categories to include more than 99% of buildings and
roads, and each evaluation metric is the best (1_Recall is the coverage rate of buildings and
roads). In region 2, the accuracy of the 0123-combination image is 53.82% higher than the
accuracy of the original image and the TCT image. The difference of each evaluation metric
between the 0123 and 0132 combinations is within 0.05, which indicates that buildings and
roads have similar spectral characteristics in the red band and NIR band. This is consistent
with the spectral characteristics of buildings and roads in the principles of using red light
bands to distinguish artificial ground objects and grasslands and using near-infrared and
infrared bands to construct a building index (NDBI). In region 4, although the 1230, 1203,
1023, 0231 and 0213 combinations contain all buildings and roads with only 8–9 categories,
there are too many background ground objects interspersed, so the separability of buildings
and roads from the background ground objects is not as good as the 0123 combination.

As shown in Table 2, the 0123-combination images of region 4 and image B have the
highest F1-score and Kappa, and it can also be seen from Figure 6 that the buildings and roads
extracted from the 0123-combination images are more complete and clearer. The clustering
results, although none of them are very good, can show that the pseudo-TCT makes it easier
to distinguish buildings and roads from other ground objects. Although K-Means clustering
and ISODATA clustering evaluated the separability of buildings and roads from background
ground objects, there are still some ground objects where the separability needs to be verified.
The clustering of buildings and roads is only used to select the best pseudo-TCT combination
and to compare the intra-class consistency of the pseudo-TCT images, the original images
and the TCT images, and is not used to extract buildings and roads. Only using pseudo-TCT
and clustering cannot extract buildings and roads well; if we want to obtain better extraction
results, we need to combine other methods.

5.3. Spectral Feature Visualization and Intra-Class Consistency Analysis

From Figure 7a, it can be found that the various ground objects of the original image
are completely mixed together and completely dispersed in the 3D space. From Figure 7b,
it can be found that the various ground objects in the TCT image are separated compared
with the original image, but the mountains, roads, bare soil and buildings are interspersed
and not concentrated enough. From Figure 7c, there is a slight overlap of bare soil, roads
and buildings in the 0123-combination image and the water bodies and shadows are closer
together. The ground objects are not only separated but also relatively concentrated and
unified in direction. Bare soil, shadows, water bodies, mountains, roads and vegetation are
more concentrated, indicating that the intra-class consistency of these six ground objects
was enhanced after pseudo-TCT processing. Overall, it seems that the ground objects in
the 0123-combined image are most concentrated in the spectral feature space, with the best
separability of the ground objects and more uniformity in direction.

Table 3 shows that the typical ground objects in the 0123-combined image have the
least number of sampling points, with only 40.38% of the original image and 94.61% of
the TCT image. Figures 8 and 9 show that the interior of the buildings and roads in the
0123-combined image are more consistent and the edges of the buildings and roads are
more clearly defined. The standard deviation of the intra-class consistency images for
the 0123-combination image of region 4 and image B is the highest at 30.15, which is
approximately three times that of the original image. A larger standard deviation indicates
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a higher image contrast and sharper edges. All of these points show that the pseudo-TCT
can enhance the intra-class consistency of the images and make the edges of the ground
objects clearer. Although the edges of the ground objects are sharper and the intra-class
consistency within the ground objects is higher, it is not possible to determine whether
these features are more conducive to deep learning or feature extraction algorithms and
whether these features can be learned as we have not tested them using deep learning or
feature extraction algorithms.

6. Conclusions

In this study, we proposed the pseudo-TCT by using the orthogonal linear transforma-
tion idea in the TCT and further enhanced the image enhancement effects by using linear
stretching and percentage truncation stretching. K-Means clustering and ISODATA cluster-
ing were used to examine the separability of buildings and roads from background ground
objects. The visualization method was used to visualize the spectral characteristics and
intra-class consistency of typical ground objects and we calculated the standard deviation
of the intra-class consistency maps.

