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Abstract: We investigated the stochastic response of a person sitting in a driving vehicle to quantify
the impact of an uncertain parameter important in controlling defect reduction in terms of ride
comfort. Using CarSim software and MATLAB/Simulink, we developed a fully coupled model that
simulates a driving vehicle combined with an analytical nonlinear human model. Ride comfort was
evaluated as a ride index considering the frequency weights defined in BS 6841. Additionally, to
investigate the uncertainty of the ride index, a framework for calculating the ride index was proposed
using the generalized polynomial (gPC) method. Further, sensitivity analysis of the ride index was
performed for each uncertainty parameter, such as stiffness and damping. The results obtained
through the gPC method were in good agreement with those obtained via Monte Carlo simulation
(MCS) and were excellent in terms of computation time without a loss of numerical accuracy. Through
in-depth investigation, we found that the stochastic distribution of the ride index varies differently for
each uncertain parameter in the human model. By comparing linear and nonlinear human models,
we also found that the nonlinearity of the human model is an important concern in the stochastic
estimation of ride comfort.

Keywords: human–vehicle model; uncertainty; ride index; generalized polynomial chaos; stochastic
analysis

1. Introduction

The dynamic properties of the human body have received attention in recent years due
to the fact that the response of whole-body vibrations is closely related to the ride comfort
of occupants in transportation systems. Meanwhile, a quantitative understanding of how a
seated human body responds to whole-body vibrations allows automotive engineers to
design more human-oriented vehicles. In addition, whole–body vibration has been recently
considered in the design and assessment of road infrastructure (paved roads, highways,
bridges, etc.) [1–5]. However, despite many efforts to predict ride comfort, the quantification
of ride comfort remains challenging as it relies on the perceptions and emotions that are
influenced by many factors, such as driving and environmental conditions.

In the automotive industry, both subjective and objective measurements are commonly
used to evaluate the ride comfort of a vehicle. In subjective measures, various kinds of
experimental studies have been used to correlate with subjective ratings of occupants
exposed to specific driving or seating conditions [6,7]. On the other hand, the quantitative
analysis of whole-body vibrations is attracting attention in order to objectively investigate
ride comfort because this evaluation can detect small variations in the passenger’s dynamic
response compared to subjective evaluations [8]. This vibration method is widely used in
various applications, such as conventional vehicles [9], railway vehicles [10], high-speed
electric multiplexers [11], and helicopters [12]. Furthermore, the spread of electric or
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hybrid vehicles has led to a new turning point in the study of vibration analysis in the
automotive industry. In general, these vehicles do not mask road-induced vibrations in
the low-frequency range owing to the absence of a combustion engine [13]. Therefore,
understanding human responses to vibrations will become even more important in the
near future.

Because experimental approaches for the evaluation of ride comfort are time-consuming
and costly, increasing attention is being paid to the industrial requirements for compu-
tational analysis based on dynamic simulations. Brogioli et al. [14] developed a model
that combines a seat and a human as well as a five-degrees-of-freedom mathematical
model, computed weighted accelerations, and a Seat Effective Amplitude Transmissibility
(SEAT) index. Additionally, Mohajer et al. [15,16] introduced a biomechanical human
model obtained using a computational multibody system and investigated the ride comfort
index with respect to road roughness and the longitudinal velocity of a vehicle. Anan-
dan et al. [17] adopted a human–vehicle model with 14 degrees of freedom to analyze
the ride comfort of the proposed active suspension vehicle system. Jun Wu et al. [18,19]
developed a train–seat–human model with vertical, lateral, and roll vibrations to study the
ride comfort of rail vehicles.

In general, the parameters of a real human body (e.g., weight, length, and stiffness) are
highly uncertain compared to typical mechanical structures [20,21]. Furthermore, human
parameters result in time-variant systems because of the variations in muscle tension, blood
flow, and other environmental circumstances. Consequently, the dynamic response of the
human body to whole-body vibrations is uncertain due to the uncertainty of the parameters.
Therefore, numerical calculations of dynamic human responses to whole-body vibrations
using deterministic parameters are limited in the sense that they do not provide a unique
subjective rating of feeling.

Numerous stochastic methods have been introduced to calculate the response of a sys-
tem in the presence of parameters with uncertainty. Among them, Monte Carlo simulation
(MCS) is widely used to estimate system uncertainty [22–26]. In MCS, a set of samples of
an input parameter with uncertainty are randomly selected from the corresponding proba-
bility distributions that are estimated or assumed to be given, and multiple simulations are
taken to compute the corresponding output for each set of samples. However, due to the
nature of MSC and random sampling, a huge number of simulations are required, which
can be computationally time-consuming. In order to reduce the computational cost, many
studies have proposed to use the quasi-Monte-Carlo method with an improved sampling
algorithm [27,28]. Despite these efforts, stochastic methods based on MCS can be computa-
tionally time-consuming as they typically require a large number of simulations. To deal
with modeling uncertainty more efficiently, polynomial chaos expansion has become an
important method [29,30], which is based on the homogeneous chaos theory of Wiener [31].
The polynomial chaos method has been applied to various engineering fields, such as
vehicle dynamics [32–36].

