Increased Anticancer Activity of Organic Kimchi with Starters Demonstrated in HT-29 Cancer Cells
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Kimchi Preparation
2.2. Preparation of Kimchi Extracts
2.3. Measurements of pH Value, Acidity, and Salinity of Kimchi
2.4. Sensory Evaluation of Kimchi
2.5. Assessment of the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Inhibition Rate of Kimchi
2.6. Assessment of Total Phenol (TP) Content
2.7. Assessment of the Total Flavonoid (TF) Content
2.8. HT-29 Cell Culture
2.9. MTT (3-(4,5-Dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium Bromide) Assay
2.10. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)
2.11. Western Blot
2.12. Statistical Analysis
3. Result
3.1. Analysis of Physicochemical Characteristics of Kimchi Samples
3.2. Antioxidant Capacities of Kimchi Samples
3.3. Inhibition Rate of HT-29 Human Colon Carcinoma Cells by Kimchi
3.4. mRNA Expression of Genes Associated with Cell Cycle Arrest
3.5. mRNA Expression of Genes Associated with Apoptosis
3.6. Expression Levels of Proteins Associated with Cell Cycle Arrest and Apoptosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jung, J.Y.; Lee, S.H.; Jeon, C.O. Kimchi microflora: History, current status, and perspectives for industrial kimchi production. Appl. Microbiol. Biotechnol. 2014, 98, 2385–2393. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; Park, J.M.; Han, Y.M.; Park, K.Y.; Lee, D.H.; Yoo, J.H.; Cho, J.Y.; Hahm, K.B. Dietary prevention of Helicobacter pylori-associated gastric cancer with kimchi. Oncotarget 2015, 6, 29513–29526. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Jeong, J.K.; Lee, Y.E.; Daily, J.W., 3rd. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 2014, 17, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Park, E.S.; Song, G.H.; Zhao, X.; Yi, R.K.; Park, K.Y. Kimchi markedly induces apoptosis in HT-29 human colon carcinoma cells. J. Food Biochem. 2021, 45, e13532. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-A.; Choi, Y.-J.; Lee, H.; Hwang, S.; Lee, H.J.; Park, S.J.; Chung, Y.B.; Yun, Y.-R.; Park, S.-H.; Min, S.; et al. Influence of Salinity on the Microbial Community Composition and Metabolite Profile in Kimchi. Fermentation 2021, 7, 308. [Google Scholar] [CrossRef]
- Lee, S.J.; Jeon, H.S.; Yoo, J.Y.; Kim, J.H. Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021, 10, 2148. [Google Scholar] [CrossRef]
- Lee, M.E.; Jang, J.Y.; Lee, J.H.; Park, H.W.; Choi, H.J.; Kim, T.W. Starter cultures for kimchi fermentation. J. Microbiol. Biotechnol. 2015, 25, 559–568. [Google Scholar] [CrossRef]
- Lee, K.H.; Song, J.L.; Park, E.S.; Ju, J.; Kim, H.Y.; Park, K.Y. Anti-Obesity Effects of Starter Fermented Kimchi on 3T3-L1 Adipocytes. Prev. Nutr. Food Sci. 2015, 20, 298–302. [Google Scholar] [CrossRef]
- Bong, Y.-J.; Jeong, J.-K.; Park, K.-Y. Fermentation Properties and Increased Health Functionality of Kimchi by Kimchi Lactic Acid Bacteria Starters. J. Korean Soc. Food Sci. Nutr. 2013, 42, 1717–1726. [Google Scholar] [CrossRef]
- Chuah, L.O.; Foo, H.L.; Loh, T.C.; Mohammed Alitheen, N.B.; Yeap, S.K.; Abdul Mutalib, N.E.; Abdul Rahim, R.; Yusoff, K. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement. Altern. Med. 2019, 19, 114. [Google Scholar] [CrossRef]