The results of the validation experiments show that the pseudo-TCT can significantly
enhance the GF-2 images, not only improving the visual interpretation but also improving
the separability and edges of ground objects. Buildings and roads, as man-made ground
objects, have similar spectral characteristics, so they can be considered as one category.
Because of the increased separability of buildings and roads from the rest of the ground
objects, it is easier for buildings and roads to be clustered together and not confused with
other ground objects. At least in the unsupervised classification of extracted buildings
and roads, the pseudo-TCT images performed better than the original and TCT images.
However, we did not verify the effectiveness of the pseudo-TCT in feature extraction
algorithms or machine learning methods, nor did we compare it with traditional remote
sensing image enhancement methods, such as NDWI, NDBI, NDVI, etc., because the
practical applications are very complicated. In the future, we will use additional images
and other ground objects to validate pseudo-TCT and more deep learning and feature
extraction algorithms to test whether pseudo-TCT is useful for these methods, and also to
verify under which applications the pseudo-TCT will work better.
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Appendix A

Table A1. Evaluation of K-Means clustering.

Image Accuracy Precision Recall F1 IoU Kappa 1_Recall Class
Number

Region 2
3210 0.3679 0.6028 0.6186 0.3672 0.2251 0.0948 0.9958 9
3201 0.3670 0.6026 0.6180 0.3663 0.2244 0.0942 0.9956 9
3120 0.3636 0.6025 0.6163 0.3630 0.2219 0.0925 0.9965 9
3102 0.3602 0.6021 0.6144 0.3598 0.2195 0.0907 0.9966 9
3021 0.3579 0.6019 0.6130 0.3576 0.2178 0.0894 0.9967 9
3012 0.3555 0.6017 0.6116 0.3552 0.2160 0.0881 0.9970 9
2310 0.2048 0.5869 0.5223 0.1910 0.1094 0.0154 0.9999 9
2301 0.3259 0.5980 0.5940 0.3258 0.1946 0.0722 0.9973 8
2130 0.2853 0.5942 0.5703 0.2835 0.1657 0.0520 0.9990 9
2103 0.4469 0.6121 0.6631 0.4394 0.2838 0.1413 0.9883 8
2031 0.2796 0.5933 0.5667 0.2774 0.1616 0.0492 0.9987 9
2013 0.2327 0.5883 0.5387 0.2246 0.1287 0.0274 0.9990 9
1320 0.3461 0.6017 0.6070 0.3461 0.2093 0.0837 0.9995 8
1302 0.3646 0.6038 0.6178 0.3640 0.2227 0.0938 0.9989 8
1230 0.2934 0.5957 0.5755 0.2921 0.1714 0.0563 0.9998 8
1203 0.2856 0.5948 0.5708 0.2839 0.1659 0.0524 0.9997 8
1032 0.4978 0.6246 0.6977 0.4841 0.3234 0.1801 0.9983 8
1023 0.3301 0.5998 0.5974 0.3301 0.1977 0.0751 0.9996 9
0321 0.3556 0.6030 0.6128 0.3553 0.2161 0.0890 0.9996 8
0312 0.3729 0.6052 0.6231 0.3720 0.2287 0.0987 0.9995 8
0231 0.6343 0.6559 0.7782 0.5979 0.4371 0.2980 0.9947 7
0213 0.6705 0.6673 0.7997 0.6282 0.4702 0.3367 0.9940 7
0132 0.6622 0.6649 0.7954 0.6214 0.4626 0.3280 0.9958 7
0123 0.7058 0.6798 0.8200 0.6582 0.5041 0.3778 0.9919 7

Original 0.1676 - 0.5000 - 0.0838 0.0000 1.0000 10
TCT 0.1676 - 0.5000 - 0.0838 0.0000 1.0000 10