In this study, we analyzed the ride comfort stochastically to quantify the effect of
uncertain human parameters. To calculate the ride comfort of a seated person in a driving
vehicle on a rough road, we developed a fully coupled human–vehicle model using a
vehicle in CarSim combined with a nonlinear human model in MATLAB/Simulink. The
ride comfort was quantified as s ride index according to BS 6841 [37], which considers
frequency-weighted accelerations. For stochastic calculations, we adopted an approximate
model based on gPC (generalized polynomial chaos) and compared it with MSC. In order
to investigate the effect of uncertainty, the stochastic distributions of the ride index were
calculated for each uncertain parameter of the human model, such as stiffness and damping.
Furthermore, we found significant differences between linear and nonlinear human models
in terms of uncertain parameters.
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2. Human–Vehicle Model and Road Profile for Stochastic Analysis

This section describes a human–vehicle model, road surface generation, and an ap-
proximate model based on gPC. The coupling between the human body and the vehicle
model is implemented in MATLAB/Simulink. The road profile is generated using the road
roughness classification method based on power spectral density. Finally, an approximate
model based on generalized polynomial chaos expansion (gPC) is developed for stochastic
analysis [29].

2.1. Model Description and Derivation of Equation of Motion

To calculate the responses of the seated human, the nonlinear five-degree-of-freedom
human model, which was used in the previous works [38], was considered in this study. The
schematic of the proposed human model is illustrated in Figure 1. The lumped parameter
of the human model is composed of a head, a trunk, and a thigh with mass and moment of
inertia. Each segment is connected using a torsional spring and a damper, and the trunk
and thigh contact the seat through a spring and dampers, which are effective parameters
combined with seat cushion and human skin. Regarding the generalized coordinates of
the hip joint, xh and zh indicate the horizontal and vertical displacement of the hip joint,
respectively, and θ1, θ2, and θ3 denote the angular displacement of the thigh, trunk, and
head, respectively. Only a normal deflection of the springs and dampers is considered for
the calculation of the spring and damping forces, respectively (see Figure 2). In fact, the
effective stiffness, ki, connected to the thigh has different values depending on the contact
location according to the experimental results [39]. However, due to the fact that the effect
of the uncertainty of the design parameters on human–vehicle ride comfort is the main
interest of our study, we adopted an identical value for the simplicity of analysis.
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The nonlinear equation of the five-degree-of-freedom human model is derived using
Lagrange’s equation. Kinetic energy (T), potential energy (V), and Rayleigh’s dissipation (D)
of each segment are derived based on the displacement of the center of gravity, as follows:
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where mi and Ji denote the mass and mass moment of inertia of each segment, respectively.
Additionally, ki and ci are translational, and kT

i and cT
i are torsional stiffness and damping

coefficients, respectively. The translational and angular displacements of the springs are
represented by δi and θT

i , respectively. In addition, g is the gravitational acceleration and
∆i is the vertical displacement of each segment. The positions of the center of gravity at
each segment are as follows:

x1 = xh +
1
2 Lthcosθ1,

x2 = xh +
1
2 Ltrcosθ2,

x3 = xh + Ltrcosθ2 +
1
2 Lhcosθ3,

z1 = zh +
1
2 Lthsinθ1,

z2 = zh +
1
2 Ltrsinθ2,

z3 = zh + Ltrsinθ2 +
1
2 Lhsinθ3

where xh and zh are the horizontal and vertical displacement of the hip joint. The length
of the thigh, trunk, and head are denoted as Lth, Ltr, and Lh, respectively. Accordingly, the
translational and angular displacements of each spring are given below.

δ1 = zh − 1
2 Tthcos θ1 + L1sin θ1 − zb − δ∗1

δ2 = zh − 1
2 Tthcos θ1 + L2sin θ1 − zb − δ∗2

δ3 = xhsin θ∗2 − zhcos θ∗2 − L3sin(θ2 − θ∗2 )− 1
2 Ttrcos(θ2 − θ∗2 )− x∗3sin θ∗2 + z∗3cos θ∗2 − δ∗3

δ4 = xhsin θ∗2 − zhcos θ∗2 − L4sin(θ2 − θ∗2 )− 1
2 Ttrcos(θ2 − θ∗2 )− x∗4sin θ∗2 + z∗4cos θ∗2 − δ∗4

