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Abstract: Vehicle passing angles are critical metrics for evaluating the geometric passability of
vehicles. The accurate measurement of these angles is essential for route planning in complex terrain
and in guiding the production of specialized vehicles. However, the current measurement methods
cannot meet the requirements of efficiency, convenience and robustness. This paper presents a
novel measurement method by building and measuring the point cloud of a vehicle chassis. Based
on this method, a novel measurement system is designed and its effectiveness is verified. In the
system, a wheeled robot acquires and processes data after passing underneath the vehicle. Then, we
introduce a new approach to reduce the main sources of error when building point clouds beneath the
vehicle, achieved by modifying the extraction algorithm and the proportion of different feature points
in each frame. Additionally, we present a fast geometric calculation algorithm for calculating the
passing angles. The simulation experiment results demonstrate deviations of 0.06252%, 0.01575%, and
0.003987% when comparing the calculated angles to those of the simulated vehicle. The experimental
results show that the method and system are effective at acquiring the point cloud of the vehicle
and calculating the parameters of passing angles with good data consistency, exhibiting variances of
0.12407, 0.12407, and 0.69804.

Keywords: passing angles; data acquisition; point cloud; LIDAR; information processing

1. Introduction and Background

Vehicle passing angles are important parameters in vehicle measurement standards [1].
The vehicle passing angles are the geometric parameters of a vehicle that determine a
vehicle’s ability to pass on different terrains; the larger the passing angle, the better the
ability to pass on steep roads. The stability- and quality-related measurements of vehicles’
passing angles affect the quality of acceptance in the industrial production of vehicles,
and they also play an important role in the planning of transportation systems [2] and
military deployment in complex terrains [3]. During the vehicle manufacturing process, the
actual parameters often deviate from the designed vehicle model. Accurate measurements
of these parameters are of significant importance for guiding production processes and
determining competitive bidding. The vehicle passing angle diagram shown in Figure 1,
which includes the approach angle, departure angle and ramp breakover angle [1], are
still commonly measured manually in practice [4]. The staff must select the target points
on the vehicle and estimate the position of the line tangent to the tire manually and then
measure them and calculate the passing angles using trigonometric functions. However,
this manual measurement method introduces multiple sources of error, making it inefficient
and difficult to quantify and guarantee the consistency of the data and thus causing this
method to be prone to controversy in both product acceptance and competitive bidding.

Existing automated non-contact measurement methods for vehicle contours are grad-
ually maturing. A method for traversability assessment planning was proposed in the
research of Zhang, K. et al. [5], which was based on the computation of a specific vehicle
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model considering the geometric information of a rough terrain surface obtained from
laser scanning with LIDAR. However, this method mainly assesses the passability for a
specific vehicle model and thus cannot be universally applied to vehicles easily or provide
specific measurement parameters. Ma, Y. et al. [6] presented a measuring system that
analyzes the wheels of passing vehicles using a horizontal LIDAR in a plane close and
nearly parallel to the road surface. However, only the wheels were considered in the
paper, and no data were collected from the chassis of the vehicle; thus, this method cannot
be applied to calculate vehicle-related geometric parameters. In 2019, Xue, G. et al. [7]
proposed another method to measure vehicle passing angles using a measuring plate and
an improved tool instead of manual measurement. However, different models of modified
lifting plates were required to fit the widely varying vehicle requirements, meaning that it
is still a contact measurement method that needs to be more convenient. Some automated
methods are available to measure the geometric parameters of vehicles [8–11]. However,
these methods cannot be directly applied to the measurement of passing parameters. The
methods proposed in [8–10] employ various image segmentation techniques combined
with vehicle morphology [8], neural networks [9], or prior knowledge [10] to extract vehicle
contour boundaries and calculate their dimensions. Although these single-view methods
are fast, they tend to have larger errors, and they struggle to capture information about
the vehicle’s bottom side using a single perspective. The method presented in [11] is a
multi-view 3D imaging and detection approach that uses unmanned aerial vehicles to
capture vehicle images from different angles and reconstruct them in 3D. However, these
multi-view methods require comprehensive information from multiple angles to ensure
robustness and accuracy. When capturing images of the vehicle’s bottom side, the angles
of acquisition are limited, and factors such as lighting conditions and image quality can
significantly affect the imaging quality and completeness. Additionally, the scale of the
3D models obtained using the Multi-View Stereo (MVS) approach needs to be adjusted
to match real-world dimensions through camera-to-world scaling, introducing additional
sources of error.
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Figure 1. The schematic of the passing angle measurement. The approach angle is indicated by α, the
ramp breakover angle is indicated by β, the departure angle is indicated by γ.