- Lai, L.R.; Hsieh, S.C.; Huang, H.Y.; Chou, C.C. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J. Biosci. Bioeng. 2013, 115, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.; Hong, G.-H.; Lee, S.-Y.; Noh, H.C.; Park, K.-Y. Antiobesity Effect of Dead Lactobacillus plantarum nF1 on High-Fat Diet-Induced C57BL/6 Mice. J. Korean Soc. Food Sci. Nutr. 2022, 51, 1119–1128. [Google Scholar] [CrossRef]
- Karousi, P.; Artemaki, P.I.; Sotiropoulou, C.D.; Christodoulou, S.; Scorilas, A.; Kontos, C.K. Identification of Two Novel Circular RNAs Deriving from BCL2L12 and Investigation of Their Potential Value as a Molecular Signature in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 8867. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.D.; Milner, J.A. Biomarkers for diet and cancer prevention research: Potentials and challenges. Acta Pharmacol. Sin. 2007, 28, 1262–1273. [Google Scholar] [CrossRef]
- Sambrani, R.; Abdolalizadeh, J.; Kohan, L.; Jafari, B. Saccharomyces cerevisiae inhibits growth and metastasis and stimulates apoptosis in HT-29 colorectal cancer cell line. Comp. Clin. Pathol. 2018, 28, 985–995. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, Y.; Li, X. The interaction mechanism between autophagy and apoptosis in colon cancer. Transl. Oncol. 2020, 13, 100871. [Google Scholar] [CrossRef]
- Pedroza-Garcia, J.A.; Xiang, Y.; De Veylder, L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. Plant J. 2022, 109, 490–507. [Google Scholar] [CrossRef]
- Labianca, R.; Beretta, G.D.; Kildani, B.; Milesi, L.; Merlin, F.; Mosconi, S.; Pessi, M.A.; Prochilo, T.; Quadri, A.; Gatta, G.; et al. Colon cancer. Crit. Rev. Oncol. Hematol. 2010, 74, 106–133. [Google Scholar] [CrossRef]
- Oliver, P.; Cicerale, S.; Pang, E.; Keast, R. A Comparison of Temporal Dominance of Sensation (TDS) and Quantitative Descriptive Analysis (QDA) to Identify Flavors in Strawberries. J. Food Sci. 2018, 83, 1094–1102. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Niamah, A.K. Identification and antioxidant activity of hyaluronic acid extracted from local isolates of Streptococcus thermophilus. Mater. Today Proc. 2022, 60, 1523–1529. [Google Scholar] [CrossRef]
- Kim, S.; Kang, J.-H.; Song, K.B. Development of a Sword Bean (Canavalia gladiata) Starch Film Containing Goji Berry Extract. Food Bioprocess Technol. 2020, 13, 911–921. [Google Scholar] [CrossRef]
- Pan, Y.; Lee, Y.; Chung, J.H.; Kwack, K.; Zhao, X.; Park, K.-Y. The anti-oxidative capacity of fermented lemon peel and its inhibitory effects on Lipopolysaccharide (LPS)-induced RAW 264.7 cell inflammatory response and cell apoptosis. Food Sci. Technol. 2023, 43, 101922. [Google Scholar] [CrossRef]
- Pan, Y.; Park, E.-S.; Hong, G.H.; Lim, Y.-I.; Park, K.-Y. Chrysophanol Suppressed the Level of Pro-Inflammatory Cytokines Induced by LPS in Raw 264.7 Macrophage Cells. J. Korean Soc. Food Sci. Nutr. 2019, 48, 1323–1329. [Google Scholar] [CrossRef]
- Park, E.S.; Yu, T.; Yang, K.; Choi, S.; Lee, S.M.; Park, K.Y. Cube natural sea salt ameliorates obesity in high fat diet-induced obese mice and 3T3-L1 adipocytes. Sci. Rep. 2020, 10, 3407. [Google Scholar] [CrossRef]
- Riad, A.; Zeng, C.; Weng, C.C.; Winters, H.; Xu, K.; Makvandi, M.; Metz, T.; Carlin, S.; Mach, R.H. Sigma-2 Receptor/TMEM97 and PGRMC-1 Increase the Rate of Internalization of LDL by LDL Receptor through the Formation of a Ternary Complex. Sci. Rep. 2018, 8, 16845. [Google Scholar] [CrossRef]