θT
1 = θ2 − θ1 − θ∗1

θT
2 = θ3 − θ2 − θ∗2
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where the thickness of the thigh and trunk are denoted as Tth and Ttr, respectively. In addi-
tion, δ∗i and θ∗i indicate the initial length and angle of the translational and torsional springs,
respectively, and (x∗i , z∗i ) indicate the position where the springs are fixed at backrest. The
inertial, geometric values, stiffness, and damping coefficients used in this study are listed
in Appendix A. Now applying Lagrange’s equation using Equation (1) yields


S11 0 S13 S14 S15

S22 S23 S24 S25
S33 0 0

Sym. S44 S45
S55




..
xh..
zh..
θ1..
θ2..
θ3

 =


P1
P2
P3
P4
P5

 (2)

The elements of each matrix are given in Appendix B.

2.2. Random Road Profile and Human–Vehicle Model

In order to analyze the effect of road surface on human–vehicle vibrations, we gener-
ated random road profiles according to ISO 8608, which classifies road roughness using
power spectral density (PSD) [40]. An approximate form of the road displacement PSD can
be written as follows:

Φ(Ω) = Φ(Ω0)

(
Ω
Ω0

)−w
(3)

where Ω is the angular spatial frequency and w is the waviness. The reference spatial
frequency of Ω0 is given by 1 rad/m. In addition, the PSD function can be modified as
follows [41,42].

Φ(Ω) =
2ασ2

σ2 + α2 (4)

where σ2 is the variance in the road roughness, and α is the coefficient with respect to the
type of road surface. The road roughness variances and coefficients are listed in Table 1.
Additionally, the road profile can be approximated using the superposition of sinusoidal
functions with respect to longitudinal distance, as follows:

z(x) =
N

∑
i=1

Aisin(Ωix− φi) (5)

where the random phase angle is uniformly distributed in the range of 0 ≤ φi < 2π, and Ai
denotes the amplitudes of the road profiles, defined as follows:

Ai =

√
Φ(ΩN)

∆Ω
π

(6)

where
∆Ω =

ΩN −Ω1

N − 1

Table 1. Standard deviation of the road roughness with respect to the road class at Ω0 = 1 rad/m [42].

Road Class σ (10−3 m) Φ (Ω0) (10−6 m3) α (rad/m)

A (very good) 2 1 0.127
B (good) 4 4 0.127

C (average) 8 16 0.127
D (poor) 16 64 0.127

E (very poor) 32 256 0.127

In this study, ΩN = 10π (rad/m) and Ω1 = 0.02π (rad/m) are considered to generate
a random road profile that covers the frequency range of the weighting functions in BS
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6841. We generated the power spectral densities of five road profiles and compared them
with eight road roughness references, as shown in Figure 3. Note that the higher the power
spectral density, the rougher the road, and the resulting road profile falls into the ISO 8608
classification category. In addition, Figure 4 shows the road profiles generated from the
power spectral densities for five different road roughness.
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As shown in Figure 5, to simulate the human–vehicle model, the mathematical hu-
man model is fully coupled with the vehicle model using CarSim 9.0.2 [43] in MAT-
LAB/Simulink. The vibrations caused by the vehicle movement are transmitted to the
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human body model as a base excitation caused by the displacement of the vehicle seat
floor. Additionally, the reaction forces caused by the human body are transmitted to the
seat floor of the vehicle through the springs and dampers. The spring and damping forces
are calculated considering the displacements between the thigh and the seat pad of the
human model, as follows:

FR =
4

∑
i=1

kiδi +
4

∑
i=1

ci
.
δi (7)

where δi and
.
δi indicate the translational displacements and their time rate of changes of

each spring, respectively.
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Figure 5. Schematic of full coupling analysis for human–vehicle simulation.

Figure 6 illustrates the effects of road roughness and coupling on the reaction forces
and the vertical displacement of the seat floor. Figure 6a shows the vertical forces generated
between the human model and the vehicle model in the case of full coupling analysis. The
average reaction force corresponding to the weight of the human model is about 500 N,
regardless of the road class, either A or E. However, the reaction force in the E class, which
is classified as a rough road, shows greater fluctuation than when the A class is used, which
is classified as a smooth road. Its magnitude is more than 20% greater than average. In
addition, Figure 6b shows the vertical displacement of the driver’s seat when the human–
vehicle model is connected with full coupling and partial coupling on an ISO E-class road.
Full coupling means that the human–vehicle model transmits reaction forces in the mutual
direction, and partial coupling means that only the vehicle transmits reaction forces to the
human model. The vehicle displacement in the case of full coupling is smaller than the
partial coupling case because it ignores the weight of the human model. Although the
displacement difference between the full and partial couplings is not significant, coupling
analysis is considered in this study because the accuracy of the simulation is crucial to
the analysis of the standard deviation when the uncertainty of the human parameters
is included.
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Figure 6. The effects of road roughness and coupling on the reaction forces and vertical displacement
of the seat floor. (a) Reaction force in A- and E-class roads. (b) Vertical displacement for the case of
full and partial coupling analysis on an E-class road.