Laser scanning is a convenient, non-contact detection method with advantages in-
cluding the ability to scan millions of points rapidly and detect some areas that traditional
tools cannot cover. Due to these advantages, laser scanning has become popular, and its
application has extended into the field of monitoring, detection, and identification. Luo, R.
et al. [12] proposed a method to compare the daily construction scaffold technique using
LIDAR point clouds. Point clouds were also applied to detecting changes in confined
building interiors [13] and for automated damage detection and evaluation in bridges [14].
Njaastad, E.D. et al. [15] also adopted this method to identify geometric design parameters
of ISO 484-class propeller blades using scanned point-cloud data. Laser point clouds can
directly represent the geometric information of objects and can be used for measurement
and evaluation. An empirical study on LIDAR point density [16] analyzed the variation
across different land covers, providing a reference for a convenient approach to land classi-
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fication. Researchers have also presented a method to evaluate the geometry of structures
in underground mining based on LiDAR/Terrestrial Laser Scanner measurements [17]. The
laser point cloud was also utilized to analyze the geometrical consistency of 3D-printed,
cement-based materials with an as-designed modeled system [18].

Building point clouds is the foundation for measurements based on laser scanning.
Scanning and registering point clouds using LIDAR is a universal point-cloud acquisi-
tion technique [19]. Many researchers have focused on how to build high-quality over-
all point clouds using different methods. An improved ICP algorithm was adopted by
Liu, J. et al. [20] that used a corresponding accelerated method for point-cloud registration.
Zhang, J. [21] proposed a state-of-the-art open source method that builds an overall point
cloud in real time by dividing feature points and registering them separately. Shan, T
and Englot, B. [22] presented a registration method with point segmentation to reduce
grass interference. Principal component analysis was also used [23] to robustly extract
features and build point clouds. Image information can complement some blind areas of
laser scanning. The literature [24] presented better reconstructed 3D models by using laser
scanning and photogrammetric data. Additionally, a more robust method [25] has been
proposed using complement visual odometry to laser data.

Manual measurement of passing angles requires several staff and tools to cooperate,
resulting in high labor costs and low efficiency. The target points selected based on manual
experience often deviate due to the various components on the vehicle chassis, and the
selected area is sometimes not a regular plane. The deviations are magnified by the
angle conversion, leading to poor data consistency in repeated testing by different staff,
causing disputes between evaluated companies during competitive bidding. An automated
approach to measuring passing angles based on laser scanning can improve the efficiency
and robustness of the measurement and reduce potential disputes. However, based on
long-term field measurements, we still found it difficult to conveniently obtain the relevant
point cloud through existing technical means due to differences in the scanning scenarios.
The relevant point cloud includes the point cloud of the vehicle chassis and the point
cloud of the tires below the chassis. In this scenario, the height of the LIDAR that can pass
underneath the vehicle is low, limiting the field of view (FOV) of the LIDAR. During laser
data acquisition, there is a large number of laser points on the flat ground. Moreover, the
feature points that effectively represent the structure under a vehicle are sparse. These
situations result in a much smaller proportion of vehicle chassis and tire point clouds in
each frame of the laser data compared to ground point clouds, causing a disproportionate
contribution of ground points in the alignment process. Additionally, the point cloud of the
flat plane is more susceptible to the noise and vibration from the acquisition equipment,
leading to odometry drift [26]. Furthermore, the ground points collected by the LIDAR near
the flat ground present multiple circular shapes, and the alignment of circular-shaped point
clouds is more likely to result in local optimal solutions, leading to alignment errors and
mistakes. Consequently, it becomes challenging to obtain a reliable overall point cloud of
the vehicle chassis and tires and even more challenging to obtain passing angle parameters
with good data consistency based on that point cloud.

This paper proposes a method and designs a system that can be readily deployed to
measure vehicle passing angles objectively, efficiently and robustly. Our system utilizes
a wheeled robot equipped with a LIDAR and a camera to pass underneath the vehicle,
scan and building the point cloud and calculate the passing angles automatically. In our
method, we propose a novel point cloud-building approach to address the challenges
of building point clouds from underneath a vehicle and a point cloud-based parameter
measurement approach to select target points and measure passing angles without the use
of manual operations.

This article is organized as follows: Section 2 describes the system, Section 3 details
the method, Section 4 presents the experimental results, Section 5 provides a discussion of
the proposed system and Section 6 concludes this article.
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2. Design of the Measurement System

The primary challenge in efficiently automating the measurement of vehicle passing
parameters is how to obtain data from underneath the vehicle without modifying the testing
site or the testing platform. To address this issue, we propose a solution involving a wheeled
robot equipped with sensing devices that passes underneath the vehicle. Subsequently, a
three-dimensional point cloud is built and the parameters are calculated based on the data
extracted from the point cloud. The schematic diagram in Figure 1 illustrates the operation
of the passing angle measurement system. In this system, the wheeled robot equipped with
a LIDAR and a camera longitudinally passes underneath the vehicle to acquire the data on
the vehicle chassis, tires and the ground. The overall point cloud is built by the processor
and subsequently analyzed to derive the passing angles. The final results are transmitted
to the handheld device to be recorded and displayed.

