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Abstract: In order to improve the accuracy and reliability of the photovoltaic (PV) model, this paper
explores a novel nature-inspired metaheuristic algorithm, i.e., the nutcracker optimizer algorithm
(NOA), for the parameter extraction of a PV model, such as a single diode model (SDM), double
diode model (DDM), and triple diode model (TDM) of PV components. The Aleo Solar S79Y300
monocrystalline silicon solar panel was tested at 1000 W/m2 solar irradiance and 25 ◦C temperature,
and the results of the proposed NOA algorithm were compared with three popular algorithms, i.e.,
particle swarm optimization (PSO), firework algorithm (FWA), and whale optimization algorithm
(WOA), in terms of algorithm accuracy and running time, and non-parametric tests were performed.
The results show that the NOA can improve the efficiency of PV parameter extraction, and its
performance is the best among the tested algorithms. It has the best root mean square error (RMSE)
values in the SDM, being 7.92587 × 10−5 and 6.02460 × 10−5 in the DDM and 6.23617 × 10−5 in the
TDM, and the shortest average execution time according to the overall ranking, making it well suited
for extracting PV model parameters.

Keywords: nutcracker optimization algorithm (NOA); photovoltaic (PV) model; parameter extraction;
metaheuristic algorithms

1. Introduction

In order to tackle the well-known challenges of energy transition, a swift shift from
fossil fuels to a wider renewable energy period is required; solar energy is the most
abundant and easily accessible renewable energy resource. Annually, the total amount
of solar radiation received by the Earth is 7500 times the global energy consumption
(about 450 EJ), thus the utilization of solar energy is playing an increasingly important
role in the global energy transformation [1]. Photovoltaic researchers have been striving
to achieve reliable and accurate modeling of PV components for a better understanding
of their operating principles, performance, and characteristics, as well as predicting their
performance and lifespan under different environmental conditions. The single diode
model (SDM) is the foundation of photovoltaic component modeling, while the double
diode model (DDM) considers the recombination loss in the depletion region of the PN
junction based on the SDM, and the triple diode model (TDM) is considered to be a more
accurate model than the SDM and DDM [2]. It introduces a third diode to characterize
solar cells under reverse current conditions [2,3], and it contains nine parameters: Iph, ISD1,
ISD2, ISD3, n1, n2, n3, Rs, and Rp. Due to the nonlinearity and complexity of the model, most
mathematical and numerical analysis methods are simplified by certain approximation.
Metaheuristic algorithms, well suited for solving complex optimization problems with large
search spaces and non-linear objective functions, have been extensively studied in the field.
In previous research, a diverse range of algorithms and their variants, including genetic
algorithm (GA) [4], particle swarm optimization (PSO) [5], differential evolution (DE) [6],
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reinforcement learning neural network algorithm (RLNNA) [7], simplified bird mating
optimization (SBMO) [8], firework algorithm (FWA) [9], artificial bee colony (ABC) [10],
moth flame optimization (MFO) [11], harmony search algorithm (Hs) [12], mutative-scale
parallel chaos optimization algorithm (MPCOA) [13], repairing self-adaptive differential
evolution (Rcr-IJADE) [14], bee pollinator flower pollination algorithm (BPFPA) [15], free
search differential evolution algorithm (FSDE) [16], teaching-learning based optimization
(TLBO) [17], Generalized opposition-based learning teaching-learning based optimization
(GOTLBO) [18], and evaporation rate-based water cycle algorithm (ER-WCA) [19], have
been utilized for the parameter extraction of solar PV models. Recent trends in research
also indicate an increasingly frequent pivot towards the exploration and utilization of novel
metaheuristic algorithms. For example, Faiz Ali et al. proposed the use of the atomic
orbital search metaheuristic algorithm (AOS) for solar cell parameter identification [20],
which simulates the mixing and recombination of atomic orbitals to search for the optimal
solution. They also discussed more than 30 different RMSE calculation methods to achieve
a novel and accurate RMSE calculation. Youssef Kharchouf et al. proposed an improved DE
algorithm for parameter extraction of photovoltaic cells in 2022 [21]. He used a numerical
method for the Lambert W function analytical equation to improve the local convergence
characteristics of DE, which reduced the computation time to half of its original time.
Xiangchen et al. proposed a two-stage identification method [22]. First, they preprocessed
the experimental I–V curve by removing outliers, curve fitting, and the sparsification of the
I–V data. Following this, they used maximum power matching (MPM) to roughly identify
the parameters from the preprocessed data. Finally, they used the results as the initial
values for the improved flow direction algorithm (IFDA) iteration to achieve the accurate
identification of photovoltaic model parameters. Amr A. Abd El-Mageed et al. proposed
an improved queuing search optimization (QSO) algorithm based on DE technology and
boundary constraint correction process [23], which identified the parameters of the SDM
and DDM models. They used DE to increase the population diversity of IQSODE, thereby
improving the exploration of the algorithm in the search space and solving the problem
of the QSO algorithm being trapped in local optima. Junfeng Zhou et al. proposed a
dynamic reverse learning strategy for identifying photovoltaic cell model parameters using
an adaptive differential evolution algorithm [24]. The strategy expanded the search range
of particles in the global optimal solution search phase, thereby increasing the probability
of particles approaching the optimal solution area.