2.3. Approximate Model Based on Generalized Polynomial Chaos

Suppose the uncertain parameter of the stochastic model is expressed in a set of
random variables, ξ = (ξ1, ξ2, . . . , ξn), the model response can also be expressed using
the same set of variables [44]. Therefore, the output

∼
y(t, ξ) of the stochastic model can be

approximated using truncated generalized polynomial chaos expansion (gPC) expressed
as the set of ξ, as given by [29,45]

∼
y(t, ξ) =

S

∑
j=0

aj(t)φj(ξ) (8)

where φj(ξ) are the generalized Askey–Wiener polynomial chaos basis functions in terms
of multi-dimensional random variables ξ = (ξ1, ξ2, . . . , ξn). Additionally, aj are the deter-
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ministic coefficients to be estimated. Further, the total number of polynomial terms, S, can
be obtained as follows:

S =
(p + n)!

p!n!
− 1 (9)

here, p indicates the order of the polynomial chaos, and n indicates the number of uncer-
tain parameters. The orthogonal polynomial functions according to the Askey–Wiener
polynomial basis are listed in Table 2.

Table 2. Distributions of random variables and corresponding polynomial basis function.

Distribution Polynomial Function Support

Gaussian Hermite (−∞, +∞)
Gamma Laguerre [0, +∞)

Beta Jacobi [a, b]
Uniform Legendre [a, b]

In this study, we assumed that the uncertain parameter has a Gaussian distribution. For
the random variable with a Gaussian distribution, generalized polynomial chaos expansion
employs the Hermite polynomials. The general expression of Hermite polynomials of order
p is expressed as follows:

φp
(
ξ1, ξ2, . . . , ξp

)
= (−1)pe

1
2 ξTξ · ∂p

∂ξ1·∂ξ2 · · · ∂ξp
·e−

1
2 ξTξ (10)

where superscript T indicates the transpose of the random variable vector.
The unknown coefficients of polynomial chaos expansion are commonly obtained

through the use of the Galerkin method. However, it is not easy to apply the Galerkin
method when the stochastic model equation is complicated and difficult to tractable.
Therefore, in this study, the unknown coefficient was estimated using the collocation
method. The method is accomplished by computing the output of the stochastic model
at a set of collocation points. The collocation points of the random variable are the roots
of the next higher-order polynomial [36,44]. For example, in a one-dimensional random
field, the collocation points of the second-order polynomial chaos are calculated from the
root of the third-order Hermite polynomial

(
−
√

3, 0,
√

3
)

. In the collocation method, the
output of the stochastic model and approximation model based on gPC are the same at the
collocation point, as follows:

y(t, ξ) =
∼
y(t, ξ) = T(ξ)a(t) (11)

where y(t, ξ) represent the output vectors of the stochastic model at the collocation points,
ξ = (ξ 1, ξ2, · · · , ξM). The subscript of M denotes the number of collocation points. The
transform matrix T and unknown coefficients a(t) are as follows:

T(ξ) =


φ0(ξ1) φ1(ξ1) · · · φS(ξ1)
φ0(ξ2) φ1(ξ2) · · · φS(ξ2)

...
...

. . .
...

φ0(ξM) φ1(ξM) · · · φS(ξM)

, a(t) =


a1(t)
a2(t)

...
aM(t)


Applying the least square method to Equation (10), the vectors of unknown coefficient

can be easily obtained, as follows:

a(t) =
{

T(ξ)TT(ξ)
}−1

T(ξ)Ty(t, ξ) (12)
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Using the calculated coefficients of the orthogonal polynomials, the mean and variance
can be obtained, as follows:

µ = a0φ0(ξ) and σ2 =
S

∑
j=1

a2
j

〈
φ2

j

〉
(13)

where 〈·, ·〉 denotes the ensemble average inner product [29].
We used an approximate model based on gPC to analyze the stochastic results of

the human–vehicle model instead of Monte Carlo simulation (MCS), which requires a
large number of simulations. The proposed approximate model consists of four major
steps. First, the selection of the uncertain parameters according to an assumed distribution.
Second, the generation of an approximate model through generalized polynomial chaos
expansion. Third, the estimation of the coefficients using the collocation method, and finally,
a comparison of the stochastic results obtained through gPC with those obtained through
MCS. This process of the calculation is illustrated in Figure 7. In essence, gPC can compute
the stochastic results of a dynamic system using the polynomials, as opposed to fully
integrating the equations of motion through the use of MCS. Therefore, the computational
time of gPC is significantly reduced compared to that of MCS. Essentially, in contrast
to fully integrating the equations of motion through MCS, gPC can use polynomials to
compute the stochastic results of a dynamic system. Therefore, the computational time of
gPC is significantly decreased compared to MCS.
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3. Stochastic Analysis of Ride Comfort Index