Region 3
3210 0.1643 0.5266 0.5577 0.1607 0.0884 0.0128 0.9943 9
3201 0.1632 0.5267 0.5572 0.1597 0.0877 0.0127 0.9946 9
3120 0.1599 0.5266 0.5557 0.1567 0.0859 0.0123 0.9951 9
3102 0.1569 0.5267 0.5545 0.1541 0.0842 0.0120 0.9959 9
3021 0.1544 0.5268 0.5536 0.1518 0.0828 0.0118 0.9966 9
3012 0.1527 0.5268 0.5528 0.1502 0.0819 0.0116 0.9970 9
2310 0.1611 0.5271 0.5572 0.1579 0.0866 0.0127 0.9969 8
2301 0.1629 0.5273 0.5583 0.1595 0.0876 0.0129 0.9971 8
2130 0.1151 0.5261 0.5339 0.1148 0.0610 0.0072 0.9989 8
2103 0.3196 0.5336 0.6408 0.2848 0.1760 0.0375 0.9974 7
2031 0.1589 0.5277 0.5573 0.1558 0.0853 0.0127 0.9996 8
2013 0.3316 0.5339 0.6458 0.2932 0.1828 0.0395 0.9947 8
1320 0.1523 0.5275 0.5539 0.1499 0.0817 0.0118 0.9997 8
1302 0.1639 0.5279 0.5599 0.1603 0.0881 0.0133 0.9996 8
1230 0.1251 0.5267 0.5396 0.1245 0.0665 0.0085 0.9998 8
1203 0.1253 0.5266 0.5396 0.1247 0.0667 0.0085 0.9995 8
1032 0.2435 0.5307 0.6018 0.2274 0.1328 0.0247 0.9997 8
1023 0.2457 0.5307 0.6029 0.2292 0.1340 0.0251 0.9994 8
0321 0.2092 0.5289 0.5824 0.1994 0.1134 0.0193 0.9966 7
0312 0.2222 0.5293 0.5889 0.2101 0.1207 0.0211 0.9959 6
0231 0.1720 0.5281 0.5641 0.1676 0.0927 0.0144 0.9994 7
0213 0.1263 0.5268 0.5403 0.1256 0.0672 0.0086 0.9999 8
0132 0.3723 0.5361 0.6676 0.3215 0.2063 0.0479 0.9955 7
0123 0.3823 0.5370 0.6744 0.3284 0.2121 0.0505 0.9986 7

Original 0.0496 - 0.5000 - 0.0248 0.0000 1.0000 10
TCT 0.0496 - 0.5000 - 0.0248 0.0000 1.0000 10
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Table A1. Cont.

Image Accuracy Precision Recall F1 IoU Kappa 1_Recall Class
Number

Region 4
3210 0.3609 0.6314 0.5689 0.3477 0.2143 0.0755 0.9911 9
3201 0.3605 0.6312 0.5686 0.3473 0.2140 0.0751 0.9910 9
3120 0.3588 0.6330 0.5681 0.3451 0.2125 0.0744 0.9928 9
3102 0.3575 0.6332 0.5673 0.3434 0.2114 0.0735 0.9933 9
3021 0.3560 0.6334 0.5664 0.3415 0.2101 0.0725 0.9937 9
3012 0.3550 0.6336 0.5659 0.3403 0.2093 0.0719 0.9941 9
2310 0.3363 0.6350 0.5547 0.3166 0.1938 0.0587 0.9979 9
2301 0.3332 0.6305 0.5518 0.3129 0.1913 0.0555 0.9955 9
2130 0.3011 0.6323 0.5316 0.2701 0.1649 0.0331 0.9997 9
2103 0.4648 0.6560 0.6390 0.4640 0.3023 0.1643 0.9925 8
2031 0.3072 0.6324 0.5356 0.2784 0.1699 0.0375 0.9993 9
2013 0.3280 0.6359 0.5495 0.3057 0.1868 0.0529 0.9994 9
1320 0.3578 0.6411 0.5696 0.3431 0.2113 0.0758 0.9996 8
1302 0.3629 0.6418 0.5730 0.3493 0.2155 0.0798 0.9995 8
1230 0.3247 0.6365 0.5475 0.3013 0.1841 0.0506 1.0000 8
1203 0.3077 0.6340 0.5361 0.2789 0.1702 0.0380 1.0000 8
1032 0.4121 0.6507 0.6061 0.4067 0.2569 0.1203 0.9999 9
1023 0.4225 0.6526 0.6131 0.4183 0.2657 0.1292 1.0000 9
0321 0.3672 0.6418 0.5757 0.3546 0.2192 0.0831 0.9989 8
0312 0.3716 0.6425 0.5786 0.3599 0.2229 0.0865 0.9988 8
0231 0.3210 0.6360 0.5451 0.2966 0.1811 0.0479 1.0000 8
0213 0.3032 0.6335 0.5331 0.2729 0.1666 0.0348 1.0000 8
0132 0.5635 0.6838 0.7075 0.5621 0.3913 0.2647 0.9999 7
0123 0.5911 0.6914 0.7260 0.5882 0.4175 0.2951 0.9998 8