- Seo, E.-C.; Moon, J.-S.; Jung, J.-Y.; Kim, J.-S.; Eom, H.-J.; Kim, S.-Y.; Yoon, H.-S.; Han, N.-S. Buffering effects of calcium salts in kimchi: Lowering acidity, elevating lactic acid bacterial population and dextransucrase activity. J. Microbiol. Biotechnol. 2009, 19, 1644–1649. [Google Scholar] [CrossRef] [PubMed]
- Ryu, E.H.; Yang, J.S.; Lee, M.J.; Kim, S.H.; Seo, H.Y.; Jung, J.H. Antioxidant effects of kimchi supplemented with black raspberry during fermentation protect against liver cirrhosis-induced oxidative stress in rats. Nutr. Res. Pract. 2019, 13, 87–94. [Google Scholar] [CrossRef]
- Choi, S.-M.; Kil, J.-H.; Jeon, Y.-S.; Park, K.-Y. Fermentation Characteristics, and Antimutagenic and Anticancer Effects of Mistletoe Added Kimchi. J. Cancer Prev. 2003, 8, 98–106. [Google Scholar]
- Park, K.Y.; Hong, G.H. Kimchi and its functionality. J. Korean Soc. Food Cult. 2019, 34, 142–158. [Google Scholar] [CrossRef]
- Seong, J.-H.; Park, S.-G.; Park, E.-M.; Kim, H.-S.; Kim, D.-S.; Chung, H.-S. Contents of chemical constituents in organic Korean cabbages. Korean J. Food Preserv. 2006, 13, 655–660. [Google Scholar]
- Ibanez, F.; Bang, W.Y.; Lombardini, L.; Cisneros-Zevallos, L. Solving the controversy of healthier organic fruit: Leaf wounding triggers distant gene expression response of polyphenol biosynthesis in strawberry fruit (Fragaria x ananassa). Sci. Rep. 2019, 9, 19239. [Google Scholar] [CrossRef]
- Jung, S.-J.; So, B.-O.; Shin, S.-W.; Noh, S.-O.; Jung, E.-S.; Chae, S.-W. Physiochemical and Quality Characteristics of Young Radish (Yulmoo) Kimchi Cultivated by Organic Farming. J. Korean Soc. Food Sci. Nutr. 2014, 43, 1197–1206. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Song, J.L.; Chang, H.K.; Kang, S.A.; Park, K.Y. Kimchi protects against azoxymethane/dextran sulfate sodium-induced colorectal carcinogenesis in mice. J. Med. Food 2014, 17, 833–841. [Google Scholar] [CrossRef]
- Cui, M.; Kim, H.-Y.; Lee, K.H.; Jeong, J.-K.; Hwang, J.-H.; Yeo, K.-Y.; Ryu, B.-H.; Choi, J.-H.; Park, K.-Y. Antiobesity effects of kimchi in diet-induced obese mice. J. Ethn. Foods 2015, 2, 137–144. [Google Scholar] [CrossRef]
- Kil, J.-H. Antiproliferative Effect of Mistletoe Extract Added Kimchi in Human Lung Carcinoma A549 Cells. J. Life Sci. 2017, 27, 1507–1514. [Google Scholar]
- Kim, B.; Song, J.-L.; Ju, J.-H.; Kang, S.-A.; Park, K.-Y. Anticancer effects of kimchi fermented for different times and with added ingredients in human HT-29 colon cancer cells. Food Sci. Biotechnol. 2015, 24, 629–633. [Google Scholar] [CrossRef]
- Lee, K.-H.; Bong, Y.-J.; Lee, H.A.; Kim, H.-Y.; Park, K.-Y. Probiotic Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Isolated from Kimchi. J. Korean Soc. Food Sci. Nutr. 2016, 45, 12–19. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Lee, H.J.; Seo, H.Y.; Park, W.S.; Jeon, C.O. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. Int. J. Food Microbiol. 2012, 153, 378–387. [Google Scholar] [CrossRef]
- Kwak, S.H.; Cho, Y.M.; Noh, G.M.; Om, A.S. Cancer Preventive Potential of Kimchi Lactic Acid Bacteria (Weissella cibaria, Lactobacillus plantarum). J. Cancer Prev. 2014, 19, 253–258. [Google Scholar] [CrossRef]