In this section, we analyze the effect of uncertain parameters on ride comfort. We
use the generalized polynomial chaos (gPC) method to obtain the stochastic responses of
the human model. The gPC results are compared with Monte Carlo simulations (MCS) in
terms of accuracy and time efficiency. Finally, a parametric study of stochastic ride comfort
is performed.
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3.1. gPC Results for Human–Vehicle Model with Uncertain Parameters

A fully coupled human–vehicle simulation was performed by combining CarSim
and MATLAB/Simulink in the presence of the parametric uncertainty of the human body
model. In this stochastic analysis, it is assumed that there are three uncertain parameters,
such as two translational stiffness (k1, k3) and one torsional stiffness (kT

1 ). It also assumes
that the translational springs connected to the same human body are identical to reduce
computational costs, that is, k1 = k2 and k3 = k4 (see Figure 1). A single uncertain parame-
ter was selected for the dynamic simulations in turn, and the accelerations of the human
model were extracted with respect to the corresponding parameter. The second order of the
polynomial chaos was considered to obtain the stochastic responses of the human model.
In other words, single-dimensional second-order polynomial chaos expansion was used
in the approximate model based on gPC. In addition, those with uncertain stiffness were
assumed to be the Gaussian distributed variable. They can be represented as follows:

k1(ξ1) = µk1 + σk1 ξ1
k3(ξ2) = µk3 + σk3 ξ2
kT

1 (ξ3) = µkT
1
+ σkT

1
ξ3

(14)

where µk and σk represent the mean and standard deviation values of the corresponding
stiffness, respectively. In this study, the standard deviation of the uncertain stiffness was
assumed to be 5% of the corresponding mean value. The conditions of the human–vehicle
simulations are as follows. The simulated vehicle model used in CarSim was an E-class
sedan. In each segment, the accelerations of the human model were calculated when the
vehicle was traveling at a constant speed of 60 km/h in the longitudinal direction. The
steering angle of the vehicle was controlled to maintain straight-line driving. The total
running time and sampling frequency were set to 50 s and 1000 Hz, respectively. However,
in the dynamic simulations, only times between 5 and 50 s are analyzed to eliminate
transient effects due to accelerations fluctuating to the target speed.

Since MCS requires a huge number of simulations to achieve satisfactory convergence,
we also developed an automatic process for human–vehicle simulations using the COM
interface in CarSim. Automation is implemented by generating a set of samples for un-
certain parameters and controlling the COM interface with a MATLAB script. A detailed
description of the automatic process follows. First, generate the samples corresponding to
the probability distribution in the MATLAB script. The number of samples at this stage
depends on the number of MCS and gPC runs. Second, launch MATLAB/Simulink in
CarSim after executing the COM interface of CarSim in the MATLAB script. Third, provide
the generated set of samples as input to the function corresponding to the human model
in MATLAB/Simulink. Fourth, once the simulation is performed, save the response of
generalized coordinates of the human model for each sample in the workspace of MATLAB.
Then, terminate the CarSim and MATLAB/Simulink via MATLAB script. Finally, repeat
steps 2 to 4 as many times as the number of simulations of MCS and gPC.

For the three uncertain parameters k1, k3, and kT
1 , the variations of the vertical acceler-

ation at the hip joint of the human model were calculated using gPC and MCS, as shown
in Figure 8. Vertical accelerations close to zero are displayed in light gray to indicate the
distribution of probability densities (see the color bar on the right). Several results are
observed. First, it is clear that the accelerations calculated by the approximation model
based on gPC show good agreement with those obtained through the use of MCS for
all three types of uncertain parameters. To obtain a satisfactory convergent result, gPC
requires only three times simulations for three collocation points, while MCS does 500 times
simulations. The former is at least 160 times more efficient than the latter. Second, although
the average values of the acceleration are the same, the distributions of the probability
densities are different depending on the uncertain parameters. Third, when kT

1 is uncertain
in Figure 8e,f, the probability density of acceleration appears as a solid line instead of a



Appl. Sci. 2023, 13, 6785 12 of 21

distribution due to a small standard deviation. This is because that kT
1 is located at the very

position of the hip joint that we calculated.
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Figure 8. Variations in the vertical acceleration at the hip joint for several uncertain parameters. Sub-
figures in (a,b), (c,d), and (e,f) are for uncertain parameters k1, k3, and kT

1 , respectively. Additionally,
figures in (a,c,e) are calculated using gPC, and in (b,d,f) are calculated using MCS.

