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Abstract: Due to the complex structure of high-canopy-density forests, the traditional individual
tree segmentation (ITS) algorithms based on ALS point cloud, which set segmentation threshold
manually, is difficult to adequately cover a variety of complex situations, so the ITS accuracy is
unsatisfactory. In this paper, a top-down segmentation strategy is adopted to propose an adaptive
segmentation method based on extreme offset deep learning, and the ITS set aggregation strategy
based on gradient change criterion is designed for the over-segmentation generated by random
offset, and the precise ITS is realized. Firstly, the segmentation sub-plot is set as 25 m × 25 m, the
regional point cloud and its treetop are marked, and the offset network is trained. Secondly, the
extreme offset network is designed to carry out spatial transformation of the original point cloud,
and each point is offset to the position near the treetop to obtain the offset point cloud with a high
density at the treetop, which enhances the discrimination among individual trees. Thirdly, the
self-adaptive mean shift algorithm based on average neighboring distance is designed to divide and
mark the offset point cloud. Fourthly, the offset point cloud, after clustering, is mapped back to the
original space to complete the preliminary segmentation. Finally, according to the gradient change
among different canopies, the ITS aggregation method is designed to aggregate adjacent canopies
with a gentle gradient change. In order to investigate the universality of the proposed method on
different stand structures, two coniferous forest plots (U1, U2) in the Blue Ridge area of Washington,
USA, and two mixed forest plots (G1, G2) in Bretten, Germany, are selected in the experiment. The
learning rate of the deep network is set as 0.001, the sampled point number of the sub-plot is 900, the
transformer dimension is 512 × 512, the neighboring search number of points is 16, and the number
of up-sampling blocks is 3. Experimental results show that in mixed forests (G1, G2) with complex
structures, the F-score of the proposed method reaches 0.89, which is about 4% and 7% higher than
the classical SHDR and improved DK, respectively. In high-canopy-density areas (U2, G2), the F-score
of the proposed method reaches 0.89, which is about 3% and 4% higher than the SHDR and improved
DK, respectively. The results show that the proposed method has high universality and accuracy,
even in a complex stand environment with high canopy density.

Keywords: ALS point cloud; individual tree segmentation; stand structure; extreme offset deep
learning; mean shift; dynamic bandwidth; set aggregation

1. Introduction

Timely and effective access to forest growth information is highly significant for
forest resource protection and the development of reasonable forest management plans [1].
Airborne laser lidar overcomes the shortcomings of traditional manual field survey, which
is time-consuming and laborious [2]. Therefore, airborne laser lidar has been widely used
in forestry surveys in recent decades [3,4]. However, due to the complex stand structures,
it is difficult to cover all kinds of situations with traditional ITS algorithms by artificially
setting segmentation rules, and the universality and accuracy of these ITS algorithms still
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have great room for improvement [5,6]. Therefore, it is particularly important to design an
ITS method with high universality and high accuracy.

From the perspective of segmentation strategy, ITS methods can be divided into
two categories: bottom-up and top-down [7], and the top-down segmentation strategy is
adopted in this paper. As the trunk points of ALS forest point cloud with high canopy
density are sparse [8,9], the bottom-up method is seriously affected by noise when selecting
seed points, resulting in poor segmentation results.

In the bottom-up method, the tree trunks in vertical space are extracted, and then
the tree trunks are used as seed points to delineate the individual trees. Existing methods
include the tree trunk detection fusion tree crown segmentation method [7], the two-
dimensional tree trunk detection method [10], and the adaptive trunk detection method [11].
In general, due to the poor penetration rate of airborne radar pulses, the tree trunk points
scanned in a high-canopy-density environment are sparse [8], and there may be a large
deviation in the seed points, thus affecting the depiction of the canopy [7], leading to
the poor segmentation of the bottom-up method in the high canopy density ALS forest
point cloud.