2.1. Hardware System Framework

For the convenience of system operation, the measurement system consists of mea-
surement equipment and an operator interface. The operator interface is a handheld device
used to initiate and terminate the system and to receive the point cloud data and calculated
parameter data processed by the industrial PC mounted on the wheeled robot. As shown in
Figure 2, the hardware block includes a wheeled robot and a handheld device. The wheeled
robot’s dimensions are 295 mm in width, 384 mm in length and 88 mm in height, while
the LIDAR has a diameter of 103 mm and a height of 72 mm. The system is suitable for
common household vehicles, off-road vehicles, delivery vehicles and any special vehicle
with a chassis higher than 160 mm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 19 
 

Figure 1. The schematic of the passing angle measurement. The approach angle is indicated by α, 

the ramp breakover angle is indicated by β, the departure angle is indicated by γ. 

2. Design of the Measurement System 

The primary challenge in efficiently automating the measurement of vehicle passing 

parameters is how to obtain data from underneath the vehicle without modifying the test-

ing site or the testing platform. To address this issue, we propose a solution involving a 

wheeled robot equipped with sensing devices that passes underneath the vehicle. Subse-

quently, a three-dimensional point cloud is built and the parameters are calculated based 

on the data extracted from the point cloud. The schematic diagram in Figure 1 illustrates 

the operation of the passing angle measurement system. In this system, the wheeled robot 

equipped with a LIDAR and a camera longitudinally passes underneath the vehicle to 

acquire the data on the vehicle chassis, tires and the ground. The overall point cloud is 

built by the processor and subsequently analyzed to derive the passing angles. The final 

results are transmitted to the handheld device to be recorded and displayed. 

2.1. Hardware System Framework 

For the convenience of system operation, the measurement system consists of meas-

urement equipment and an operator interface. The operator interface is a handheld device 

used to initiate and terminate the system and to receive the point cloud data and calcu-

lated parameter data processed by the industrial PC mounted on the wheeled robot. As 

shown in Figure 2, the hardware block includes a wheeled robot and a handheld device. 

The wheeled robot’s dimensions are 295 mm in width, 384 mm in length and 88 mm in 

height, while the LIDAR has a diameter of 103 mm and a height of 72 mm. The system is 

suitable for common household vehicles, off-road vehicles, delivery vehicles and any spe-

cial vehicle with a chassis higher than 160 mm. 

 

Figure 2. Hardware block diagram. 

In the robot, the STM32 is used as the controller for its actuator, which controls the 

motor system to drive the McNamee wheel to achieve movement via the CAN bus and 

electronic speed controller (ESC). The wheeled robot can move in all directions without 

rotating. In such a case, the motion model of the equipped LIDAR can be considered as a 

linear model [27], simplifying the distortion correction problem caused by the LIDAR 

data’s width moving. 

The LIDAR used in our system is a VLP-16, which has a 16-channel laser sensor dis-

tributed over a vertical FOV of 30° (±15°) and an angular resolution of 2°. The camera 

selected in our system is the RealSense D435.  

The digital transmission and receiver units access a handheld PC and the industrial 

PC via USB universal ports for communication to facilitate remote start-up and interrupt 

control. 

Figure 2. Hardware block diagram.

In the robot, the STM32 is used as the controller for its actuator, which controls the
motor system to drive the McNamee wheel to achieve movement via the CAN bus and
electronic speed controller (ESC). The wheeled robot can move in all directions without
rotating. In such a case, the motion model of the equipped LIDAR can be considered as
a linear model [27], simplifying the distortion correction problem caused by the LIDAR
data’s width moving.

The LIDAR used in our system is a VLP-16, which has a 16-channel laser sensor
distributed over a vertical FOV of 30◦ (±15◦) and an angular resolution of 2◦. The camera
selected in our system is the RealSense D435.

The digital transmission and receiver units access a handheld PC and the indus-
trial PC via USB universal ports for communication to facilitate remote start-up and
interrupt control.

Regarding the placement position of the LIDAR, if the Z-direction is oriented towards
the front of the wheeled robot, both the vehicle and the ground are too close to the sensor,
causing interference in obtaining the point cloud data. Therefore, the LIDAR is horizontally
positioned on the wheeled robot horizontally, as shown in Figure 1. This configuration
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allows the laser lines above the horizontal line of the LIDAR to gradually scan the vehicle
chassis and a portion of the tires as the wheeled robot moves.

2.2. Software System Overview

An overview of the software framework is shown in Figure 3.

Figure 3. Software system overview of vehicle passing angles measurement.

The overall system is divided into three modules. The first module, data acquisition,
involves receiving and processing the raw data acquired by the camera and the LIDAR to
obtain the odometry. The second module, point cloud building, constructs a feature map
based on the odometry and the feature points, estimating the pose through a scan-to-map
algorithm [28]. The estimated pose is then used to fuse all point cloud frames. The third
module, parameter calculation, obtains passing angles by selecting and calculating the
target point at the overall point cloud automatically. Section 3 describes the details of the
software system’s algorithms.