Original 0.2537 - 0.5000 - 0.1269 0.0000 1.0000 10
TCT 0.2550 0.4570 0.4991 0.2054 0.1283 -0.0009 0.9947 9

“-” means no value. This value cannot be calculated because the denominator is 0.
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Figure A1. All combinations of the pseudo-TCT image of region 2. (a) 0123 combination image;
(b) 1023 combination image; (c) 2013 combination image; (d) 3012 combination image; (e) 0132
combination image; (f) 1032 combination image; (g) 2031 combination image; (h) 3021-combination
image; (i) 0213 combination image; (j) 1203-combination image; (k) 2103-combination image; (l) 3102-
combination image; (m) 0231-combination image; (n) 1230-combination image; (o) 2130-combination
image; (p) 3120-combination image; (q) 0312-combination image; (r) 1302-combination image; (s) 2301-
combination image; (t) 3201-combination image; (u) 0321-combination image; (v) 1320-combination
image; (w) 2310-combination image; (x) 3210-combination image.

References
1. Wiersma, D.J. The Analytical Design of Spectral Measurements for Multispectral Remote Sensor Systems; Purdue University: West

Lafayette, IN, USA, 1979.
2. Markham, B.L.; Townshend, J.R.G. Land Cover Classification Accuracy as a Function of Sensor Spatial Resolution. In Proceedings

of the International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 11–15 May 1981.
3. Hord, R.M. Digital Image Processing of Remotely Sensed Data; Elsevier: Amsterdam, The Netherlands, 1982.
4. Ahuja, S.N.; Biday, S. A Survey of Satellite Image Enhancement Techniques. Int. J. Adv. Innov. Res. IJAIR 2013, 2, 131–136.
5. Chien, C.-L.; Tsai, W.-H. Image Fusion with No Gamut Problem by Improved Nonlinear IHS Transforms for Remote Sensing.

IEEE Trans. Geosci. Remote Sens. 2013, 52, 651–663. [CrossRef]

https://doi.org/10.1109/TGRS.2013.2243157


Appl. Sci. 2023, 13, 6585 21 of 22

6. Bajpai, K.; Soni, R. Analysis of Image Enhancement Techniques Used in Remote Sensing Satellite Imagery. Int. J. Comput. Appl.
2017, 975, 8887. [CrossRef]

7. Zhao, J.; Wang, L.; Yang, H.; Wu, P.; Wang, B.; Pan, C.; Wu, Y. A Land Cover Classification Method for High-Resolution Remote
Sensing Images Based on NDVI Deep Learning Fusion Network. Remote Sens. 2022, 14, 5455. [CrossRef]

8. Gu, L.; Cao, Q.; Ren, R. Building Extraction Method Based on the Spectral Index for High-Resolution Remote Sensing Images
over Urban Areas. J. Appl. Remote Sens. 2018, 12, 045501. [CrossRef]

9. Yi, Z.; Jianhui, X. Impervious Surface Extraction with Linear Spectral Mixture Analysis Integrating Principal Components
Analysis and Normalized Difference Building Index. In Proceedings of the 2016 4th International Workshop on Earth Observation
and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 428–432.