In order to investigate the effect of the variations on vertical accelerations, we calcu-
lated the probability densities for the uncertain parameter k1 and k3 in detail. For example,
the probability density function of the acceleration at t = 21.1 s (red dashed line in Figure 8)
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is shown in Figure 9. Here, the shaded blocks and solid lines represent the MCS and gPC
results, respectively. In the case of uncertain parameter k1, a wider distribution is observed
than that of k3. From a design point of view, it is crucial that the variation of the acceleration
shows a different distribution depending on the uncertainty of the parameter. However, it
is not practical to examine the variations for all time responses. Therefore, it is necessary to
quantify a specific value that takes into account all of the time responses.
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Figure 9. Probability density functions of the vertical accelerations when t = 21.1 s at hip joint in
C-class road for a different uncertain parameter, (a) k1 and (b) kT
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line indicate the MCS and gPC results, respectively.

Further, we used BS 6841 to quantify subjective ride comfort as a ride index [37]. To
calculate the ride index, the acceleration for each axis of the human model is taken from
the human–vehicle simulation, as illustrated in Figure 10. Applying Fourier transform,
frequency weighting can be imposed using a convolution integral. The inverse Fourier
transform of the frequency-weighted acceleration produces the time history of the acceler-
ation, which can be weighted again by multiplying the factor at each axis. Now the root
mean square of the time-weighted acceleration on each axis represents the ride index of
each axis. Since the developed human model considers two-dimensional motion, in this
study, only five accelerations of vertical, horizontal, and rotational directions at the hip
joint and vertical and horizontal directions at the back are used in computations. Sum-
ming the riding indices of each axis, we can finally quantify the overall ride index of the
human model.
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Figure 11 shows the overall ride indices with respect to road roughness for three
different uncertain parameters with the discomfort scale represented in BS 6841. We
computed all ride indices and standard deviations by the approximate model based on gPC
for each uncertain parameter. At each road roughness, the solid circle represents the mean
of the ride indices, and the error bar represents 3σ, which implies that 99.7% of the data are
in this range. The overall ride indices associated with class-A and B road roughness are
placed in the ‘not uncomfortable’ zone, whereas those associated with class-E represent the
‘fairly uncomfortable’ zone. In general, class-A indicates a smooth surface, while class-C
indicates average road roughness (see Table 1). Therefore, it can be predicted easily that
the ride indices at E-class would place in a ‘fairly uncomfortable’ zone. It is also easy to
understand that the standard deviation on rough road is greater than on smooth road.
However, it is not easy to predict the parameter sensitive to ride index. Now comparing the
error bar for uncertain stiffness, it is clear that the ride index is dominantly influenced by
k1 and k3, which are the translation stiffness related with thigh and back of the human and
seat. However, kT

1 , which is the torsional stiffness at hip joint of the human, is not sensitive
to the ride index.
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3.2. Sensitivity Analysis of Ride Comfort

To improve ride comfort, it is important to understand which segment of the vehicle or
human body is closely related or sensitive to ride comfort. In the presence of uncertainties
of a parameter, we performed human–vehicle simulation and obtained the probability dis-
tributions of ride index as illustrated in Figure 12. The results for translational parameters
(k and c) are displayed in the left column, and those for torsional parameters (kT and cT)
are in the right column. The simulations were performed when the standard deviation of
each uncertain parameter has 5% of its mean value. As it may be expected, the shape of
distributions is quite different depending on the uncertain parameters. Surprisingly, the
range of the ride index for the translational parameters is at least 20 times wider than those
for the torsional parameters. This implies that the translational parameters have much
stronger effects on the uncertainty of the ride index than the torsional parameters. It can
also be interpreted as the ride index is dominated by the fundamental frequency, which is
mainly influenced by the translation parameter of human model [38]. In addition, it can



Appl. Sci. 2023, 13, 6785 15 of 21

be seen that the distribution for kT
2 and cT

2 have a much shaper shape than kT
1 and cT

1 , as
shown in Figure 12b,d and Table 3. In other words, the hip joint is more sensitive than the
neck part of human body. In a physical sense, it is easy to verify because the acceleration of
the hip joint and trunk is more dominant than others in evaluating ride comfort [46]. In
conclusion, it was found that the variations in kT

2 and cT
2 , which connects the trunk and the

head, has little effect on the movement of the hip joint and the trunk.
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Table 3. Stochastic properties of ride index for the case of Figure 12.