Previous research has mainly focused on one or two of the three models, yet this study
presents a novel approach by employing a nature-inspired metaheuristic method known as
the nutcracker optimization algorithm (NOA) [25] for the parameter extraction of single,
double, and triple diode models. Aleo Solar S79Y300 monocrystalline silicon solar panels
were tested under 1000 W/m2 solar radiation and 25 ◦C temperature. These conditions
are standard testing conditions and commonly encountered in many geographical regions
globally where substantial investment in solar energy is being made, thereby ensuring
our findings have practical and relevant applications. We evaluated the performance
of NOA for PV parameter extraction by observing the RMSE error and running time.
Subsequent non-parametric tests were performed to analyze the data further. Finally,
a comparative analysis was conducted between the proposed NOA and three popular
algorithms, PSO [26], FWA [27], and WOA [28], summarizing the results for comprehensive
understanding.

The outstanding contributions of the present article are the following:

• Demonstrate the suitability and effectiveness of NOA in the field of the parameter
extraction of the PV model.

• Employ modern techniques to accurately identify the optimum parameters in the
PV model.

• Conduct a comparative study on four MAs to enhance the precision of a specific diode
model optimization.

• Analyze possible future trends in the area based on the test results.
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2. Solar Cell Model
2.1. Photovoltaic (PV) Cell Models

The models of photovoltaic (PV) cells mainly include a series of mathematical models,
such as the single diode model (SDM), double diode model (DDM), triple diode model
(TDM), diode models with reverse bias characteristics [29], and the improved double diode
model (MDDSCM) [30,31], and so on. In this study, we adopted the most commonly
used models: SDM, DDM, and TDM. Figure 1 and Table 1 show the circuit structure and
equations (including the circuit equation of the PV component) of the SDM, DDM, and
TDM. In the equations, IL represents the output current, Iph represents the photocurrent
of the PV component, ISD1, ISD2, and ISD3 represent the reverse saturation current, Ns
represents the number of cells connected in series, Np represents the number of cells
connected in parallel, VT (=n*k*T/q) is the thermal voltage of the PV component, q is the
electron charge (1.60217646× 10−19 C), k is the Boltzmann constant (1.3806503 × 10−23 J/k),
T is the temperature of the PN junction (in K), n is the ideality factor of the diode, Rp is the
parallel resistance, Rs is the series resistance, and RL is the external load resistance.
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Table 1. Circuit equations of SDM, DDM, TDM.

Model Circuit Equations

SDM IL = Iph − ISD1

[
exp

(
q(VL + ILRs)

n1kT

)
− 1
]
−
[

VL + ILRs

Rsh

]

DDM IL = Iph − ISD1

[
exp

(
q(VL + ILRs)

n1kT

)
− 1
]
− ISD2

[
exp

(
q(VL + ILRs)

n2kT

)
− 1
]
−
[

VL + ILRs

Rsh

]

TDM IL = Iph − ISD1

[
exp

(
q(VL + ILRs)

n1kT

)
− 1
]
− ISD2

[
exp

(
q(VL + ILRs)

n2kT

)
− 1
]
− ISD3

[
exp

(
q(VL + ILRs)

n3kT

)
− 1
]
−
[

VL + ILRs

Rsh

]