3. Measurement Method
3.1. Segmentation

When acquiring point clouds from underneath vehicles, a significant portion of the
points often corresponds to the ground. The circular shape of the ground point cloud
can introduce matching errors between point cloud frames and increase the likelihood
of encountering local optima. To address this issue, we employ the RANSAC (random
sample consensus) algorithm [29,30] to remove the ground points in each frame based on
point features, thereby enhancing the quality of the point clouds. Both sphere and plane
features can be utilized for point cloud frames, as the ground points form a circular shape
on a plane in a single frame. Based on experimental results concerning efficiency and time
consumption, we choose the plane model to select inliers for the RANSAC algorithm. In
this section, our objective is to reduce the number of ground points quickly, allowing us to
halt the iteration when the number of inliers exceeds 50% of the point cloud in the frame
and then segment these inliers from the frame.

3.2. Motion Compensation

In our method, data compensation is necessary to account for the movement speed
of the wheeled robot, as the laser scan is prone to distortion while the robot is in motion
(Figure 4). When the wheeled robot moves linearly, the LIDAR moves at a constant linear
velocity, while its internal laser sensor is scanning at constant angular velocity. In such case,
the motion compensation problem can be simplified.
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motion compensation.

The 0◦ of the LIDAR is aligned with the moving direction of the wheeled robot under
ideal conditions, as shown in Figure 4. In actual conditions, the installation deviation angle
A and the actual motion speed v of the wheeled robot can be obtained through system
calibration. Therefore, the points in each frame can be compensated as:

xi = x0
i − αv θ

ωr
sin(A)

yi = y0
i + αv θ

ωr
cos(A)

zi = z0
i

(1)

where ωr is the rotation speed of the laser sensor inside the LIDAR, θ is the LIDAR’s
angle of rotation, (xi, yi, zi) are the coordinates after compensation, and α is the experience
scaling factor.

3.3. Laser Odometry

In this paper, laser odometry is calculated based on the 3D point cloud data obtained
from the LIDAR, while visual odometry is calculated using feature points extracted from
the 2D image. The odometry, which exhibits smoothness, is obtained from both of them.

Laser odometry is computed by extracting and aligning feature points from each point
cloud frame, following a similar approach as described in [21,22], where corner points and
plane points are differentiated based on the point curvature for alignment. In this study, the
feature point extraction has been improved to cater to the measurement task in this part.

Outliers refer to sparse points located at a certain distance from the main structure of
the point cloud. Outliers are typically caused by insufficient scanning coverage or noise, etc.
During the extraction of corner points, outlier points can easily be detected as corner points
by the computer. However, these outlier points do not accurately represent the structure of
the scanned object and can introduce negative interference, affecting both the accuracy and
precision of the alignment process. Therefore, it is necessary to remove outlier points in
each frame during the feature extraction in our measurement task.

Since the laser point cloud in a single frame is distributed along 16 laser lines, all
points can be processed along these laser lines. In this section, for point cloud feature
extraction and outlier points determination, a sliding window W is employed in each laser
line. Each point is considered as the center point within the sliding window, and N adjacent
points are selected for calculation.

The constraint on the length of sliding window W is calculated as:

rw =

∣∣∣∣∣∣arcsin(
yN√

x2
N + y2

N

− y−N√
x2
−N + y2

−N

)

∣∣∣∣∣∣ (2)

where rw represents the length constraint of W, which is the angle between the first and
last points in the window in the LIDAR coordinate system L.

The width of W is limited to rw < 1/16π, and any point that exceeds this limit will
not be counted or processed.
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The average distance from the center point to the other points in W is calculated as:

la =
1

2N

N

∑
j=−N

lj (3)

where
lj =

√
(xW

0 − xW
j )

2
+ (yW

0 − yW
j )

2
+ (zW

0 − zW
j )

2, j ∈ [−N, N] (4)

where (xW
0 , yW

0 , zW
0 ) is the center point. Then, the StatisticalOutlierRemoval filter [31] is

applied to remove outliers.
The smoothness score for fast feature point extraction is also considered here. Different

from the method in [21], the smoothness score is calculated simultaneously with the outlier
points in the window to improve efficiency and eliminate outliers and unstable feature
points that may cause interference. The smoothness score is defined as:

c =

∥∥∥∥∥ N
∑

j=−N
[(xW

j , yW
j , zW

j )− (xW
0 , yW

0 , zW
0 )]

∥∥∥∥∥
|W|·

∥∥(xW
0 , yW

0 , zW
0 )
∥∥ (5)

The points for which c > λc1 are considered corner feature points, and the points for
which c < λc2 are considered plane feature points, where λc1 and λc2 are the corner feature
threshold and the plane feature threshold, respectively.