Stiffness k1 k3 kT
1 kT

2

Mean 0.4306 0.4304 0.4312 0.4312
Std 0.85 × 10−3 1.36 × 10−2 1.45 × 10−5 2.27 × 10−6

Damping c1 c3 cT
1 cT

2

Mean 0.4311 0.4311 0.4312 0.4312
Std 0.62 × 10−2 0.52 × 10−2 0.97 × 10−5 2.39 × 10−6
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It is also interesting to investigate the differences between the linear and nonlinear
human models concerning human–vehicle simulation in terms of stiffness uncertainties.
In this study, linearization was performed using Taylor expansion under a small motion
assumption. The mean and standard deviation of the ride index are presented in Figure 13 at
the top and bottom for the nonlinear and linear models, respectively. The ride indices were
plotted as colormaps to simultaneously look over the effect of the uncertain parameters.
For comparison, each parameter varied from 20% to 180% of the reference value and was
expressed as a dimensionless value denoted by a superscript *. For example, k*

1 = 1 means
an initial value, and k*

1 = 0.2 means the 20% of the initial value. The standard deviation of
each uncertain parameter was also set to 5% of the mean value, and the human–vehicle
simulation was performed on a C-class road. In conclusion, the mean values of the ride
index for the linear and nonlinear models show similar trends. The higher the stiffness,
the worse the ride comfort. However, the mean of the ride index of the nonlinear model
shows a higher value than that of the linear model, and it is probably because the nonlinear
model allows for large movements. For example, when k*

1 and k*
3 increases by 40%, the

ride index increases by 25.4% from 0.451 to 0.604 in the nonlinear model (Figure 13A),
while it increases by 20.5% from 0.421 to 0.529 in the linear model (Figure 13B). On the
contrary, for damping, the higher the damping, the better the ride comfort. When c*

1 and c*
3

decreases by 40%, the ride index increases by 21.4% from 0.451 to 0.574 in the nonlinear
model (Figure 14A), while it increases by 18.6% from 0.421 to 0.517 in the linear model
(Figure 14B).
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Figure 13. Mean and standard deviation of ride index with respect to uncertain stiffness calculated
using the nonlinear and linear human models, where the 1st column is the mean, the 2nd column is
the standard deviation for k*

1, and the 3rd column is the standard deviation for , and the 3rd column
is the standard deviation for , and the 3rd column is the standard deviation for k*

3.
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Figure 14. Mean and standard deviation of ride index with respect to uncertain damping calculated
using the nonlinear and linear human models, where the 1st column is the mean, the 2nd column is
the standard deviation for c*

1, and the 3rd column is the standard deviation for c*
3.

When the stiffness parameter is uncertain, the standard deviation of the ride index
tends to be different depending on the presence of nonlinearity in the human body model.
Interestingly, when there is uncertainty only in k1, the maximums of the standard deviation
exist at different locations (compare C and D in Figure 13). As mentioned earlier, the
higher the standard deviations, the greater the sensitivity, and the results imply that the
sensitive ranges of the uncertain parameters are significantly different. Similar results also
occur in terms of k3 (compare E and F in Figure 13). In the case of c1 and c3, the effect of
standard deviations in the nonlinear and linear models are similar, but their maximums are
slightly different (compare C, D and E, F in Figure 14). Based on the above results, it can
be concluded that the nonlinear model responds more sensitively to the variations of the
seating parameters than the linear model, leading to the need for a nonlinear model for
more accurate human–vehicle simulations.

4. Conclusions

In the presence of parameter uncertainty, this study analyzed the ride comfort stochas-
tically through the simulation of a fully coupled human–vehicle model using CarSim
software combined with MATLAB/Simulink. Ride comfort was evaluated quantitatively as
a ride index using a human–vehicle model according to the BS-6841 standard. In addition,
a generalized polynomial chaos extension (gPC) framework was proposed to compute the
stochastic response of the human model. Comparing the computational time of gPC with
Monte Carlo simulation (MCS), the former proved to be 160 times faster than the latter.

We also carried out a parametric study of stochastic ride comfort in terms of non-
linearities and uncertain parameters in human models. Two main results were observed.
First, the translational parameters of the human model are much more important than the
torsional parameters when comparing the standard deviations of the ride index. Second,
the use of a nonlinear human model shows that the standard deviation of the ride index is
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significantly different from the linear model. Based on the above observations, it can be
concluded that the uncertain quantification method and the nonlinear human model are
needed for more accurate and precise ride comfort analysis.

This study also showed the distribution of ride comfort according to the road surface
when there is a deviation in the stiffness and damping coefficient for drivers of average
body type and weight. In a real driving environment, factors such as posture, road surface,
and driving conditions are constantly changing, leading to changes in weight distribution
and skin/seat deformation. As a result, even for the same driver or passenger, the response
of the human body to vibration becomes unpredictable and uncertain. We expect that the
proposed gPC framework can play an important role in automotive engineering as the
demand for ride comfort continues to increase. For example, automotive engineers can
gain insights from this study to design seats that are robust in terms of ride comfort. In
this study, the parameters of k1, k3, c1, and c3 of the human model represent the springs
and dampers that connect the human body to the seat cushion. Therefore, based on the
results of the study, it is possible to find the optimal seat design parameters that improve
ride comfort with a small standard deviation.
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Appendix A

Table A1. Inertial properties, geometric parameters, stiffness, and damping coefficients of the five-
degrees-of-freedom human model [38].