PV
IL = Iph Np − ISD Np

exp

 q
(

VL +
Ns ILRs

Np

)
nkNST

− 1

− [ (V L +
Ns ILRs

Np

)
/ Rsh Ns

Np

]

2.2. Optimization of Photovoltaic (PV) Cell Model Parameters

The optimization of photovoltaic (PV) cell model parameters using metaheuristic
algorithms can be understood as a process of optimizing a single objective function. The
objective function is typically defined as an error function that measures the discrepancy
between the model’s predictions and experimental data. The optimization algorithm
iteratively searches for the optimal set of parameters that minimize the error function.
The resulting solution is a set of optimized parameter values, denoted as XS, XD, and XT.
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Finally, the optimized parameter values are validated by comparing the simulated model
output to the result of experimental measurements.

In this paper, the root mean square error (RMSE) is applied as the fitness function
for algorithm optimization. The error function is represented by the RMSE shown in
Table 2 which quantifies the accuracy and goodness of fit of the proposed current–voltage
characteristic model. By experimentally measuring a set of actual current values (Imea) of
solar cell modules under equidistant voltages, feasible solutions are obtained through MA
optimization and then incorporated into the optimization functions of SDM, DDM, and
TDM in Table 3. Consequently, the Ical value is calculated, and the fitness function value is
derived by incorporating it into the RMSE formula.

Table 2. Formula for the error function.

Evaluation Index Formula

RMSE RMSE =
√

1
N ∑N

i=1(Imea − Ical)
2 1

1 Imea represents the actual current value obtained from the experiment, and Ical represents the calculated current
value after model optimization.

Table 3. Parameter optimization functions for SDM, DDM, and TDM.

Model Parameter Optimization Functions

SDM fS(Vt, It, Xs) = IL − x3 + x4

[(
q(Vt + x1 · It)

x5 · k · T

)
− 1
]
+

Vt + x1 · It

x2

DDM fD(Vt, It, XD) = IL − x3 + x4

[(
q(Vt + x1 · It)

x6 · k · T

)
− 1
]
+ x5

[(
q(Vt + x1 · It)

x7 · k · T

)
− 1
]
+ Vt+x1 ·It

x2

TDM fT(Vt, It, XT) = IL − x3 + x4

[(
q(Vt + x1 · It)

x6 · k · T

)
− 1
]
+ x5

[(
q(Vt + x1 · It)

x7 · k · T

)
− 1
]
+ x8

[(
q(Vt + x1 · It)

x9 · k · T

)
− 1
]
+

Vt + x1 · It

x2

Xs = [R s, Rsh, Iph, ISD1, n1
]
, XD =

[
Rs, Rsh, Iph, ISD1, ISD2, n1, n2

]
, XT = [R s, Rsh, Iph, ISD1, ISD2, ISD3, n1, n2, n3

]
.

3. NOA
3.1. Overview of NOA

NOA is a novel nature-inspired metaheuristic algorithm (MA) inspired by the Clark’s
nutcracker [25]. The nutcracker collects pine nuts (food) in the summer and autumn and
stores them in specific locations, then retrieves the storage location and searches for food
in the spring and winter. Inspired by this idea of food access, we proposed two strategies:
(i) a foraging and caching strategy and (ii) a caching search and recovery strategy. After
population initialization, random exploration and exploitation optimization are carried out,
and RMSE is the fitness function. The nomenclature used in the NOA algorithm is shown
in Table 4.

Table 4. The nomenclature used in the NOA algorithm.

Parameters Description
→
X

t

i
The current position/current cache of nutcrackers in iteration t.

Xt
i,j The jth position of the ith nutcracker in the current generation.

Uj, Lj Vectors, including the upper and lower bound of the jth dimension in the optimization problem.
γ,λ A number generated according to the Lévy flight.
→
X

t

best
The jth dimension of the best solution obtained.

τ,r,ϕ Random real numbers in the range of [0, 1].
Xt

m,j The mean of the jth dimensions of all solutions of the current population in the iteration t.
→
X

t+1(new)
A new position in the storage area of the nutcrackers in current iteration t.

l A factor that linearly decreased from 1 to 0.
Pa1 A probability value that is linearly decreased from one to zero.
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Table 4. Cont.