The window used for outlier removal and feature extraction is constrained in such a
way that allows the algorithm to avoid extracting points at the edge of structural fractures
and outliers to some extent, as shown in Figure 5.
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Finally, the two-step alignment method by Levenberg–Marquardt [21] is used in our
method to obtain the laser odometry.

3.4. Odometry

The feature points of image frames are calculated as the wheeled robot passes un-
derneath the vehicle, allowing for the estimation of visual odometry [32]. This visual
odometry serves as a supportive component to the dominant LIDAR odometry, enhancing
the alignment process by incorporating relevant vehicle data and reducing alignment
errors.

The wheeled robots are programmed to move in a fixed direction at a constant speed.
With this knowledge, the rotation and translation components can be processed separately.
The rotation increment can be considered constant, while the translation increment can
be approximated as uniform. Therefore, the knowledge of the motion constraint can be
applied to the odometry to reduce the error in Algorithm 1.
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Algorithm 1: Odometry

Input: d, dk
l , dk

v, ∆dk
l

Output: dk
o = [Qk

o, Tk
o ]

1: if the elements in Abs(Ok
l ) < [0.1, 0.1, 0.1] then

2: Qk
o = Qk

l The Abs() refers to taking the absolute value of each element in the matrix.
3: else

4: Qk
o = min

{
Sum(Qk

l ), Sum(Qk
v)
}

The Sum() refers to summing the elements in the
matrix.

5: end if
6: if the elements in Abs(Tk

l ) < [0.1, 0.5, 0.1] then
7: Tk

o = Tk
l

8: else

9: Tk
o = min

{
Sum(Tk

l ), Sum(Tk
v )
}

10: end if
11: return dk

o = [Qk
o, Tk

o ]

The averaged odometry data from the previous ten instances of approximately uniform
motion are used as a reference value as follows:

d =
1
10

10

∑
p=1

1
2
(dp

l + dp
v) (6)

where dp
l and dp

v denote the laser odometry and visual odometry of the p frame, respectively.
Then, the variation in the odometry at k time is obtained as follows:{

∆dk
l = dk

l − d
∆dk

v = dk
v − d

(7)

where dk
l = [Qk

l , Tk
l ], ∆dk

l = [∆Qk
l , ∆Tk

l ], dk
v = [Qk

v, Tk
v ] and ∆dk

v = [∆Qk
v, ∆Tk

v ]. Here,
Q = [qx, qy, qz, qw] denotes the component of the rotation and qx, qy, qz, qw are the quater-
nions. T = [xT , yT , zT ] denotes the component of the translation.

Therefore, the odometry dk
o at k time is obtained by combing laser odometry and visual

odometry according to the constraints.

3.5. Point Cloud Building

In this section, the odometry and the features of the plane and corner are utilized to
create a feature point map. The feature points of the subsequent frames are aligned with
the feature point map [28] to estimate the pose [30]. The LIDAR point cloud frames are
fused based on the estimated pose to build an overall point cloud. To reduce noise while
preserving the edges, bilateral filtering [31,33] is applied.

3.6. Parameter Calculation

After building the point cloud, it is necessary to align it with national regulations to
identify target points and calculate the parameters. Several parameters of vehicle chassis
can be calculated rapidly by rotating and segmenting the overall point cloud collected by
this paper. Here, we focus on solving the passing angles, which currently have the lowest
degree of automated detection and the poorest data consistency in Algorithm 2.

An iterative algorithm is employed to determine the target points during the calcu-
lation of passing angles, as shown in Figure 6. The point cloud belonging to the vehicle
body and the point clouds associated with the tires are separated using the RANSAC
method, which utilizes a planar model for the body and a cylindrical model for the tires.
Subsequently, these point clouds are projected onto suitable surfaces for further analysis.
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Algorithm 2: Parameters calculation

Input: L1, L2, L3, T1, T2
Output: α, β, λ

1: Select a point Ao in L1 and a point Bo in T1 as init.
2: for traverse the point Ao in L1 do
3: Choose the point A so that it satisfies Equation (8).
4: end for
5: for traverse the point Bo in T1 do
6: Choose the point B so that it satisfies Equation (9).
7: end for
8: Calculate the approach angle α as Equation (10).
9: Select a point Go in L3, and a point Fo in T2 as init.
10: for traverse the point Go in L3 do
11: Choose the point G so that it satisfies Equation (11).
12: end for
13: for traverse the point Fo in T2 do
14: Choose the point F so that it satisfies Equation (12).
15: end for
16: Calculate the departure angle λ as Equation (13).
17: Select a point Co in L2, a point Do in T1 and a point Eo in T2 as init do
18: for traverse the point Co in L2 do
19: Choose the points Dp and Ep so that it satisfies Equation (14).
20: end for
21: Calculate angle βo as Equation (16).
22: if βo is minimum then
23: Calculate the ramp break angle β = βo, as Equation (15).
24: end if
25: end for
26: return α, β, λ
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The cylindrical model is used to segment the tire point clouds, allowing for the
extraction of parameters such as the circle center and radius. Additionally, based on these
parameters and the Z-axis coordinates, the lower portion of the tire point clouds, referred
to as T1 and T2, can be extracted to reduce computational overhead. Similarly, the body
point cloud can be segmented into LI, L2 and L3 using these parameters. The approach
angle, ramp break-over angle and departure angle are then calculated according to the
standard definition [1].

