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Abstract: Recent cross-lingual summarization research has pursued the use of a unified end-to-end
model which has demonstrated a certain level of improvement in performance and effectiveness, but
this approach stitches together multiple tasks and makes the computation more complex. Less work
has focused on alignment relationships across languages, which has led to persistent problems of
summary misordering and loss of key information. For this reason, we first simplify the multitasking
by converting the translation task into an equal proportion of cross-lingual summary tasks so that the
model can perform only cross-lingual summary tasks when generating cross-lingual summaries. In
addition, we splice monolingual and cross-lingual summary sequences as an input so that the model
can fully learn the core content of the corpus. Then, we propose a reinforced regularization method
based on the model to improve its robustness, and build a targeted ABO mechanism to enhance the
semantic relationship alignment and key information retention of the cross-lingual summaries. Abla-
tion experiments are conducted on three datasets of different orders of magnitude to demonstrate the
effective enhancement of the model by the optimization approach; they outperform the mainstream
approaches on the cross-lingual summarization task and the monolingual summarization task for
the full dataset. Finally, we validate the model’s capabilities on a cross-lingual summary dataset of
professional domains, and the results demonstrate its superior performance and ability to improve
cross-lingual sequencing.

Keywords: cross-lingual summary; pre-trained language model; abstractive summarization

1. Introduction

Cross-lingual summarization (CLS) involves extracting the core content of a document
in one language and expressing it in another language [1]. This task requires addressing
both redundant information and language differences, which usually involves multiple
steps. However, decomposing cross-lingual text summarization into multiple tasks does
not guarantee optimal results for each individual neural network. In addition, the distinct
linguistic and syntactic structures of different languages need to be considered. Directly
applying an end-to-end model across languages can result in the loss of important linguistic
nuances and syntactic patterns, potentially leading to the omission of key information
or the incorrect placement of sentences within the summary. Therefore, we must ad-
dress two problems: how to integrate multiple tasks into an effective workflow [2], and
how to capture the connections between different languages to generate summaries with
reasonable content.

To improve the quality of summaries, recent studies have focused on reducing vari-
ability between tasks [3,4]. Transformer-based neural networks [5] have demonstrated
the ability to share feature representations of languages between hidden layers in a
language-independent way. Based on this idea, this paper abstracts the translation task
into a cross-lingual summarization task with the same input sequence to output sequence
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length ratio, and integrates it with the monolingual summarization (MS) task in the same
model. The overall objective of the model is simplified to “monolingual summariza-
tion task + cross-lingual summarization task”. The optimized cross-lingual pre-training
model [6] is used as the basis, and the corpus with monolingual and cross-lingual sum-
maries is used as input to allow all information to be shared between tasks. Integrating
sequences helps the model gain a comprehensive understanding of the core content in the
source language and facilitates better alignment of information across different languages.
Furthermore, given the presence of unique nuances and expressions in each language,
direct translation is often insufficient to capture these subtleties. By incorporating both
monolingual and cross-lingual summary sequences, the model can effectively capture and
comprehend these language-specific nuances. This becomes particularly crucial in the
context of cross-language summarization, as it enables the model to capture the essence
of the source document in its original language and generate a summary in the target
language with efficiency.

While end-to-end approaches are known for their improved generalization perfor-
mance in handling noisy text inputs and reducing issues such as error accumulation [7],
those based on pre-trained models often lack flexibility and fail to fully exploit the benefits
of pre-training. Consequently, they frequently encounter overfitting problems during
downstream task training. To tackle these challenges, we propose novel reinforced regular-
ization methods. By introducing randomness during training, the reinforced regularization
method effectively provides regularization, while the inclusion of sparse softmax encour-
ages sparsity, preventing the model from excessively relying on specific features or classes.
This combination further enhances the model’s robustness.

Given that the model integrates both monolingual and multilingual summarization
tasks, it is necessary to configure the corresponding generation methods to enhance the
quality of the generated summaries. However, many previous summarization approaches,
such as top-k [8] or pointer networks [9], primarily focus on providing raw output content
without ensuring the coherence of the generated statements. Unfortunately, these methods
are insufficient for capturing semantic relationships between languages in cross-language
summarization tasks. To address this limitation, we have devised the ABO mechanism. This
mechanism leverages flexible keyword tags to preserve important semantic information in
the abstract and maintain continuity between words. Additionally, we have incorporated a
filtering mechanism during the generation stage to effectively mitigate issues such as word
duplication and the inclusion of near-synonyms.