Parameters Description
→
RP

t

i,1,
→
RP

t

i,2 RPs (objects) of the cache position →X
t

i
of the ith nutcracker in the current generation t.

θ The angle-of-view of the nutcracker, chosen at random from [0, π].
t, Tmax The current and maximum generations.
Pa2 A probability value that is equal to 0.2.
→

RM A random vector in the interval [0, 1].

3.2. Foraging and Storage Strategy

The nutcracker searches for good seeds during summer and autumn (first exploration
phase), and stores them in a storage area (first exploitation strategy). Due to harsh weather
conditions such as heavy snow and wind, the storage area is often far from the search area
and has less vegetation, making it easier for the nutcracker to retrieve the seeds during
winter and spring.

→
X

t+1

i
=


Xt

i,j i f τ1 < τ2 Xt
m,j + γ ·

(
Xt

A,j − Xt
B,j

)
+ µ·

(
r2·Uj − Lj

)
i f t ≤ Tmax/2.0

Xt
C,j + µ ·

(
Xt

A,j − Xt
B,j

)
+ µ·(r1 < δ) ·

(
r2·Uj − Lj

)
, Otherwise

, Otherwise
(1)

µ =


τ3 if r1 < r2
τ4 if r2 < r3
τ5 if r1 < r3

(2)

→
X

t+1(new)
=


→
X

t

i + µ · (
→
X

t

best −
→
X

t

i) · |λ|+ r1 · (
→
X

t

A −
→
X

t

B) if τ1 < τ2
→
X

t

best + µ · (
→
X

t

A −
→
X

t

B) if τ1 < τ3
→
X

t

best · l Otherwise

(3)

→
X

t+1

i =

{
Equation (1), if ϕ > Pa1

Equation (3), Otherwise
(4)

Formulas (1)–(4) provide a mathematical model for this strategy. Formulas (1) and (2)

describe the process of the nutcracker searching for good seeds. The first state of
→
X

t+1

i rep-
resents maintaining the current optimal solution, and the second state represents exploring
the solution space based on the average value Xt

m,j of all solutions in the current population,
and any solution Xt

A,j and Xt
B,j. Formula (3) simulates the process of the nutcracker storing

seeds, which is the first development stage. The algorithm development process is con-

trolled by the contemporary optimal solution
→
X

t

best and a variable l that decreases linearly
from 1 to 0. Formula (4) represents the balance between exploration and development of
the algorithm according to the probability value Pa1 , which decreases linearly from 1 to 0.

3.3. Cache Search and Recovery Strategy

During the spring and winter seasons, the nutcracker retrieves stored food based on
spatial memory, using reference points to locate the stored food as their main source of
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nutrition. However, approximately 20% of nutcrackers are unable to retrieve stored food,
as reported by [32], leading them to search for new food sources.

RPs =



→
RP

t

1,1
→

RP
t

1,2
...

...
→

RP
t

i,1
→

RP
t

i,2
...

...
→

RPN,1
→

RP
t

N,1
...

...


(5)

→
RP

t

i,1 =


→
X

t

i + α · cos(θ) ·
((→

X
t

A −
→
X

t

B

))
+ α ·

→
RP, if θ = π/2

→
X

t

i + α · cos(θ) ·
((→

X
t

A −
→
X

t

B

))
, Otherwise

(6)

→
RP

t

i,2 =


→
X

t

1 +

(
α · cos(θ) ·

((→
U −

→
U
)
· τ3 +

→
U
)
+ α ·

→
RP
)
·
→
U2, if θ = π/2

→
X

t

1 + α · cos(θ) ·
((→

U −
→
L
)
· τ3 +

→
L
)
·
→
U2, Otherwise

(7)

=


(

1− t
Tmax

)2 t
Tmax , if r1 > r2(

t
Tmax

) 2
t , Otherwise

(8)

Equations (5)–(8) provide a mathematical model of the reference points (RP). Abdel-
Basset assumed each cache has two reference points [25], then the RP matrix in Equation
(5) has two columns. Equations (6) and (7) describe the two methods for solving the RP.
Additionally, the process of the nutcracker is described as learning from past experiences
continuously during retrieval; Equation (8) is used to modify RP, with the first term in α
linearly decreasing and the second term linearly increasing.