- Choi, D.W.; Jung, S.Y.; Kang, J.; Nam, Y.D.; Lim, S.I.; Kim, K.T.; Shin, H.S. Immune-Enhancing Effect of Nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a Mouse Model of Cyclophosphamide-Induced Immunosuppression. J. Microbiol. Biotechnol. 2018, 28, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Park, E.S.; Choi, Y.S.; Park, S.J.; Kim, J.H.; Chang, H.K.; Park, K.Y. Kimchi improves irritable bowel syndrome: Results of a randomized, double-blind placebo-controlled study. Food Nutr. Res. 2022, 66. [Google Scholar] [CrossRef]
- Jones, P.A.; Baylin, S.B. The epigenomics of cancer. Cell 2007, 128, 683–692. [Google Scholar] [CrossRef]
- Lin, C.H.; Lu, W.C.; Wang, C.W.; Chan, Y.C.; Chen, M.K. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells. BMC Complement. Altern. Med. 2013, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 2016, 6, a026104. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Medeiros, L.J.; Young, K.H. Apoptosis signaling and BCL-2 pathways provide opportunities for novel targeted therapeutic strategies in hematologic malignances. Blood Rev. 2018, 32, 8–28. [Google Scholar] [CrossRef]
- Allmann, S.; Mayer, L.; Olma, J.; Kaina, B.; Hofmann, T.G.; Tomicic, M.T.; Christmann, M. Benzo[a]pyrene represses DNA repair through altered E2F1/E2F4 function marking an early event in DNA damage-induced cellular senescence. Nucleic. Acids Res. 2020, 48, 12085–12101. [Google Scholar] [CrossRef]
- Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022, 29, 946–960. [Google Scholar] [CrossRef]
- Song, G.-H.; Park, E.-S.; Lee, S.-M.; Park, D.-B.; Park, K.-Y. Beneficial outcomes of kimchi prepared with Amtak Baechu cabbage and salting in brine solution: Anticancer effects in pancreatic and hepatic cancer cells. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 151–161. [Google Scholar] [CrossRef]
- Bursch, W.; Ellinger, A.; Gerner, C.; Frohwein, U.; Schulte-Hermann, R. Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann. N. Y. Acad. Sci. 2000, 926, 1–12. [Google Scholar] [CrossRef]
- Warren, C.F.A.; Wong-Brown, M.W.; Bowden, N.A. BCL-2 family isoforms in apoptosis and cancer. Cell Death Dis. 2019, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Chipuk, J.E.; Green, D.R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 2008, 18, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Carrington, E.M.; Zhan, Y.; Brady, J.L.; Zhang, J.G.; Sutherland, R.M.; Anstee, N.S.; Schenk, R.L.; Vikstrom, I.B.; Delconte, R.B.; Segal, D.; et al. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ. 2017, 24, 878–888. [Google Scholar] [CrossRef]
- Gelinas, C.; White, E. BH3-only proteins in control: Specificity regulates MCL-1 and BAK-mediated apoptosis. Genes Dev. 2005, 19, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656. [Google Scholar] [CrossRef]
- Araya, L.E.; Soni, I.V.; Hardy, J.A.; Julien, O. Deorphanizing Caspase-3 and Caspase-9 Substrates In and Out of Apoptosis with Deep Substrate Profiling. ACS Chem. Biol. 2021, 16, 2280–2296. [Google Scholar] [CrossRef]
- Yuan, J.; Shaham, S.; Ledoux, S.; Ellis, H.M.; Horvitz, H.R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993, 75, 641–652. [Google Scholar] [CrossRef]
Ingredients of Kimchi | SK(g) | CK(g) | AK(g) | OAK(g) |
---|---|---|---|---|
Baechu cabbage | 5000 | 5000 | 5000 | 5000 |
Red pepper powder | 175 | 280 | 175 | 175 |
Garlic | 140 | 60 | 140 | 140 |
Ginger | 30 | 50 | 30 | 30 |
Radish | 550 | 760 | 550 | 550 |
Sugar | 50 | 60 | 50 | 50 |
Anchovy juice | 110 | 180 | 110 | 110 |