The main work presented in this paper can be summarized as follows:

1. We provide a multitask training strategy that combines the monolingual summary
task with the cross-lingual summary task. By using the model features and combining
the inputs of both tasks, we achieve hard parameter sharing of the overall process,
which eliminates task differences and reduces the semantic loss from segmentation
tasks, thereby improving the performance of the cross-lingual summary model;

2. We optimize the model for multiple input and output features. To enhance the
regularization ability of the fine-tuned model and reduce the risk of overfitting in
downstream tasks, we improve the consistency of the model output by averaging the
weights of the forward network with different dropout probabilities. Additionally, we
incorporate a sparse set of softmax filtering predictors in the regularization process
to improve the output accuracy. Furthermore, we streamline the pre-trained model
parameters and customize the cross-lingual word list to reduce the training cost;

3. We design a targeted sequence generation and filtering mechanism based on the
proposed model and method. We combine the monolingual summary sequences
annotated with word tags to form consecutive fragments which effectively solve
the problem of sequential alignment and loss of important information in different
languages. Moreover, we use an external word list to ensure the occurrence of key-
words in the source text in the summary, ensuring the generation of key information
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and alleviating the problem of multiple meanings of words and that of words out of
vocabulary (OOV).

The chapters in this paper are organized as follows: Section 2 provides an introduction
to the related work on cross-lingual summarization and generation mechanisms. Section 3
elaborates on the methods proposed in this paper, including the strengthened regulariza-
tion method, the ABO mechanism, and the multitask fusion method. Section 4 describes
the experimental details and analysis of the results. The experiments cover ablation experi-
ments with different sample magnitudes, model comparison experiments with full data
sets, and single-language summary experiments. In Section 5, the process of constructing a
cross-lingual summarization data set in the professional field and the results of the model
ablation experiment on this data set are presented. Finally, Section 6 summarizes the main
work presented in this paper and outlines future directions for research.

2. Related Work
2.1. Cross-Lingual Summarization

The primary task of cross-lingual summarization is to extract the essential content
of a document in one language and express it in another language. Previous methods
have typically combined translation tasks and single-text summarization tasks in different
orders. There are two main approaches: (1) translating the corpus first and then extracting
the abstract from the translated content [10–12]; (2) extracting the abstract first and then
translating it into the target language [13–15]. Such a pipeline method is heavily influenced
by the performance of the model and lacks any connection between tasks, which can easily
lead to content deviation.

The Transformer-based deep neural network can improve the effectiveness of each
component of the task. For instance, Cao [16] introduced a learnable linear mapper to
the multitask framework to enhance the isomorphism between different languages and
improve the cross-lingual transfer ability of the model. Similarly, Zhu [17] added a transla-
tion layer to the Transformer model to compute candidate translation words in the source
document and added high-scoring candidates into summary generation to improve the
summary quality. Luo [18] introduced a cross-attention module to the Transformer encoder
to establish interdependence between languages and enhance cross-lingual information
correlation. Another approach proposed by Zhu [19] involved combining cross-lingual
summarization tasks with single-language summarization tasks and translation tasks. This
was achieved by sharing the encoder and using two independent decoders to process the
two different tasks, enabling the model to learn the input of both tasks and improve the
performance of cross-lingual summarization models. Bai [20] spliced the MS output from
the decoder and the CLS output sequentially while sharing the CLS encoder. This approach
enhanced the interaction between different languages, implicitly considering cross-lingual
alignment, semantic similarity, and patterns between summaries in different languages,
which facilitate knowledge transfer from high-resource languages to low-resource lan-
guages. Liang [21] employed a conditional variational autoencoder [22] with a shared
encoder and decoder for multitask learning of machine translation (MT), MS and CLS tasks.
The authors constructed two local-level latent variables for translation and summarization,
respectively, and a global-level latent variable for CLS.

Previous studies have primarily focused on enhancing the model’s cross-lingual learn-
ing capability during training for various tasks. However, an essential aspect that impacts
summary quality is how the model transforms discrete predicted word distributions into
continuous sequences during the generation phase.

2.2. Auxiliary Generation Method

Although auxiliary generation methods have been shown to improve the performance
of CLS models by incorporating other tasks, the cost of training with multiple auxiliary
tasks is often high. To address this issue, feature enhancement methods extract and
optimize the internal features of the CLS process and apply them to the model to enhance
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its semantic understanding, cross-linguistic alignment, and text generation capabilities.
This approach enhances the interaction between features within the CLS task and is not
dependent on specific tasks, but exploiting internal features requires the development of
complex algorithms.

Zhu [17] selected keywords from the source text, obtained their translation distribu-
tions through a probabilistic bilingual dictionary, and then used the output distribution
of the Transformer along with the translation distribution to generate summaries. This
method extends the influence of source text keywords on generating the final summary.
Duan [23] added a comparison attention mechanism to the Transformer. This attention is
calculated from the parameters and weights inside the Transformer to increase attention
to irrelevant information between the target language reference summary and the source
language text. The method extends the influence of model parameters and weights on
generating the final summary. Jiang [24] first extracted key cues, such as keywords and
named entities, from the source language text, transformed the source language text into a
text graph using a cue-guided algorithm, and then constructed a graph encoder and a cue
encoder to encode the text graph and key cues, respectively. The respective outputs were
passed into the decoder and finally the output distribution and translation distribution
were used together to generate the summary. This method extends the influence of key
cues on generating the final summary.