→
X

t+1

i = min(


→
X

t

i , if f
(→

X
t

i

)
< f

( →
RP

t

i,1

)
→

RP
t

i,1, Otherwise
,


→
X

t

i , if f
(→

X
t

i

)
< f

( →
RP

t

i,2

)
→

RP
t

i,2, Otherwise
) (9)

Xt+1
ij =


Xt

ij, if τ3 < τ4

Xt
ij + r1 ·

(
Xt

bestj − Xt
ij

)
+ r2 ·

( →
RP

t

i,1 − Xt
ij

)
, Otherwise

(10)

Xt+1
ij =


Xt

ij, if τ5 < τ6

Xt
ij + r1 ·

(
Xt

bestj − Xt
ij

)
+ r2 ·

( →
RP

t

i,2 − Xt
ij

)
, Otherwise

(11)

→
X

t+1

i =

{
Equation (10), if τ7 < τ8
Equation (11), Otherwise

(12)

→
X

t+1

i =

{
Equation (6), if ϕ > Pa2

Equation (9), Otherwise
(13)

During the second exploration process of the nutcracker, Formula (9) describes the pro-
cess of searching for seeds and recovering a cache in the storage area. The smaller result of
the two reference points is taken as the new location, as described in Formulas (10) and (11).

Based on the optimal solution Xt
bestj and

→
RP

t

i,1 and
→

RP
t

i,2, the second development phase
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is described in terms of developing corresponding areas, and using τ7, τ8 random num-
bers to synthesize the two reference points, as shown in Formula (12). Finally, similar to
Formula (4) in the foraging and storage strategy, Pa2 is used to balance the exploration
and development process under this strategy (note that Pa2 should be set to 0.2 based on
experimental verification).

3.4. Implementation of NOA

As shown in the pseudo code of NOA in Algorithm 1, the implementation of NOA in
the optimization process requires the initialization of the population in accordance with
the set boundaries:

→
X

t

i,j =

(→
U j −

→
L j

)
·
→

RM +
→
L j, i = 1, 2, . . . , N, j = 1, 2, . . . , D (14)

Algorithm 1: Pseudo-code of NOA.

Input: population size N, the lower limits of variables
→
L , the upper limits of variables

→
U the

current number of iteration t = 0, and the maximum number of iterations Tmax.
Output: the best solution found.
1. Initialize N nutcracker/solution using Equation (14);
2. Evaluate each solution and find the one with the best fitness in the population
3. t = 1; //the current function evaluation//
4. while (t < Tmax)
5. Generate random numbers σ and σ1, between 0 and 1.
6. If σ < σ1 //* Foraging and storage strategy*//
7. ϕ is a random number between 0 and 1.
8. for i = 1: N
9. for j = 1: d
10. if ϕ > Pa1 /*Exploration phase1*/

11. Updating
→
X

t+1

i using Equation (1)
12. else /*Exploitation phase1*/

13. Updating
→
X

t+1

i using Equation (3)
14. end if
15. end for
16. Update the current iteration t by t = t + 1
17. end for
18. else //* Cache-search and recovery strategy *//
19. Generate RP matrix using Equations (5)–(7).
20. Generate a random number φ between 0 and 1.
21. for i = 1: N
22. if φ > Pa2 /*Exploration phase2*/

23. Updating
→
X

t+1

i using Equation (9).
24. else /*Exploitation phase2*/

25. Updating
→
X

t+1

i using Equation (12).
26. end if
27. t = t + 1
28. end for
29. end while

Following this, according to the foraging and storage strategies, the nutcracker popula-
tion performs exploration and exploitation in first stage, and the cache search and retrieval
strategies in the second stage. These two strategies are implemented in parallel and have
equal probabilities. Every nutcracker represents a solution of the problem. Possible food
sources in the first stage and caches in the second stage represent candidate solutions. The
fitness function values to be optimized are calculated by selecting new solutions according
to the strategies, and the iteration process continues to select better solutions.
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During the initialization process, in addition to the population size, search boundaries,
and maximum number of iterations, the NOA also requires presetting two parameters,
Alpha: the percentage of attempts to avoid local optima, and Prb: the percentage of explo-
rations of other regions in the search space. In this paper, Alpha = 5% and Prb = 0.2, chosen
in accordance with the recommended values in the original code, to balance the exploration
and exploitation processes. In both strategies, exploration and exploitation in the solution
space are equally important in regards to following the information-sharing mechanism
and mutually coordinating to balance and avoid local optima.