10. Zeng, Y.; Guo, Y.; Li, J. Recognition and Extraction of High-Resolution Satellite Remote Sensing Image Buildings Based on Deep
Learning. Neural Comput. Appl. 2022, 34, 2691–2706. [CrossRef]

11. Kauth, R.J.; Thomas, G.S. The Tasselled Cap–a Graphic Description of the Spectral-Temporal Development of Agricultural Crops
as Seen by Landsat. In Proceedings of the LARS Symposia, West Lafayette, IN, USA, 29 June–1 July 1976; p. 159.

12. Chen, C.; Fu, J.; Zhang, S.; Zhao, X. Coastline Information Extraction Based on the Tasseled Cap Transformation of Landsat-8 OLI
Images. Estuar. Coast. Shelf Sci. 2019, 217, 281–291. [CrossRef]

13. Liu, Q.; Liu, G.; Huang, C. Monitoring Desertification Processes in Mongolian Plateau Using MODIS Tasseled Cap Transformation
and TGSI Time Series. J. Arid. Land 2018, 10, 12–26. [CrossRef]

14. Chen, C.; Chen, H.; Liang, J.; Huang, W.; Xu, W.; Li, B.; Wang, J. Extraction of Water Body Information from Remote Sensing
Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation. Remote Sens. 2022, 14, 3001.
[CrossRef]

15. Liu, Q.; Guo, Y.; Liu, G.; Zhao, J. Classification of Landsat 8 OLI Image Using Support Vector Machine with Tasseled Cap
Transformation. In Proceedings of the 2014 10th International Conference on Natural Computation (ICNC), Xiamen, China,
19–21 August 2014; pp. 665–669.

16. Li, X.; Zhang, Y.; Luo, J.; Jin, X.; Xu, Y.; Yang, W. Quantification Winter Wheat LAI with HJ-1CCD Image Features over Multiple
Growing Seasons. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 104–112. [CrossRef]

17. Chao, C.; Xinyue, H.E.; Jiaoqi, F.U.; Yanli, C.H.U. A Method of Flood Submerging Area Extraction for Farmland Based on Tasseled
Cap Transformation from Remote Sensing Images. J. Wuhan Univ. Inf. Sci. Ed. 2019, 44, 1560–1566. [CrossRef]

18. Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color Enhancement of Highly Correlated Images. I. Decorrelation and HSI Contrast
Stretches. Remote Sens. Environ. 1986, 20, 209–235. [CrossRef]

19. Robertson, P.K.; O’Callaghan, J.F. The Application of Perceptual Color Spaces to the Display of Remotely Sensed Imagery. IEEE
Trans. Geosci. Remote Sens. 1988, 26, 49–59. [CrossRef]

20. Das, M.; Ghosh, S.K. Deep-STEP: A Deep Learning Approach for Spatiotemporal Prediction of Remote Sensing Data. IEEE Geosci.
Remote Sens. Lett. 2016, 13, 1984–1988. [CrossRef]

21. Zheng, Z.; Tang, X.; Yue, Q.; Bo, A.; Lin, Y. Color Difference Optimization Method for Multi-Source Remote Sensing Image
Processing. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020;
Volume 474, p. 042030.

22. Li, J.; Meng, L.; Yang, B.; Tao, C.; Li, L.; Zhang, W. LabelRS: An Automated Toolbox to Make Deep Learning Samples from Remote
Sensing Images. Remote Sens. 2021, 13, 2064. [CrossRef]

23. Athar, S.; Wang, Z. A Comprehensive Performance Evaluation of Image Quality Assessment Algorithms. IEEE Access 2019, 7,
140030–140070. [CrossRef]

24. Wang, Z.; Bovik, A.C. Reduced-and No-Reference Image Quality Assessment. IEEE Signal Process. Mag. 2011, 28, 29–40. [CrossRef]
25. Chandler, D.M. Seven Challenges in Image Quality Assessment: Past, Present, and Future Research. ISRN Signal Process. 2013,

2013, 905685. [CrossRef]
26. Yin, G.; Wang, W.; Yuan, Z.; Han, C.; Ji, W.; Sun, S.; Wang, C. Content-Variant Reference Image Quality Assessment via Knowledge