3. Methods

The model proposed in this paper is based on the standard seq2seq structure. It utilizes
the baseline model to perform two different tasks consecutively, sharing all parameters
within the model. In the fine-tuning process, a reinforced regularity approach is incorpo-
rated. The input sequence passes through a forward network twice, with different drop
probabilities, which is approximated as passing through two distinct sub-networks. The
prediction word distribution is then filtered by sparsifying the output, and the distribution
results are obtained by calculating the KL scatter [25]. Regularization is provided by rein-
forced regularization, which introduces randomness during training. On the other hand,
sparse softmax promotes sparsity, preventing the model from overly relying on specific
features or classes. These regularization techniques help the model generalize better and
enhance its robustness to unseen examples. In the generation phase, the ABO mechanism is
added, which combines the core semantic content of monolingual summaries and the cross-
lingual summary sequences generated by screening the near-sense candidates. Important
semantics are preserved through the use of selected tag words, while the correctness of
linguistic sequences is maintained by leveraging potential connections between these tag
words. The overall flow of the model is illustrated in Figure 1.
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In the figure, a linguistic corpus C = {C1, C2, . . . , Cn} is provided, which corresponds
to a monolingual summary sequence X = {x1, x2, . . . , xn} and a target summary sequence
Y = {y1, y2, . . . , yn}. Input sequence starts with{[BOS], x1, x2, . . . , xn, [TESP], C1, C2, . . . , Cn, [BOS]}
and the final target output sequence is obtained after being processed by the encoder, ending with{
[BOS], y′1, y′2, . . . , y′n, [EOS]

}
. The identifier [TESP] represents the truncate separate character.

3.1. Reinforced Regularization Method

Fully trained large language models typically have a high number of model parame-
ters, which can provide substantial prior knowledge, but the limited data resources avail-
able for downstream tasks can result in overfitting during model fine-tuning. Therefore, it
is necessary to introduce an appropriate regularization strategy to reduce overfitting and
improve the model’s generalization performance. The baseline model does not incorporate
dropout regularization during the pre-training phase because it may inhibit the model’s
fitting effect and reduce its learning ability. However, during the fine-tuning phase, the
model may suffer from overfitting when facing a single downstream task, so adding a more
effective regularization method can significantly improve the fine-tuning performance of
the model. As a result, a reinforced regularization method is added during fine-tuning.

During training, performing forward calculations with different sampling processes
for the same input x is equivalent to the same data sample going through two sub-networks
and obtaining two different distributions, P1 and P2. The final weighting of the cross-
entropy of the two components is shown in the following equation:

L(CE)
i = −logPθ(yi|xi)− logP′θ(yi|xi). (1)

To keep the output of the path network consistent across dropouts, the KL scatter
is calculated.

L(KL)
i =

1
2
[KL(Pθ(yi|xi) ‖ P′θ(yi|xi)) + KL(P′θ(yi|xi) ‖ Pθ(yi|xi))]. (2)

The final loss after two loss calculations is the weighted sum of the two losses, which
is calculated as shown below:

Li = L(CE)
i + αL(KL)

i . (3)

In the equation above, α represents the weight coefficient of the KL loss and is the only
hyperparameter. By weighting the two losses with α, the model space is further regularized,
compensating for the inconsistency of dropout in training and testing, and improving the
model’s generalization ability.

The above method performs data augmentation while maintaining the input semantics,
which boosts the confidence level of the primary categories but increases the training cost
by adding numerous non-target classes in the prediction stage. To address this issue, we
sparsify the output to provide a positive gain for the regular method via the category-
invariant property.

Typically, the softmax function is capable of mapping multiple neuron outputs to the
(0, 1) interval, thereby enabling the numerical assignment of approximate probabilities.
The common exponential form of softmax [26] is calculated as

pi = softmax(si) =
esi

∑n
j=1 esj

. (4)

In the above equation, si represents the score of an output result, pi represents the
corresponding probability, and n denotes the total number of output results. The softmax
function transforms the set of n real-valued scores into a probability distribution.

The decoder part uses softmax for two main functions: (1) calculating the normalized
attention weights, and (2) computing the prediction probability distributions. However,
traditional softmax cannot assign a probability of 0 to any predictor, making it impossible
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to exclude low-probability predictors. To address this, sparse softmax is utilized instead,
where the hyperparameter k is manually set to fix the category and complete the initial
screening of low-probability words.

pi =


esi

∑j∈Nk
esj i ∈ Nk

0 i /∈ Nk

. (5)

The output logits of the fully connected layer are denoted as Si. These logits are sorted
from largest to smallest, and the set of subscripts of the first k elements is denoted as Nk.
At this point, sparse softmax only retains the probability values of the first k elements after
sorting when calculating the probability. The values of the remaining elements after k will
be directly set to 0.