In Algorithm 2, certain points should be selected randomly. As shown in Figure 6,
points Bo, Do, Eo and Fo represent the initial random selection points in the edge part of the
tire point clouds. Additionally, points Ao, Go and Co represent the traversal points in the
point cloud of the body.

The target point A for the approach angle can be obtained by traversing as:
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zA − zBo

yA − yBo

= min
{

zAo − zBo

yAo − yBo

}
(8)

Another target point for the approach angle is B, that is, the tangent point between
the ray of the target point A and the tire. This tangent point can be found by traversing T1,
where the line connecting T1 to the center of the tire is perpendicular to the line connecting
T1 to point A. The process can be described as:∣∣∣∣ →BO1 ×

→
BA
∣∣∣∣ = 0 (9)

Additionally, the approach angle can be obtained as:

α = arctan(
zA − zB
yA − yB

) (10)

The calculation of the departure angle is similar to that of the approach angle. The
difference lies in traversing the L3 points and the rear tire point cloud T2. The process of
finding the target point G can be described as:

zG − zFo

yG − yFo

= min
{

zGo − zFo

yGo − yFo

}
(11)

Additionally, we can find the other target point F that satisfies:∣∣∣∣ →FoO2 ×
→

FoG
∣∣∣∣ = 0 (12)

Finally, the departure angle is obtained by:

β = arctan(
zF − zG
yF − yG

) (13)

The ramp break angle is obtained by traversing L2 and calculating the tangent points
of the adjacent tires for each point in L2. For each point, the tire edge point clouds are
traversed to find the tangent line as follows:∣∣∣∣ →

DpO1 ×
→

DpCo

∣∣∣∣ = ∣∣∣∣ →EpO2 ×
→

EpCo

∣∣∣∣ = 0 (14)

The ramp breakover angle can be obtained as follows:

β = min{βo} (15)

where the βo is defined as follows:

βo = arctan(
zCo − zDp

yCo − yDp

) + arctan(
zCo − zEp

yCo − yEp

) (16)

4. Experiment

The experiment was conducted in a parking lot, and the hardware system used in the
experiment is shown in Figure 7.

Figure 1 shows the experimental process, where a wheeled robot is programmed to
move underneath the stationary vehicle at a constant speed. During this motion, the robot
acquires and builds point clouds, enabling the calculation of the passing angles.

The first step in the experiment is the selection of segmentation methods. We con-
ducted experiments using frames from the LIADR to evaluate the effectiveness of segmen-
tation using sphere and plane models to determine suitable models and coefficients.

As shown in Figure 8a,b, the segmentation results demonstrate that both circular
and planar shapes can successfully segment ground point clouds. In Figure 8, it can be
observed that the outermost laser line in Figure 8a appears to be more complete compared
to Figure 8b. Furthermore, the segmentation results are also influenced by the choice of
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coefficients. Figure 8c,d show the results of over-segmentation, where points belonging to
the vehicle are influenced as ground points due to the selection of inappropriate coefficients.
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To minimize the proportion of ground points without over-segmentation, we extracted
frames from five regions of the vehicle for analysis. These five regions are located at the
front wheels, the rear wheels and the front, middle and rear of the vehicle. Analyzing the
frames selected from these five regions can provide a more generalized representation of
the vehicle. Here, we segmented these frames using different segmentation coefficients
and models, and the segmentation process was repeated five times. The results were then
averaged and are shown in Figures 9 and 10.
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The relationship between the number of points and the segmentation coefficient is
shown in Figure 9. Based on objective evaluation, we observed that although there are
differences in the distribution of ground points segmented by plane and sphere models,
shown in Figure 8a,b, the number of ground points is actually similar.

The time consumption of the segmentation performed using the plane and sphere
models is shown in Figure 10. We can see that the segmentation using the plane model has
the lowest cost and provides a stable performance.