Green onion | 100 | 190 | 100 | 100 |
Pear | - | - | 140 | 140 |
Mustard leaf | - | 80 | 375 | 375 |
Onion | - | 190 | - | - |
Radish juice | - | 380 | - | - |
Glutinous rice paste | - | 30 | - | - |
Mushroom and sea tangle juice | - | - | 125 | 125 |
Mistletoe extract | - | - | 2.5 | 2.5 |
Lactiplantibacillus plantarum PNU (CFU/g) | - | - | 1 × 106 | 1 × 106 |
Leuconostoc mesenteroids PNU (CFU/g) | - | - | 1 × 106 | 1 × 106 |
Dead nano-sized Lactiplantibacillus plantarum nF1 (g/kg) | - | - | 10 | 10 |
Gene Name | Primer Sequence |
---|---|
Bcl-2 | F: 5′-AAGATTGATGGGATCGTTGC-3′ |
R: 5′-GCGGAACACTTGATTCTGGT-3′ | |
p21 | F: 5′-ATGTCAGAACCGGCTGGGG-3′ |
R: 5′-GCCGGGGCCCCGTGGGA-3′ | |
p53 | F: 5′-ATGGAGGAGCCGCAGTCAGA-3′ |
R: 5′-TGCAGGGGCCGCCGGTGTAG-3′ | |
Bim | F: 5′-AGATCCCCGCTTTTCATCTT -3′ |
R: 5′-TCTTGGGCGATCCATATCTC -3′ | |
Bak | F: 5′-TCTGGCCCTACACGTCTACC -3′ |
R: 5′-AGTGATGCAGCATGAAGTCG -3′ | |
Bad | F: 5′-CAATGACCCCTTCATTGACC -3′ |
R: 5′-GACAAGCTTCCCGTTCTCAG -3′ | |
Caspase 3 | F: 5′-TTTTTCAGAGGGGATCGTTG-3′ |
R: 5′-CGGCCTCCACTGGTATTTTA-3′ | |
Caspase 9 | F: 5′-CTAGTTTGCCCACACCCAGT-3′ |
R: 5′-CTGCTCAAAGATGTCGTCCA-3′ | |
GAPDH | F: 5′-AGGTCGGTGTGAACGGATTTG-3′ |
R: 5′-GGGGTCGTTGATGGCAACA-3′ |
Weeks | pH Value | Acidity | Salinity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SK | CK | AK | OAK | SK | CK | AK | OAK | SK | CK | AK | OAK | |
0 | 5.43 ± 0.04 ab | 5.48 ± 0.04 a | 5.38 ± 0.06 b | 5.49 ± 0.05 a | 0.34 ± 0.01 c | 0.49 ± 0.01 a | 0.42 ± 0.01 b | 0.43 ± 0.02 b | 1.83 ± 0.03 a | 1.70 ± 0.05 bc | 1.73 ± 0.02 bc | 1.66 ± 0.03 c |
1 | 4.58 ± 0.04 b | 4.55 ± 0.03 b | 5.01 ± 0.05 a | 5.01 ± 0.01 a | 0.66 ± 0.02 a | 0.55 ± 0.01 b | 0.55 ± 0.01 b | 0.57 ± 0.01 b | 1.57 ± 0.03 a | 1.34 ± 0.01 c | 1.57 ± 0.02 a | 1.48 ± 0.03 b |
2 | 4.26 ± 0.02 b | 4.29 ± 0.04 b | 4.39 ± 0.02 a | 4.41 ± 0.02 a | 0.79 ± 0.01 a | 0.66 ± 0.01 c | 0.67 ± 0.01 c | 0.69 ± 0.01 b | 1.44 ± 0.01 a | 1.30 ± 0.01 c | 1.39 ± 0.01 b | 1.39 ± 0.02 b |
3 | 4.11 ± 0.00 c | 4.11 ± 0.02 c | 4.16 ± 0.02 b | 4.19 ± 0.03 a | 0.87 ± 0.01 a | 0.83 ± 0.04 b | 0.84 ± 0.01 ab | 0.85 ± 0.00 ab | 1.40 ± 0.03 b | 1.26 ± 0.03 c | 1.49 ± 0.02 a | 1.47 ± 0.04 a |
4 | 4.00 ± 0.02 a | 3.95 ± 0.01 c | 3.95 ± 0.03 bc | 3.99 ± 0.01 ab | 1.15 ± 0.01 a | 1.03 ± 0.01 ab | 1.10 ± 0.15 a | 0.90 ± 0.00 b | 1.41 ± 0.04 b | 1.20 ± 0.02 d | 1.35 ± 0.03 c | 1.50 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-J.; Pan, Y.; Kwack, K.-B.; Chung, J.H.; Park, K.-Y. Increased Anticancer Activity of Organic Kimchi with Starters Demonstrated in HT-29 Cancer Cells. Appl. Sci. 2023, 13, 6654. https://doi.org/10.3390/app13116654
Lee Y-J, Pan Y, Kwack K-B, Chung JH, Park K-Y. Increased Anticancer Activity of Organic Kimchi with Starters Demonstrated in HT-29 Cancer Cells. Applied Sciences. 2023; 13(11):6654. https://doi.org/10.3390/app13116654
Chicago/Turabian StyleLee, Yeon-Jun, Yanni Pan, Kyu-Bum Kwack, Ji Hyung Chung, and Kun-Young Park. 2023. "Increased Anticancer Activity of Organic Kimchi with Starters Demonstrated in HT-29 Cancer Cells" Applied Sciences 13, no. 11: 6654. https://doi.org/10.3390/app13116654
APA StyleLee, Y. -J., Pan, Y., Kwack, K. -B., Chung, J. H., & Park, K. -Y. (2023). Increased Anticancer Activity of Organic Kimchi with Starters Demonstrated in HT-29 Cancer Cells. Applied Sciences, 13(11), 6654. https://doi.org/10.3390/app13116654