As shown in Figure 2, same sequence is input into two forward networks, each with
different dropout probabilities, resulting in distinct scores after computation. Before passing
through the softmax function, the computed results from the two networks need to be
sorted. Additionally, manual parameters are used to sparsify the distributions. When the
hyperparameter k is set to 3, sparse softmax considers the top 3 logits after sorting as the
target class and calculates their corresponding probabilities, while the probabilities of logits
in non-target classes are set to 0 directly. Based on the results, the sparse output prevents the
probability distribution from being wasted on unlikely outputs and significantly enhances
the accuracy of the output. In tasks with low output ambiguity, the sparse output typically
requires producing only one or a few fixed sets containing the correct answers.
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Although the aforementioned approach involving reinforced regularity includes two
forward calculations during training, it effectively alleviates the problem of long-tailed
multicategorical distribution, improves the confidence level of the main categories, and
significantly reduces the search space of the model. As a result, the pre-trained model’s
robustness in downstream tasks is improved while maintaining computational efficiency.

3.2. ABO Mechanism

The most common problem faced by generative cross-lingual summary models is the
semantic drift between different languages. This occurs when the generation of a summary
in another language results in a representation that is contrary to the original due to issues
such as sequence length or near-synonyms, even though a better representation has been
obtained with the monolingual summary of that corpus. To tackle this issue, we filter
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out cross-lingual summaries that exhibit semantic errors by comparing them with the
monolingual summaries generated by the same model.

Before generating cross-lingual summaries, the model tags the monolingual summary
sequences. The token with the largest L2 paradigm among the candidate words is selected
as the anchor word (A), and the neighboring words are gradually identified through
pointers. Assuming that the set of candidate words is P = {p1, p2, . . . , pn}, A tag word for
pA, then pA is

pA =
argmax

i
‖ pi −

=
p ‖2 . (6)

When a word is identified during the traversal of the sequence that is not present in the
original corpus, it is marked as an out-of-text word (O), and all the words that have been
traversed are marked as bound words (B). O-labeled words refer to the words generated to
summarize the semantics of paragraphs in monolingual summaries, and preserving them
is crucial for maintaining semantic coherence in cross-lingual summarization. Additionally,
multiple consecutive B-labeled words serve as the basis for forming a smooth abstract word
order. During marking, a binary tree with fixed combination rules is maintained, with A as
the root node, and only B and O nodes allowed under A nodes, B and O nodes under B
nodes, and A and O nodes under O nodes.

During cross-lingual summary generation, the same approach is used to select the
anchor word tagged as A, but it is restricted to selecting a word that has the translated
word tagged as A in the monolingual summary or its near-synonym as the anchor word in
the cross-lingual summary sequence. Otherwise, the candidate sequence is considered to be
missing the core word and discarded. To prevent unmatched cases, we use a two-stage out-
stack operation to determine whether core words are present in the sequence. The O-tagged
words in monolingual summaries are copied into the sequences of cross-lingual summaries
through the translation word list. Using the properties of the A-tagged words and the
O-tagged words, we ensure that the core words appear in the cross-lingual summary and
maintain the basic semantic structure. For the B-tagged words, we ensure the closeness of
meaning and alignment of the word order through filtering. Specifically, we maintain a list
of proximity words for B-tags in monolingual summaries and traverse the cross-lingual
summary candidate sequence, skipping if a word is found and discarding if it is not found
by more than 2-g. The specific implementation is described in Algorithm 1.

To generate a summary sequence, labeling the summary words in the source corpus
is necessary. Therefore, predicting the label distribution during training is crucial. We
calculate the loss function by computing the cross-entropy loss between the predicted label
distribution and the ground truth label distribution for all samples. The cross-entropy
loss quantifies the dissimilarity between the predicted and true label distributions. By
minimizing this loss, the model’s predictions are improved and aligned with the actual
labels, enhancing its performance. The calculation method is as follows:

L(TAG) = − 1
NS

N

∑
S

∑
i

z′ilog zi. (7)

In the above formula, N is the length of the input corpus sequence, S is the batch
size, zi is the tagged word, and z′i is the predicted tag word. To account for the sparsity
of label predictions, we average the loss over the batch size ( 1

NS ). This ensures that the
loss remains consistent and independent of the batch size, allowing for fair comparisons
between different batch sizes. Combined with Equation (3), the loss is calculated as

Li = L(CE)
i + αL(KL)

i + L(TAG)
i . (8)

In Figure 3, the O appearing in the second and third levels of the binary tree is not
a real node but a determination step during the construction of monolingual summary
generation to check whether the next word exists in the original text. Besides the probability
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distribution output by the decoder, the “filter” in the figure also includes other conventional
determination methods, such as basic grammar rules, conventional phrase combinations,
and sequence length restrictions.