4. Experimental Analysis

During the algorithm iteration, the number of iterations in each run is critical to the
algorithm’s performance. Too few iterations can limit the accuracy and reliability of the
optimization results, and the algorithm may get stuck in local optima and fail to find the
global optimal solution. In this experiment, the algorithm was set to iterate 50,000 times,
and the NOA, PSO, FWA, and WOA algorithms were independently executed 30 times
each, taking Aleo Solar S79Y300 monocrystalline silicon solar panels under 1000 W/m2

solar radiation and 25 ◦C temperature as an example. The RMSE average, MD, and STD
were calculated to evaluate the accuracy and reliability of the algorithm, as shown in Table 5.
The best values of SDM, DDM, and TDM models for each algorithm corresponding to the
best RMSE value are detailed in Tables 6–8.

Table 5. Test results for SDM, DDM, and TDM models.

NOA PSO FWA WOA

SDM
AVG-RMSE 0.018868 2.298162 1.679379 3.061984

MD 0.000099 1.698016 1.698207 1.698016
STD 0.079632 1.658716 0.103535 2.336065

DDM
AVG-RMSE 0.488002 1.447042 1.267698 1.557119

MD 0.024675 1.309913 1.310957 1.672228
STD 0.636135 0.244036 0.131228 0.236466

TDM
AVG-RMSE 0.003819 0.250803 0.378707 0.304575

MD 0.003069 0.017604 0.405576 0.376345
STD 0.003877 0.457756 0.088091 0.338801

Rank 1 3 2 4

Table 6. Test results for SDM.

Algorithm Rs Rsh Iph ISD1 n1 RMSE

NOA 0.006562 5.220376 7.865330 2.9458 × 10−10 0.981397 7.92586 × 10−5

PSO 0.000000 0.116629 9.426077 0.000000 0.823792 1.698016
FWA 0.000000 0.153262 10.000000 3.1557 × 10−10 0.999684 1.131198
WOA 0.000000 0.116653 9.425459 0.000000 0.960865 1.698016

Table 7. Test results for DDM.

Algorithm Rs Rsh Iph ISD1 ISD2 n1 n2 RMSE

NOA 0.006562 5.229866 7.865346 2.9392 × 10−10 5.4180 × 10−7 0.981306 3.641440 6.02460 × 10−5

PSO 0.046217 3000.00000 8.037722 0.000000 1.0000 × 10−6 1.000000 2.000000 1.309913
FWA 0.000335 535.789322 7.249937 4.9392 × 10−10 1.1080 × 10−8 0.998794 2.000811 0.817332
WOA 0.046217 2332.14650 8.037774 0.000000 1.0000 × 10−6 0.112296 2.000000 1.309914
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Table 8. Test results for TDM.

Algorithm Rs Rsh Iph ISD1 ISD2 ISD3 n1 n2 n3 RMSE

NOA 0.006564 5.210821 7.865464 2.9270 × 10−10 8.2069 × 10−7 9.1951 × 10−7 0.981139 8.745928 8.109913 6.23616 × 10−5

PSO 0.006739 100.00000 7.824180 0.000000 1.0000 × 10−6 1.4708 × 10−11 1.000000 1.691382 0.877124 0.013344
FWA 0.004407 62.997622 7.939448 0.000000 1.0000 × 10−6 1.0000 × 10−6 0.556490 2.035365 1.483360 0.106027
WOA 0.006551 93.154950 7.813773 4.6284 × 10−10 9.3795 × 10−7 5.1560 × 10−9 1.000000 9.460711 9.315814 0.019484

When applying MA to optimize parameters, setting search boundaries requires a
comprehensive consideration of the value range, changing trend of the objective function,
feasible constraints, and the convergence and stability of the algorithm. In this paper, four
algorithms were tested and analyzed, and the parameter configurations were determined
based on the test results analysis. The parameter configurations are shown in Table 9.

Table 9. Variable Range Setting for SDM, DDM, TDM.