Over-segmentation causes the point clouds of vehicle tires to be incorrectly segmented
as ground point clouds. However, these over-segmented ground point clouds have a
much wider distribution on this normal. Therefore, we calculated the over-segmentation
threshold coefficients based on the distribution of ground point clouds on the normal. We
performed statistical analysis of the distribution of the ground point cloud on its normal to
determine whether the coefficients lead to over-segmentation. This was confirmed using
the method of subjective evaluation, as shown in Figure 8c,d. The point clouds of the
vehicle tires appear higher on this normal. Therefore, we automatically determined the
over-segmentation threshold coefficients based on the distribution of ground point clouds
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on the normal. Based on the results shown in Figures 8–10, we selected the plane model
with a coefficient of 0.03 for segmentation. Additionally, Figure 11 shows the segmentation
performance of an actual acquisition, where the ground and vehicle points are clearly
segmented, effectively reducing the proportion of ground points.
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We acquired the data underneath the vehicle using our system and compared the
existing mature methods of point cloud building with our method. As shown in Figure 12,
we found that the point cloud built by the ICP registration tool in PCL [20,31] (Point
Cloud Library) exhibited an obvious alignment error in Figure 12a, and the method [22]
failed to build a point cloud, as shown in Figure 12b, making it difficult to identify. The
red square represents odometry data, which further confirms the failure as the wheeled
robot is moving straight during the acquisition. Figure 12c,d show different views of the
point cloud created by the method in [21], demonstrating distortion. On the other hand,
Figure 12e,f show a better alignment result and an overall point cloud with improved
geometric quality obtained using our method for parameter calculation. This is attributed
to the close proximity of the wheeled robot to the ground during the acquisition of point
cloud data from the underside of the vehicle, resulting in a small area of interest on the
vehicle and a limited number of points. The introduction of a significant amount of error
occurs during the ICP calculation process, and the circular shape of the ground points
tends to lead to local optima during frame matching, particularly in the roll direction.
Additionally, the scarcity of points on the vehicle, especially in terms of corner features,
combined with the participation of numerous plane features from the ground points in the
matching calculation, makes the matching process difficult to converge and even results in
complete failure.

The effectiveness of the odometry module in building point clouds in our method is
evaluated and compared with the laser odometry. As shown in Figure 13a, the laser lines
in the marked area exhibit a significant tilt when the point cloud is created using the laser
odometry. Conversely, the point cloud using the odometry reduces the tilted laser lines in
Figure 13b, indicating its advantage in enhancing the constraint in the pitch direction and
reducing error. This improvement is attributed to the matching process in visual odometry,
where the feature points are mainly concentrated in the region of the vehicle, providing
stronger constraints in the pitch direction.

Figure 14 shows the comparison of ground segmentation and the removal of outlier
points in our method. In Figure 14a, the presence of floating shadows is caused by mis-
alignment, while the jagged edges of the tires result from outliers and other interference
points when directly aligning with laser feature points. Figure 14b,c show the point cloud
results after solely removing ground points or outliers, respectively. It can be observed that
only removing ground points or outliers leads to alignment errors in different directions
and degrees. Figure 14d shows the overall point cloud in our method after reducing the
proportion of ground points and removing outliers. This results in the effective reduc-
tion of floating shadows and jagged edges, thereby facilitating further processing of the
point cloud.
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Figure 12. Diagram of alignment error in vehicle point cloud: (a) the point cloud built by the ICP
registration tool in PCL, (b) the point cloud failed in Lego-LAOM, (c) the point cloud built from
LAOM, (d) the point cloud built from LEGO-LAOM, (e) the alignment results in our acquisition
processes, (f) overall point cloud building of our method.
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Figure 13. The results of point cloud building using laser odometry and odometry: (a) laser odometry,
(b) odometry.

To verify the calculation method of the angles proposed in our study, we utilized
a simulation vehicle model created in AutoCAD. The design of the module used for
calculation is shown in Figure 15, and the results of the 10-time calculation for the simulation
model are presented in Table 1.

The results of the passing angles are shown in Table 1. We captured the point cloud of
the vehicle’s underside using a perspective view of the wheeled robot and calculated the
angles using our proposed method. Since the truth-value of the vehicle is easily obtained
in the simulation, we directly compared the calculated results with the simulated truth.
The consistency of the calculated results was confirmed by performing 10 runs, with only
negligible errors observed.
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Figure 14. Analysis of the acquisition results: (a) direct use features, (b) using features after only
removing ground points, (c) using features after only removing the points at the edge of structural
fracture and outliers, (d) using features after removing ground points and outliers.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 19 
 

  

Figure 15. The results of the parameter calculation for the simulation point cloud: (a) simulation 

vehicle model, (b) the point cloud underneath the vehicle model, (c) the diagram of calculation re-

sults. 

Table 1. Calculation results of the simulation model. 

Parameters True Value Calculated Value Error 

Approach 28.79° 28.772° −0.06252% 

Departure 44.44° 44.433° −0.01575% 

Ramp Breakover 30.10° 30.1012° 0.003987% 

The results of the passing angles are shown in Table 1. We captured the point cloud 

of the vehicle’s underside using a perspective view of the wheeled robot and calculated 

the angles using our proposed method. Since the truth-value of the vehicle is easily ob-

tained in the simulation, we directly compared the calculated results with the simulated 

truth. The consistency of the calculated results was confirmed by performing 10 runs, with 

only negligible errors observed. 

Additionally, we performed the experiments three times on a real vehicle and calcu-

lated the passing angles ten times in each experiment. The results of passing angles are 

shown in Table 2. 

Table 2. Statistics of the calculation results. 