Algorithm 1 ABO mechanism

Algorithm implementation:
Input: monolingual summarization sequence Sm, tag set T(a, b, o), cross-lingual summarization
candidate token set Cs, synonym dictionary Sd
Output: cross-lingual summarization output sequence Sc

1. for s ∈ Sm do
2. if MATCH_TAG(s, o) then
3. s′ ← TRANSLATE(s)
4. add(s′) to the set Sc
5. else
6. St ← SEARCH(s, Sd)
7. end if
8. for t ∈ TRANSLATE(St)do
9. if MATCH_TAG(t, a) or MATCH_TAG(t, b) then
10. PUSH(t)
11. else
12. Break
13. end if
14. end for
15. end for
16. for c ∈ Csdo
17. if !EQUAL(c, s′) or !GRAMMER_RULE_FILTER(c, Sc) then
18. remove c from Cs
19. else if !JUDGE_INTERSECTION(c, Sc) then
20. c← pop(T)
21. break
22. else
23. add(c) to the set Sc
24. end if
25. end for
26. return Sc
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3.3. Multitask Fusion Approach

To fully leverage crucial information from the corpus using multiple tasks, a model
with hard parameter sharing is used to embed the data representation of various tasks in
the same semantic space [27]. As a result, the decoder is shared by multiple tasks, and
the target sequence is replaced by a combination of multitask sequences. The overall loss
calculation becomes

Lsum = β1L(1)
i + β2L(2)

j . (9)

In the above equation, L(1)
i is the loss function of the monolingual summary task which

includes the weighted sum with added KL scatter, as mentioned above. The term L(2)
j

includes the joint probability of both the translation task and the cross-lingual summary
task. Given a monolingual corpus Ci, the model generates the summary content Xi by
performing the monolingual summary task. The target sequence consists of a probability
distribution of p(yt|y < t, Xi, Ci). The expression is as follows:

L(2)
j =

n

∑
t=1

log P(yt|y < t, Xi, Ci). (10)

In Equation (9), β1 and β2 are the weights that adjust the multitask loss. However,
since the overall model can converge slowly due to the larger loss value after weighting, the
learning rate needs to be reduced. To address this, the weights are dynamically adjusted by
calculating the state of each task, setting such weights in the following way:

βn =
1

‖ ∇θ L(n)
θ ‖

. (11)

In actual calculations, L(n)
θ is fixed after one derivative to maintain numerical stability

of the overall gradient.

4. Experiments
4.1. Datasets

In the cross-lingual summarization experiments, our main focus is on both
Chinese–English and English–Chinese summary approaches. Therefore, in our experi-
ments, we mainly use two datasets, En2ZhSum and Zh2EnSum [19]. En2ZhSum is con-
verted by the back-translation method using the general text summarization datasets
CNN/DailyMail [28] and MSMO [29]. The dataset is divided into 364,687 training data
pairs, 3000 evaluation data pairs, and 3000 test data pairs. Zh2EnSum is created by con-
verting the summary part of the large open-domain Chinese dataset LCSTS [30] into
English by the same method. It contains 1,693,713 Chinese-to-English training samples,
3000 evaluation data pairs, and 3000 test data pairs.

For the ablation experiments, we first conducted experiments on the methods proposed
in this paper, retaining the settings of minimum, medium, and maximum to reflect the
differences among methods while controlling the number of samples. The specific sample
size settings are listed in Table 1.

Table 1. Dataset sizes of multiple low-resource scenarios for CLS datasets.

Scenarios Minimum (Pairs) Medium (Pairs) Maximum (Pairs) Full Dataset

Zh2En 5000 25,000 50,000 1,693,713
En2Zh 1500 7500 15,000 364,687

4.2. Experimental Settings

In this paper, we combined the approach mentioned above with the Transformer
structural pre-training model to construct an end-to-end model. Before the experiment, we
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first simplified the model’s input. After taking into account the statistics, we found that the
parameters of the model input and output layers accounted for 65% of the total number
of parameters. However, since our experiments only included Chinese and English, we
removed most of the other language contents from the word list. Following the processing
method of mBERT [31], we streamlined the word list and added some commonly used
Chinese words in a targeted manner. Finally, the overall word list included 11,000 English
words, 30,000 Chinese words, and 100 special symbols, reducing the number of words to
20% of the original word list. We then processed the sentencepiece word splitter of the
original model by replacing the first 40,000 words and removing other irrelevant content.
After manual debugging, we set the hyperparameters α = 4 for the reinforcement regular
and k = 10 for the Sparse softmax. Since the model uses Adafactor [32], a larger initial
learning rate was chosen, and we set the initial learning rate of the model to be 2× 10−4.
We used different prefix task identifiers to distinguish the monolingual summarization
task from the cross-lingual summarization task and trained the model by alternating the
two tasks. This part of the automatic evaluation compares the performance differences of
several models by the standard ROUGE [33] method and shows the ROUGE-1, ROUGE-2
and ROUGE-L scores.