Distillation. Proc. AAAI Conf. Artif. Intell. 2022, 36, 3134–3142. [CrossRef]
27. Ponomarenko, N.; Lukin, V.; Zelensky, A.; Egiazarian, K.; Carli, M.; Battisti, F. TID2008-a Database for Evaluation of Full-Reference

Visual Quality Assessment Metrics. Adv. Mod. Radioelectron. 2009, 10, 30–45.
28. Bosse, S.; Maniry, D.; Müller, K.-R.; Wiegand, T.; Samek, W. Deep Neural Networks for No-Reference and Full-Reference Image

Quality Assessment. IEEE Trans. Image Process. 2017, 27, 206–219. [CrossRef] [PubMed]
29. Su, S.; Yan, Q.; Zhu, Y.; Zhang, C.; Ge, X.; Sun, J.; Zhang, Y. Blindly Assess Image Quality in the Wild Guided by A Self-Adaptive Hyper

Network–Supplementary Material; Northwestern Polytechnical University: Xi’an, China, 2020.
30. Rehman, A.; Wang, Z. Reduced-Reference Image Quality Assessment by Structural Similarity Estimation. IEEE Trans. Image

Process. 2012, 21, 3378–3389. [CrossRef] [PubMed]
31. Cheon, M.; Yoon, S.-J.; Kang, B.; Lee, J. Perceptual Image Quality Assessment with Transformers. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 433–442.
32. Bosse, S.; Maniry, D.; Wiegand, T.; Samek, W. A Deep Neural Network for Image Quality Assessment. In Proceedings of the 2016

IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Phoenix, AZ, USA, 2016;
pp. 3773–3777.

https://doi.org/10.5120/ijca2017914884
https://doi.org/10.3390/rs14215455
https://doi.org/10.1117/1.JRS.12.045501
https://doi.org/10.1007/s00521-021-06027-1
https://doi.org/10.1016/j.ecss.2018.10.021
https://doi.org/10.1007/s40333-017-0109-0
https://doi.org/10.3390/rs14133001
https://doi.org/10.1016/j.jag.2015.08.004
https://doi.org/10.13203/j.whugis20180067
https://doi.org/10.1016/0034-4257(86)90044-1
https://doi.org/10.1109/36.2999
https://doi.org/10.1109/LGRS.2016.2619984
https://doi.org/10.3390/rs13112064
https://doi.org/10.1109/ACCESS.2019.2943319
https://doi.org/10.1109/MSP.2011.942471
https://doi.org/10.1155/2013/905685
https://doi.org/10.1609/aaai.v36i3.20221
https://doi.org/10.1109/TIP.2017.2760518
https://www.ncbi.nlm.nih.gov/pubmed/29028191
https://doi.org/10.1109/TIP.2012.2197011
https://www.ncbi.nlm.nih.gov/pubmed/22562759


Appl. Sci. 2023, 13, 6585 22 of 22

33. Liu, L.; Liu, B.; Huang, H.; Bovik, A.C. No-Reference Image Quality Assessment Based on Spatial and Spectral Entropies. Signal
Process. Image Commun. 2014, 29, 856–863. [CrossRef]

34. Rollet, R.; Benie, G.B.; Li, W.; Wang, S.; Boucher, J.M. Image Classification Algorithm Based on the RBF Neural Network and
K-Means. Int. J. Remote Sens. 1998, 19, 3003–3009. [CrossRef]

35. Lv, Z.; Hu, Y.; Zhong, H.; Wu, J.; Li, B.; Zhao, H. Parallel K-Means Clustering of Remote Sensing Images Based on Mapreduce. In
Proceedings of the Web Information Systems and Mining: International Conference, WISM 2010, Sanya, China, 23–24 October
2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 162–170.