In the top-down method, canopy features (e.g., gradient characteristics among
canopies, treetops, etc.) are identified to delineate the individual trees. Common meth-
ods include the spatial horizontal distance rule algorithm (SHDR) [12], which has high
segmentation accuracy but high time complexity, and is very sensitive to the selection
of the horizontal distance threshold parameter; therefore, it has poor universality. The
mark-controlled watershed segmentation algorithm [13] uses the mark-controlled water-
shed method to segment individual trees; the segmentation accuracy is poor when dealing
with mixed forests with unobvious canopy characteristics. The DSM segmentation algo-
rithm [14] uses the slope characteristics of the canopies to segment the conifers and even
the mixed forest with weak canopy characteristics. However, it is easy to treat branches as
individual trees, resulting in over-segmentation errors. The minimization energy function
segmentation algorithm [15] can be applied to a variety of different forest types, but there
are a huge number of parameters that need to be manually adjusted; therefore, the univer-
sality is poor. The adaptive mean shift algorithm [16] estimates the average canopy width
of the whole forest land through the slope feature and uses it as the parameter of the mean
shift algorithm to delineate the individual trees. This method is suitable for plantations
with similar crown widths but performs poorly for mixed forests with large differences
in crown width. In general, the universality and accuracy of the traditional top-down
segmentation algorithm need to be improved when segmenting different kinds of forest
lands [12,15].

Benefiting from the strong robustness, accuracy, and universality of deep learning,
more and more scholars have begun to adopt deep learning methods to ITS [17]. However,
due to the interweaving and complexity in high-canopy-density forests, the deep learning
ITS methods still have under-segmentation and over-segmentation [18–20]. In recent years,
point cloud deep learning has been widely used in point cloud segmentation tasks due to
its strong universality and accuracy. Charles R. Qi et al. [21] proposed PointNet, which can
directly segment point clouds without additional transformation but does not consider the
relationship among points, which makes it difficult to analyze the intricate forest structure.
PointNet++ [22] is a deep network based on PointNet. Although it enhances the ability
to extract complex features by fusing features extracted from different receptive fields,
its ability to perceive complex stand structures still needs to be improved. Charles R.
Qi et al. [23] proposed VoteNet, which can offset each point to the corresponding instance
center to increase the discrimination of different objects. However, the center offset loss
function does not take into account the different contributions of each point to the loss
function, resulting in an unsatisfactory offset result. PointGroup [24] segments each object
through the clustering algorithm after the center offset but ignores the over-segmentation
problem caused by the deep network randomness. Therefore, the segmentation accuracy
still needs to be improved. Shaoyu Chen et al. [25] proposed HAIS, which combines
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PointGroup with a set aggregation algorithm to reduce the over-segmentation problem.
However, the HAIS set aggregation algorithm aggregates the point sets which are close to
each other, which causes the point set of a tree to be aggregated into another adjacent tree,
causing over-segmentation. Ashish Vaswani et al. [26] proposed Transformer, which has
a strong perception ability for complex structures. On this basis, Hengshuang Zhao [27]
proposed the Point Transformer, which performs point cloud segmentation for indoor
objects. However, how to segment forest point clouds with complex structures remains to
be solved. In general, although deep learning methods based on point clouds have become
more and more mature, there are still many problems to be solved when applying them to
segment individual trees [19].

Inspired by VoteNet and HAIS, if the relatively scattered data points are offset to
the center of each tree to enhance the discrimination among different trees, then the ITS
can be realized by applying the clustering algorithm. However, airborne laser lidar has
poor penetration and cannot scan complete individual trees (especially in locations with
severe canopy occlusion) [8]. At this time, the calculated individual tree center point has a
huge gap with the actual individual tree center point, which seriously interferes with the
learning effect of the deep network, resulting in a poor ability to enhance the discrimination
among trees.