4.3. Ablation Study

This section of the experiments explores the performance improvement of the pro-
posed methods on different scales of cross-linguistic summary datasets, En2ZhSum and
Zh2EnSum, by controlling the joint models. The experimental models are divided into
three parts: Base, which is the base model; Base + RR, which is the model with the addition
of reinforced regularity; and Base + RR + ABO, which is the model with the addition
of reinforced regularity and the ABO mechanism. Base + RR + ABO uses the original
monolingual summary sentence in the dataset. The experimental results are compared in
the table below.

The results in Table 2 indicate that the model achieved a quantitative improvement
with the addition of the reinforcement regularity for a small sample size. This is because
during training, the same samples are forward computed twice, which is formally equiva-
lent to augmenting the overall dataset, and repeated learning reduces the risk of overfitting
the pre-trained model on a small number of samples. Additionally, the sparse output
reduces the search range of the predicted words. When combined with the regulariza-
tion method, it provides higher reliability for a small number of prediction categories
under artificial constraints. Thus, the overall reinforced regularity approach improves the
effectiveness of the pre-trained model on specific downstream tasks.

Table 2. Results of ablation experiments with different sample size data sets.

Scenarios Model
Zh2EnSum En2ZhSum

RG1 RG2 RGL RG1 RG2 RGL

Minimum
Base 21.61 5.88 16.19 33.04 11.45 18.04
Base + RR 23.53 6.45 18.25 34.14 12.38 20.17
Base + RR + ABO 25.37 7.50 20.47 35.69 14.36 23.65

Medium
Base 27.22 9.91 23.33 35.38 14.54 24.12
Base + RR 28.46 12.11 25.36 36.34 17.01 26.20
Base + RR + ABO 30.21 14.57 27.18 37.22 18.67 28.23

Maximum
Base 29.35 11.78 25.23 36.35 18.44 26.14
Base + RR 31.10 12.93 26.51 37.24 19.87 27.26
Base + RR + ABO 33.08 14.72 28.14 38.11 21.25 28.35

After the addition of the ABO mechanism to the model, the generated summaries
showed more improvement in the ROUGE-2 and ROUGE-L scores. This is mainly because
the ABO mechanism preserves the proximity of candidate words when selecting anchor
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words and bound words. As a result, the semantic span between anchor words and bound
words is not suddenly increased after filtering by basic grammar rules. Additionally, the
proximity of candidate words and phrases of bound words can be used as the basis for the
calculation of the same subsequence in 2-g and above. Therefore, the summaries generated
by the model incorporating the ABO mechanism usually have higher fluency.

4.4. Cross-Lingual Summary Comparison Experiments

This section performs cross-lingual summary comparison experiments using the full
dataset of two cross-lingual datasets, En2ZhSum and Zh2EnSum, which are divided into
automatic and manual evaluations.

4.4.1. Contrast Model

TLTran: Transformer-based Late Translation. The model is a pipeline approach with a
monolingual summary model as the main body. The method first uses the source document
as input and generates the same language summary, and then translates the generated
summary into the target language summary by the translation model.

TETran [12]: Transformer-based translation priority model. This method first translates
the source document into the source document of the target language, and then extracts
the target summary from the translated corpus through another trained single-language
summary model of the Transformer structure.

TNCLS [19]: Transformer-based Neural Cross-Lingual Summarization (TNCLS). The
model accomplishes the cross-lingual summarization task by jointly training encoders and
decoders for different languages and different input sequence lengths.

CLS + MS [20]: Combining Cross-Lingual Summarization with Monolingual Sum-
marization. A shared encoder is used to encode the input utterances, and the decoder for
the Cross-Lingual Summarization task is connected to the Monolingual Summarization
decoder at the same time to train both tasks in a unified manner.

CLS + MT: Combining Cross-Lingual Summarization (CLS) with a translation task
(Machine Translation) [17]. The decoder for the translation task part is trained by an
additional translation corpus and alternatively trained using a shared encoder while adding
the decoder for the Cross-Lingual Summarization task.

4.4.2. Experimental Results Analysis

Table 3 shows that our model outperforms other cross-lingual summarization methods
on both datasets. It is known that pipelined models usually cannot achieve the same results
as end-to-end models since multitask integration often shares some of the parameters,
which mitigates the loss of transformation between different tasks [34]. Although models
that integrate multiple tasks have significant advantages over pipelined models, CLS + MS
and CLS + MT still share parameters in the encoder part, but can only pass single-task
content in the attention part of the encoder. The single-language summary task during
training allows the overall model to learn the content of the single-language summary
part repeatedly, which helps the model learn the corpus more accurately. Additionally, the
reinforced regularization method proposed in this paper can avoid training-time oscillations
caused by random noise in the new input sequence before generating the cross-lingual
digest. This stabilizes the training process of the model and fully utilizes the performance
of the pre-trained model. The ABO mechanism proposed in this paper can also avoid this
problem since the anchor words and bound words in ABO can easily form consecutive
clauses that potentially affect the order of the generated summaries. This motivates the
formal alignment of the generated summaries with the target summaries, avoiding the
problem when the whole is divided by subwords, which can lead to the unbalanced number
of generated words in both languages and information loss. The display of the generated
results is shown in Figure 4.
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Table 3. Comparison table of cross-lingual summarization experiments.