Parameter Symbol Value

Mass (kg)
m1 10.49
m2 33.98
m3 6.67

Mass moment of inertia (kgm2)
J1 0.23
J2 2.05
J3 0.03

Length (mm)

Ltr 598.60
Lth 571.70
Lh 217.10
l1 88.00
l2 459.80
l3 100.00
l4 478.90

Tth 156.20
Ttr 224.00
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Table A1. Cont.

Parameter Symbol Value

Stiffness
(kN/m, kNm/rad)

k1, k2 66.60
k3, k4 95.54

kT
1 1.42

kT
2 1.12

Damping
coefficient

(kNs/m, kNms/rad)

c1, c2 0.89
c3, c4 0.94

cT
1 0.30

cT
2 0.20

Appendix B

The elements of the matrix in Equation (2) are defined as follows:

S11 = m1 + m2 + m3, S13 = − 1
2 m1Lthsin θ1

S14 = − 1
2 Ltr(m2 + 2m3)sin θ2, S15 = − 1

2 m3Lh
..
θ3sin θ3

S22 = m1 + m2 + m3, S23 = 1
2 m1Lthcos θ1

S24 = 1
2 Ltr(m2 + 2m3)cos θ2, S25 = 1

2 m3Lhcos θ3
S33 = J1 +

1
4 m1L2

th, S44 = J2 +
1
4 m2L2

tr + m3L2
tr

S45 = 1
2 m3LtrLhcos(θ3 − θ2), S55 = J3 +

1
4 m3L2

h

P1 = 1
2 m1Lth

(
.
θ

2
1cos θ1

)
+ 1

2 Ltr(m2 + 2m3)

(
.
θ

2
2cos θ2

)
+ 1

2 m3Lh

(
.
θ

2
3cos θ3

)
−
{(

c3
.
δ3 + c4

.
δ4

)
+ (k3δ3 + k4δ4)

}
sin θ∗2

P2 = 1
2 m1Lth

.
θ

2
1sin θ1+

1
2 Ltr(m2 + 2m3)

.
θ

2
2sin θ2 +

1
2 m3Lh

.
θ

2
3sin θ3

−
(

c1
.
δ1 + c2

.
δ2

)
−(k1δ1 + k2δ2) +

{(
c3

.
δ3 + c4

.
δ4

)
+ (k3δ3 + k4δ4)

}
cos θ∗2

−(m1 + m2 + m3)g
P3 = −(k1δ1 + k2δ2)

(
1
2 Tthsin θ1 + l1cos θ1

)
−
(

c1
.
δ1 + c2

.
δ2

)(
1
2 Tthsin θ1 + l2cos θ1

)
+ cT

1

.
θ

T
1 + kT

1 θT
1

− 1
2 m1gLthcos θ1

P4 = 1
2 m3LtrLh

.
θ

2
3sin(θ3 − θ2)

−(k3δ3 + k4δ4)
{

1
2 Ttrsin(θ2 − θ∗2 )− l3cos(θ2 − θ∗2 )

}
−
(

c3
.
δ3 + c4

.
δ4

){
1
2 T2sin(θ2 − θ∗2 )− l4cos(θ2 − θ∗2 )

}
− cT

1

.
θ

T
1 + cT

2

.
θ

T
2

−kT
1 θT

1

+kT
2 θT

2 −
(

1
2 m2 + m3

)
gLtrcos θ2

P5 = − 1
2 m3LtrLh

.
θ

2
2sin(θ3 − θ2)− cT

2

.
θ

T
2 − kT

2 θT
2 −

1
2 m3gLhcos θ3

References
1. Loprencipe, G.; Bruno, S.; Cantisani, G.; D’Andrea, A.; Di Mascio, P.; Moretti, L. Methods for measuring and assessing irregularities

of stone pavements—Part I. Sustainability 2023, 15, 1528. [CrossRef]
2. Bruno, S.; Loprencipe, G.; Marchetti, V. Proposal for a low-cost monitoring system to assess the pavement deterioration in urban

roads. Eur. Transp./Trasp. Eur. 2023, 91, 1–10. [CrossRef]
3. Moghimi, H.; Ronagh, H.R. Development of a numerical model for bridge–vehicle interaction and human response to traffic-

induced vibration. Eng. Struct. 2008, 30, 3808–3819. [CrossRef]
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