36. Lv, Z.; Liu, T.; Shi, C.; Benediktsson, J.A.; Du, H. Novel Land Cover Change Detection Method Based on K-Means Clustering and
Adaptive Majority Voting Using Bitemporal Remote Sensing Images. IEEE Access 2019, 7, 34425–34437. [CrossRef]

37. Abbas, A.W.; Minallh, N.; Ahmad, N.; Abid, S.A.R.; Khan, M.A.A. K-Means and ISODATA Clustering Algorithms for Landcover
Classification Using Remote Sensing. Sindh Univ. Res. J.-SURJ Sci. Ser. 2016, 48, 315–318.

38. Tong, X.-Y.; Xia, G.-S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-Cover Classification with High-Resolution Remote Sensing
Images Using Transferable Deep Models. Remote Sens. Environ. 2020, 237, 111322. [CrossRef]

39. Liu, Q.; Liu, G.; Huang, C.; Xie, C. Comparison of Tasselled Cap Transformations Based on the Selective Bands of Landsat 8 OLI
TOA Reflectance Images. Int. J. Remote Sens. 2015, 36, 417–441. [CrossRef]

40. Horne, J.H. A Tasseled Cap Transformation for IKONOS Images. In Proceedings of the ASPRS 2003 Annual Conference
Proceedings, Anchorage, AK, USA, 5–9 May 2003.

41. Yang, M.; Jiao, L.; Liu, F.; Hou, B.; Yang, S. Transferred Deep Learning-Based Change Detection in Remote Sensing Images. IEEE
Trans. Geosci. Remote Sens. 2019, 57, 6960–6973. [CrossRef]

42. Lian, R.; Wang, W.; Mustafa, N.; Huang, L. Road Extraction Methods in High-Resolution Remote Sensing Images: A Comprehen-
sive Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5489–5507. [CrossRef]

43. Yuan, X.; Shi, J.; Gu, L. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery. Expert Syst.
Appl. 2021, 169, 114417. [CrossRef]

44. Rahaman, M.; Hillas, M.M.; Tuba, J.; Ruma, J.F.; Ahmed, N.; Rahman, R.M. Effects of Label Noise on Performance of Remote
Sensing and Deep Learning-Based Water Body Segmentation Models. Cybern. Syst. 2022, 53, 581–606. [CrossRef]

45. Kazempour, D.; Beer, A.; Kroger, P.; Seidl, T. I Fold You so! An Internal Evaluation Measure for Arbitrary Oriented Sub-
space Clustering. In Proceedings of the 2020 International Conference on Data Mining Workshops (ICDMW), Sorrento, Italy,
17–20 November 2020; IEEE: Sorrento, Italy, 2020; pp. 316–323.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.image.2014.06.006
https://doi.org/10.1080/014311698214398
https://doi.org/10.1109/ACCESS.2019.2892648
https://doi.org/10.1016/j.rse.2019.111322
https://doi.org/10.1080/01431161.2014.995274
https://doi.org/10.1109/TGRS.2019.2909781
https://doi.org/10.1109/JSTARS.2020.3023549
https://doi.org/10.1016/j.eswa.2020.114417
https://doi.org/10.1080/01969722.2021.1989171

	Introduction 
	Materials 
	Remote Sensing Data 
	Data Preprocessing 

	Pseudo-TCT and Verification Experiment 
	Pseudo-TCT 
	Orthogonal Linear Transform 
	Linear Stretching and Percentage Truncation Stretching 

	Verification Experiment of Inter-Class Separability 
	K-Means Clustering and ISODATA Clustering 
	Three-Dimensional Visualization and Intra-Class Consistency Visualization 


	Experiments and Results 
	Pseudo-TCT of GF-2 
	High Precision Label Making 
	Inter-Class Separability and Intra-Class Consistency Validation Experiments 
	K-Means Clustering and ISODATA Clustering Test for Inter-Class Separability 
	3D Visualization of Typical Ground Objects and Visualization of Intra-Class Consistency 


	Discussion 
	Visual Effect Comparison 
	Comparison of K-Means Clustering Results and ISODATA Clustering Results 
	Spectral Feature Visualization and Intra-Class Consistency Analysis 

	Conclusions 
	Appendix A
	Appendix B
	References