Model
Zh2EnSum En2ZhSum

RG1 RG2 RGL RG1 RG2 RGL

TLTran 30.36 12.36 29.21 31.13 12.91 25.13
TETran 21.62 10.52 18.93 24.35 11.77 23.39
TNCLS 33.21 16.24 29.04 34.40 22.34 27.05

CLS + MS 35.35 16.67 30.28 36.82 23.75 28.71
CLS + MT 36.09 16.71 30.16 37.13 23.22 28.75

ours 37.56 17.98 32.48 38.95 24.50 30.33
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4.4.3. Human Evaluation

This section of the manual evaluation aims to compare the usefulness of the generated
summaries. We randomly selected 20 samples from each of the En2ZhSum and Zh2EnSum
test sets, and three evaluators rated the summaries on a scale of 1 (worst) to 5 (best) based
on their informativeness (IF), conciseness (CC), and fluency (FL). The average score for
each group was calculated based on the total sample size.

Table 4 shows that the model proposed in this paper outperforms other models in
terms of completeness, indirection, and fluency. In terms of fluency, the ABO mechanism
combines consecutive fragments, allowing the model to select words that match back and
forth, resulting in a subjectively fluent sentence. Regarding conciseness, the model in this
paper is similar to the CLS + MS and CLS + MT models, as both set the output with the same
sequence length in the encoder part and use alternating tasks in the decoder part. However,
our model uses a unified encoder and decoder to integrate multiple tasks, enabling the
model to learn the corpus content more comprehensively. Additionally, compared to the
multitask framework that uses multiple decoders, our model relies more on the transfer of
hidden states between encoders and decoders, resulting in a more holistic content transfer,
which provides a clear advantage in terms of completeness and fluency.
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Table 4. Cross-lingual summary of human evaluation results.

Models IF CC FL

TLTran 3.23 3.31 3.53
TETran 3.45 3.22 3.33
TNCLS 3.46 3.68 3.61

CLS + MS 3.53 3.83 3.91
CLS + MT 3.68 3.76 3.77

ours 3.86 4.05 4.21

4.5. Monolingual Summary Comparison Experiments

To demonstrate that our model does not suffer from performance degradation in
single-language summarization tasks due to partial repetition during parallel training on
multiple tasks, we conducted separate experimental validations for text summarization
tasks in Chinese and English. As the ABO mechanism does not incorporate the translation
process with the near-synonym word list in single-language summarization, we searched
for anchor words and bound words in the original text to ensure summary generation
fidelity compared to the original text.

To showcase the practical effects of other optimization methods on pre-trained
models, we conducted incremental and non-incremental experimental models in ad-
dition to the monolingual summary comparison experiments. The initial model pa-
rameter settings in the incremental experimental model were the same as those in
the cross-lingual summarization experiments. The baseline models in both Base and
Base + RR groups were not fine-tuned for the cross-lingual summarization task. The
non-incremental experimental model retained the same part of the monolingual sum-
marization model used by TLTran and TETran, and only the shared encoder and
monolingual summarization decoder were kept in the CLS + MS model. The TNCLS
and CLS + MT models do not contain a separate monolingual summarization part,
so this experiment was not included. The experimental results are shown in the
figure below.

Figure 5 illustrates that the model with enhanced regularization has significantly
improved the single-language summarization task compared to the baseline model.
For the baseline that does not use dropout in the pre-training stage, enhanced reg-
ularization can better ensure the consistency between the model and downstream
tasks. In incremental experiments, our model has significantly improved the longest
subsequence calculation index compared to Base and Base + RR due to the continuous
fragments generated by the combination of ABO labels. Compared with simple beam
search and other methods, it can better establish the connection between n-grams. In
non-incremental experiments, TLTran is a Transformer monolingual summary model
trained from scratch. Due to data and training condition limitations, its effect lags
far behind other fine-tuned pre-training models. NCLS + MS, as a combination of
mBert and Transformer decoder, cannot share the overall parameters, which results in
insufficient interaction of the model in the training of cross-lingual summarization and
monolanguage summarization tasks. However, our model fully learns the information
of the two language summaries and maintains the sharing of the parameter space in
the interactive training, ensuring a positive impact of both tasks on the model.
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Figure 5. Monolingual summarization experiments comparison chart. (a) Shows the experimental
results of single-language summarization on the Zh2EnSum data set. (b) Shows the experimental
results of single-language summarization on the En2ZhSum data set.