Angle Approach Departure Ramp Breakover Variance 

Experiment 1 47.6402° (10) 44.0219° (10) 34.7180° (10) 0 

Experiment 2 46.9971° (10) 44.9910° (10) 32.6791° (10) 0 

Experiment 3 46.8205° (10) 45.7268° (10) 33.8514° (10) 0 

Average 47.1526° 44.91323° 33.7495° - 

Variance 0.12407 0.48747 0.69804 - 

In actual engineering measurements, deviations in points selection and measurement 

often lead to significant discrepancies in the results obtained by different personnel, mak-

ing it challenging to obtain accurate and reliable values. Our results demonstrate that the 

robustness of our system can mitigate measurement errors, with angular deviations dur-

ing repeated experiments being less than 1°, satisfying the requirements of measurement. 

  

Figure 15. The results of the parameter calculation for the simulation point cloud: (a) simulation
vehicle model, (b) the point cloud underneath the vehicle model, (c) the diagram of calculation results.

Table 1. Calculation results of the simulation model.

Parameters True Value Calculated Value Error

Approach 28.79◦ 28.772◦ −0.06252%
Departure 44.44◦ 44.433◦ −0.01575%

Ramp Breakover 30.10◦ 30.1012◦ 0.003987%

Additionally, we performed the experiments three times on a real vehicle and calcu-
lated the passing angles ten times in each experiment. The results of passing angles are
shown in Table 2.

Table 2. Statistics of the calculation results.

Angle Approach Departure Ramp Breakover Variance

Experiment 1 47.6402◦ (10) 44.0219◦ (10) 34.7180◦ (10) 0
Experiment 2 46.9971◦ (10) 44.9910◦ (10) 32.6791◦ (10) 0
Experiment 3 46.8205◦ (10) 45.7268◦ (10) 33.8514◦ (10) 0

Average 47.1526◦ 44.91323◦ 33.7495◦ -
Variance 0.12407 0.48747 0.69804 -

In actual engineering measurements, deviations in points selection and measurement
often lead to significant discrepancies in the results obtained by different personnel, making
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it challenging to obtain accurate and reliable values. Our results demonstrate that the
robustness of our system can mitigate measurement errors, with angular deviations during
repeated experiments being less than 1◦, satisfying the requirements of measurement.

5. Discussion

The automated measurement of the passing angles of vehicles has been developed
slowly due to environmental constraints, making it challenging to address disputes encoun-
tered in actual engineering measurement. In this paper, we introduced a wheeled robot
equipped with a LIDAR and a camera into the measuring process, taking into account vari-
ous interference factors in data collection and calculation. Our system has been successfully
deployed and has played a role in data comparison during enterprise bidding processes.

In this study, the results of the overall point cloud have proven the effectiveness of the
method, as they exhibit few errors and little drift, as shown in Figures 12, 14 and 15. This
is achieved by reducing the proportion of ground points that do not contribute to frame
matching, avoiding the selection of unstable feature points during the feature extraction
process and smoothing the odometry. These measures effectively reduce matching errors,
inaccuracies and significant drift. We conducted simulation experiments to verify the
accuracy of the computational method and performed field experiments to validate the
feasibility and robustness of the proposed method and system. The calculated passing
angles in simulation had a norm error of 0.06252% for the approach angle, 0.01575% for the
departure angle and 0.003987% for the ramp breakover angle compared to the true value.
Additionally, we conducted three groups of experiments using the system, each consisting
of ten repetitions of the calculation, resulting in variances of 0.12407 in the approach angle,
0.48747 in the departure angle and 0.69804 in the ramp breakover angle. Based on the
simulated and experimental results, the method and system were validated.

The measurement system and method proposed in this paper enable the efficient
acquisition of the point cloud of a vehicle body and compute the passing angles with
high data consistency. This system, coupled with the proposed method, reduces manual
labor, improves measurement efficiency and mitigates data controversy caused by man-
ual experience-based selection of target points for measurement. Moreover, the method
proposed in this paper also brings reference to the intelligent measurement of geometric
parameters for various kinds of large equipment.

6. Conclusions

This paper presents a measurement method and system for the automatic, efficient
and robust measurement of vehicle passing angles.

The proposed measurement method consists of two parts: the point cloud building
and the parameter calculation. The point cloud building system utilizes a remotely operated
wheeled robot to construct a high-quality overall point cloud underneath the vehicle. The
parameter calculation part accurately and robustly measures the passing angles from the
point cloud without relying on manual experience. The experimental results demonstrate
the validity of the proposed method and system. However, the inherent noise of the LiDAR
sensor has not been completely eliminated, which imposes a limitation on improving mea-
surement accuracy. In the future, our work will integrate standard references to optimize
the overall point cloud, enhancing its ability to reflect the real geometric information of
objects and improving overall data accuracy. Additionally, we will expand our research to
include multiple vehicle types to validate its wide applicability.
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