Considering the treetop points are distinct and stable, an extreme offset loss function
for ITS is designed based on HAIS, which makes the points offset to their respective
treetops to enhance the discrimination among different trees. Then, the density of the
treetop increases significantly after points are offset to their treetops. On this basis, the
mean shift algorithm is adopted to segment the individual trees preliminarily. Due to
the deep network randomness, the offset effect of some points is poor. Directly using
the mean shift algorithm for clustering may suffer from serious under-segmentation and
over-segmentation problems. Considering the treetop density increases significantly after
extreme offset, the average proximity distance is adaptively generated as the bandwidth of
the mean shift algorithm so that the dense points near the treetop are clustered into one
class. At the same time, the isolated points with poor offset are clustered separately to
eliminate the under-segmentation error as much as possible. Finally, in order to reduce the
over-segmentation error, the ITS set aggregation based on the gradient change criterion is
designed to merge the sets with close neighbors and gentle gradient change.

The remainder of the paper is organized as follows. Section 2 describes the key steps
of the data preprocessing and methodology. Section 3 describes the experimental data and
evaluation metrics. Section 4 carries out a validity experiment, ablation experiment, and
contrast experiment and analyzes the results. The discussion of the proposed method is
given in Section 5. Finally, concluding remarks are given in Section 6.

In general, the key contributions of our work are as follows.

• Extreme offset deep learning method. Aiming at the problem of incomplete artificial
feature extraction ability in traditional ITS segmentation algorithm, an extreme offset
deep learning method is proposed. The forest point cloud features are automatically
extracted through the extreme offset deep network, and the points are offset to the
vicinity of the corresponding extreme points to enhance the discrimination among
neighboring individual trees.

• Dynamic bandwidth. Aiming at the problem that the mean shift algorithm cannot
adaptively determine bandwidth in a spatial transformed offset point cloud, a dy-
namic bandwidth calculation strategy based on average nearest neighbor distance is
designed. This strategy can automatically determine the bandwidth of the mean shift
algorithm without any prior knowledge, which enhances the universality of the mean
shift algorithm.

• ITS set aggregation. Aiming at the over-segmentation problem caused by the random-
ness of the deep network, considering the characteristics that the canopy gradient
changes sharply among different trees and gently within the same tree, the ITS set ag-
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gregation based on gradient change is designed to improve the segmentation accuracy
in complex woodlands.

2. Methods

Based on the HAIS framework, the proposed method focuses on optimizing the steps
of offset, clustering, and set aggregation for ITS and realizes extreme offset, adaptive
clustering, and ITS set aggregation, respectively. The specific process is shown in Figure 1,
which includes preprocessing, extreme offset, mean shift, spatial mapping, set aggregation,
and postprocessing. The process and function of specific links are as follows.

(1) Preprocessing. Data preprocessing included point cloud filtering, elevation normal-
ization, dividing sub-plot (25 m × 25 m), point cloud denoising, down-sampling, and
coordinate normalization.

(2) Extreme offset. The extreme offset deep learning method is used to perform a spa-
tial transformation on the preprocessed point cloud, and each point is offset to the
corresponding treetop to enhance the discrimination among different trees.

(3) Mean shift. In view of the large density of treetops in the offset point cloud, the
self-adaptive mean shift algorithm based on average neighboring distance is adopted
to cluster the offset point cloud, divide the offset point cloud set, and complete
the labeling.

(4) Space mapping. The offset point cloud, after clustering and labeling, is mapped back
to the original point cloud space to complete the preliminary segmentation.

(5) ITS set aggregation. Considering the characteristics that the gradient change among
different tree canopies is sharp, while the same tree canopy is gentle, the adjacent
canopies with gentle gradient change are aggregated to reduce the over-segmentation
error.

(6) Postprocessing. The segmentation is completed after up-sampling and coordinate
de-normalization. The flowchart of the proposed method is shown in Figure 1.
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Figure 1. Flowchart of the extreme offset segmentation method. (1) Preprocessing. (2) Extreme
offset. Each point is offset to the corresponding treetop to obtain an offset point cloud with large
discrimination among different trees. (3) Mean shift. The offset point cloud is clustered. (4) Space
mapping. The offset point cloud, after clustering and labeling, is mapped back to the original
point cloud space. (5) ITS set aggregation. The adjacent canopies with gentle gradient change are
aggregated to reduce the over-segmentation error. (6) Postprocessing. The segmentation is completed
after up-sampling and coordinate de-normalization.
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2.1. Data Preprocessing