Parameters Lower Bound Upper Bound

Rs(Ω) 0 10
Rsh(Ω) 0 3000
Iph(A) 0 10

ISD1, ISD2, ISD3(µA) 0 1
n1, n2, n3 0 10

The iterative convergence graphs of SDM, DDM, and TDM algorithms are illustrated
in Figure 2. The horizontal axis represents the number of iterations, and the vertical axis
shows the best fitness values (on a logarithmic scale). Table 10 records the average time
taken by each algorithm. A clear observation from Figure 2 is that NOA exhibits the
best accuracy. Taking RMSE as an example, data from Tables 5–7 demonstrate that NOA
achieves the best accuracy among the three models. Moreover, Figure 3 shows an excellent
fit between the curve results obtained by the NOA and the measured data.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 13 
 

Algorithm 𝑹𝒔 𝑹𝒔𝒉 𝑰𝒑𝒉 𝑰𝑺𝑫𝟏 𝑰𝑺𝑫𝟐 𝑰𝑺𝑫𝟑 𝒏𝟏 𝒏𝟐 𝒏𝟑 RMSE 
NOA 0.006564 5.210821  7.865464 2.9270 × 10−10 8.2069 × 10−7 9.1951 × 10−7 0.981139 8.745928 8.109913  6.23616 × 10−5 
PSO 0.006739 100.00000  7.824180 0.000000 1.0000 × 10−6 1.4708 × 10−11 1.000000 1.691382 0.877124  0.013344  
FWA 0.004407 62.997622  7.939448 0.000000 1.0000 × 10−6 1.0000 × 10−6 0.556490 2.035365 1.483360  0.106027  
WOA 0.006551 93.154950  7.813773 4.6284 × 10−10 9.3795 × 10−7 5.1560 × 10−9 1.000000 9.460711 9.315814  0.019484  

When applying MA to optimize parameters, setting search boundaries requires a 
comprehensive consideration of the value range, changing trend of the objective function, 
feasible constraints, and the convergence and stability of the algorithm. In this paper, four 
algorithms were tested and analyzed, and the parameter configurations were determined 
based on the test results analysis. The parameter configurations are shown in Table 9. 

Table 9. Variable Range Setting for SDM, DDM, TDM. 

Parameters Lower Bound Upper Bound 𝑅௦ (Ω) 0 10 𝑅௦ (Ω) 0 3000 𝐼(A) 0 10 𝐼ௌଵ, 𝐼ௌଶ, 𝐼ௌଷ(μA) 0 1 𝑛ଵ,𝑛ଶ,𝑛ଷ 0 10 

The iterative convergence graphs of SDM, DDM, and TDM algorithms are illustrated 
in Figure 2. The horizontal axis represents the number of iterations, and the vertical axis 
shows the best fitness values (on a logarithmic scale). Table 10 records the average time 
taken by each algorithm. A clear observation from Figure 2 is that NOA exhibits the best 
accuracy. Taking RMSE as an example, data from Tables 5–7 demonstrate that NOA 
achieves the best accuracy among the three models. Moreover, Figure 3 shows an excellent 
fit between the curve results obtained by the NOA and the measured data. 

Table 10. Convergence time (in seconds). 

Algorithm SDM DDM TDM AVG-Time RANK 
NOA 406.19  404.87  729.26  513.44  1 
PSO 4279.71  6378.25  4177.62  4945.19  3 
FWA 4957.14  9037.98  12516.82  8837.32  4 
WOA 2262.39  2263.33  4610.02  3045.24  2 

 

   
(a) (b) (c) 

Figure 2. Convergence graph for (a) SDM, (b) DDM, (c) TDM. Figure 2. Convergence graph for (a) SDM, (b) DDM, (c) TDM.

Table 10. Convergence time (in seconds).