5. Application

We created a cross-lingual summarization dataset that includes English and Chinese
using proprietary domain data. The data set is sourced from a combination of internal
maintenance manuals from an automobile company, instructional materials, and the text
component of FETA Car-Manuals [35]. The 357 PDF documents were subjected to OCR
recognition, and the text component was extracted. Each document in the dataset contains
a varying number of text paragraphs with different topics, resulting in a total of 4472 text
paragraphs that were manually separated. As only some text paragraphs contain headings,
the process of summarization required the selection of sentences based on the three most
frequently occurring keywords in texts without headings or with headings that were too
short. After counting the word frequency, the corresponding sentences were manually
screened and the selected sentences were combined and spliced to create a summary of the
corresponding paragraph. The length of the combined abstract was kept at approximately
15% of the length of the original text. The following Figure 6 is the length statistics of the
processed summary dataset.
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In the cross-lingual summary section, we utilized a translation tool to batch translate
the text. Furthermore, we also extracted the professional vocabulary from this dataset.
Table 5 below presents the final statistics of the document.
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Table 5. Statistics of the CarManualSum.

CarManualSum (cn2en) CarManualSum (en2cn)

Train Valid Test Train Valid Test

Number of samples 3460 500 500 3460 500 500
Average words in text 133 133 132 1034 1040 1031
Average words in summary 21 21 20 124 125 124

We intend to conduct experiments on this dataset to validate the effectiveness of
the proposed method in improving the model’s performance on professional datasets.
However, due to the limited number of datasets and the vast professional vocabulary,
initializing the training model for comparison experiments poses a significant challenge.
Thus, we only used the fine-tuned baseline model and the proposed method for ablation
experiments in this test section. The experimental settings employed here are consistent
with those in Section 4.2. To maximize the utilization of the limited dataset and mitigate
the risk of model overfitting, we employ a fivefold cross-validation during the training
process. The evaluation methodology remains the same, utilizing ROUGE-1, ROUGE-2,
and ROUGE-L scores. The experimental results are shown in the following table.

Based on Table 6 above, it is evident that the proposed method enhances the perfor-
mance of the model on specialized domain datasets. Even with a limited number of datasets,
the proposed method effectively maintains the model’s ability to generate high-quality
summaries. Notably, the utilization of the ABO mechanism enables the model to generate
cohesive and fluent summaries efficiently, without requiring extensive training data.

Figure 7 demonstrates the examples of model generation based on the CarManualSum
dataset. The datasets used in our study can be accessed through the following links:
https://github.com/leesin5079/Car-manual-CLS-dataset-1000 (accessed on 18 April 2023).
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Table 6. Results of the ablation experiment on the CarManualSum data set.

Model
CarManualSum (cn2en) CarManualSum (en2cn)

RG1 RG2 RGL RG1 RG2 RGL

Base 25.53 14.74 25.50 26.85 15.83 24.45
Base + RR 27.66 17.31 28.69 29.97 19.94 27.38
Base + RR + ABO 31.54 20.06 30.77 34.43 22.23 31.56

6. Conclusions

Owing to the phenomenon of information misalignment resulting from disparities
in language and syntactic structures, the process of generating cross-language summaries
often encounters notable challenges such as substantial semantic loss and errors in semantic
expression. To address these issues, this paper presents a cross-language summarization
model founded on the ABO mechanism. Primarily, a novel multitasking approach for cross-
language summarization is introduced, which simplifies the diverse subtasks involved in
this process by integrating monolingual summarization and cross-language summariza-
tion. This strategy facilitates the sharing of parameters within the unified model, thereby
enhancing alignment across different languages. Additionally, a reinforced regularization
method for model characteristics is proposed. This method elevates the performance of the
model in cross-language text summarization tasks by enhancing regularization through
the amalgamation of sub-networks with varying dropout probabilities, which introduces a
controlled level of randomness. Furthermore, it employs sparsification of output categories
to prioritize the inclusion of valid information. In the stage of summary generation, an
innovative ABO mechanism is devised and incorporated to strengthen the correlation
between summaries in different languages. This mechanism encompasses a predictive
labeling and filtering mechanism to mitigate semantic loss and discrepancies in word
order within the summaries generated by the model. The effectiveness of the proposed
approach is empirically evaluated through experiments conducted on publicly available
datasets, namely Zh2EnSum and En2ZhSum. Moreover, a proprietary domain-specific
cross-language summary dataset, CarManualSum, is constructed to provide further insights
into the performance of the method. Nonetheless, there are certain limitations associated
with the proposed approach. Although the enhanced regularity approach and the ABO
mechanism contribute to improvements in cross-language summarization, they currently
lack the flexibility required to adapt to the majority of pre-trained models. Moreover,
variations in results between the public dataset and the specialized domain dataset are
observed. Consequently, future research will concentrate on exploring the effectiveness
of the proposed method across different models and downstream tasks. Furthermore,
efforts will be made to broaden the research scope by constructing corpora encompassing a
wider range of languages, thereby enhancing the efficacy of the model for cross-language
summarization within diverse language scenarios.
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