Algorithm SDM DDM TDM AVG-Time RANK

NOA 406.19 404.87 729.26 513.44 1
PSO 4279.71 6378.25 4177.62 4945.19 3
FWA 4957.14 9037.98 12516.82 8837.32 4
WOA 2262.39 2263.33 4610.02 3045.24 2

Table 11 provides a comparative analysis of the NOA against PSO, FWA, and WOA,
utilizing the nonparametric Wilcoxon rank test for independent samples [33]. The test
examined the best fitness values derived from 30 independent experiments per function.
The p-values and h-values recorded in the table offer a quantitative and qualitative under-
standing of NOA’s performance relative to the other algorithms. The p-values in Table 11,
all of which are below the set significance level of 0.05, suggest a significant difference in
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NOA’s performance and probability distribution from its counterparts. Meanwhile, the
h-value indicates whether the null hypothesis is accepted (h = 1) or rejected (h = 0). Any
non-rejection of the null hypothesis would imply significant differences between NOA and
a certain algorithm for a specific function, as per the Wilcoxon test.
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Table 11. Wilcoxon rank test, comparative results.

NOA vs. PSO h FWA h WOA h

SDM 3.01985 × 10−11 1 1.91209 × 10−9 1 3.01985 × 10−11 1
DDM 2.97473 × 10−11 1 1.90126 × 10−9 1 3.00270 × 10−11 1
TDM 2.50779 × 10−11 1 2.80032 × 10−11 1 3.00098 × 10−11 1

Through comparative analysis, it is evident that, although PSO, WOA, and FWA
demonstrate remarkable performance in various optimization problems, their effectiveness
is limited in this study. Upon reaching 50,000 iterations, the results of these algorithms
still fail to achieve the desired optimal solution. This phenomenon can be primarily
attributed to two aspects. First, the convergence behavior of these algorithms makes
it difficult for them to escape local optima in a short time, ultimately obstructing their
identification of global optimal values. Second, the insufficient compatibility between
these algorithms and the unique characteristics of the Aleo Solar S79Y300 monocrystalline
silicon solar cell, module parameter extraction problem leads to reduced efficiency in
solving this specific issue. This implies that the problem features might not align well with
the fundamental assumptions or heuristic methods employed by PSO, FWA, and WOA,
resulting in suboptimal performance.

By contrast, the NOA consistently outperforms popular algorithms (such as PSO, FWA,
and WOA) in terms of accuracy and computational efficiency. The primary reason behind
NOA’s excellence is its dual search strategy approach, which expertly balances exploration
and exploitation throughout the search process. As described in Section 3, the dual-strategy
approach consists of two overall strategies: a foraging and storage strategy, and a caching
and restoration strategy. These strategies work synergistically to facilitate a dynamic and
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adaptable search process that bypass local optima and quickly converge on the expected
high-quality solution. The algorithm uses random numbers in each stage of various
strategies during the optimization process, enhancing its adaptability and responsiveness to
the search environment, which enables it to deal with complex multi-dimensional nonlinear
optimization problems effectively. Simultaneously, to address the unique challenges in the
search process, both strategies include specialized exploration and development algorithms
that are balanced and coordinated with each other. The exploration operator emphasizes
expanding the search scope by guiding the algorithm to unknown regions of the solution
space, while the development operator focuses on refining and enhancing the current best
solution. The parallel integration of these strategies, along with their respective exploration
and exploitation operators, fosters a highly adaptive and dynamic search process. This
adaptability enables the algorithm to identify promising solution regions efficiently, and
quickly converge to the global optimum, even in complex optimization scenarios, such as
the TDM involving three exponential formulas and nine-dimensional variables.

5. Conclusions

In this paper, the applicability and accuracy of NOA for solar cell parameter estimation
problem were explored, and three popular algorithms, PSO, FWA, and WOA, were applied
in SDM, DDM, TDM models, respectively. Based on experimental results and comparisons,
the following conclusions can be drawn: NOA is suitable for solving solar cell problems,
and the results show that NOA has the best performance and the smallest error in optimiz-
ing solar cell parameters compared with the other three popular algorithms. Additionally,
the average running time results show that the running time of NOA is also the shortest
among the four algorithms. In this work, the best RMSE value of SDM is 7.92587 × 10−5,
that of DDM is 6.02460 × 10−5, and that of TDM is 6.23617 × 10−5, as shown through NOA
calculation and simulation. However, according to the NFL theorem [34], future work will
seek new test sets, such as arsenic gallium, perovskite material solar cells, or experimental
measurements of photovoltaic modules using different technologies such as polycrystalline
and thin films under different irradiation intensities and temperatures to the performance
of NOA, a potential meta-heuristic algorithm.
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