After obtaining the ALS point cloud, the data are subjected to point cloud filtering,
elevation normalization, subplot division, point cloud denoising, down-sampling, and coor-
dinate normalization, and the whole process is shown in Figure 2. The specific steps of data
preprocessing are as follows. (1) Point cloud filtering. The cloth simulation algorithm [28]
is adopted to filter the point cloud, and the point cloud is divided into two types: ground
points and non-ground points. (2) Elevation normalization. CloudCompare software is
used to normalize the elevation of the point cloud to remove the influence of terrain relief.
(3) Divide sub-plot. The sample plot is divided into 25 m × 25 m sub-plots. (4) Point cloud
denoising. The residual outliers and branches at the sub-plot boundaries are removed by
artificial visual denoising. (5) Down-sampling. Grids of size 0.5 m × 0.5 m are divided on
the xoy plane, and the highest point in each grid is taken as the sampling point, and these
sampling points are smoothed with a mean smoothing filter. (6) Coordinate normalization.
After the coordinate normalization operation of the sub-plots, the data preprocessing is
completed.
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Figure 2. The main steps of data preprocessing. (a) Point cloud filtering; (b) Elevation normalization;
(c) Divide subplot; (d) Point cloud denoising. The points surrounded by the red circle are the noise
points at the boundary of the subplot; (e) Down-sampling; (f) Coordinate normalization.

2.2. Point Transformer with Extreme Loss Function

Point Transformer is a transformer-based deep network. The introduction of a self-
attention mechanism also gives it a strong feature extraction ability for forest point clouds
with complex structures. It consists of three core modules: a down-sampling module, an
up-sampling module, and a transformer module. The Point Transformer network structure
is shown in Figure 3.
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The down-sampling module reduces the number of data points and extracts deeper
feature information at the same time. Firstly, the FPS algorithm is used to sample the input
point cloud to obtain the sampled point cloud. Secondly, in order to extract deeper feature
information, each sampled point is taken as the center point, and the kNN graph is used to
find the k nearest neighbor points around the center point. Finally, each center point and
its neighbors form a set, which is input into the deep network for deep feature extraction.

The up-sampling module assigns deep features to non-sampled points. Firstly, the
features of the point cloud composed of center points are extracted by MLP, BN, and
ReLU. Secondly, the inverse distance weight interpolation algorithm is used to interpolate
the features of each center point to its neighboring point. Finally, the features of the
corresponding down-sampling block are aggregated to the corresponding up-sampling
block by skip connection.

The Transformer module strengthens the local semantic awareness of each point to
the points around it. It consists of two MLPs and a Transformer layer. The Transformer
layer is shown in Equation (1):

yi = ∑xj∈X(i) $
(
γ
(

β
(

ϕ(xi), ψ
(
xj
))
+δ
))
� α
(
xj+δ

)
, (1)

where β is a relation function; $ is a normalization function such as softmax; γ is an MLP
with two linear layers and a ReLU nonlinearity; ϕ, ψ and α are pointwise feature transfor-
mations, such as linear projection or MLP; X(i) is the set of X consisting of the k neighbors
of xi; xi and xj is the feature vector; yi is the output feature; δ is the position encoding
function, and its expression is δ = θ(p i − pj

)
, where, pi and pj are the 3D coordinates of

points i and j, respectively; the encoding function θ is an MLP with two linear layers and a
ReLU nonlinear layer.

The extreme offset loss function can measure the error between the predicted offset
value and the true offset value so as to guide the update of the offset network. By con-
tinuously adaptively adjusting the parameters of the offset network to minimize the loss
function, the offset network can gradually improve the accuracy of the predicted offset
results and improve the model performance.

The proposed extreme offset loss function is shown in Equations (2) and (3):

Lextreme =
1
N ∑i ωi(‖∆tgt

i ‖2) · ‖∆tgt
i −∆tpred

i ‖2 , (2)

ωi(X) = 2‖X‖2−1, (3)

where Lextreme is the loss value of the loss function; N is the total number of points; ‖∆tgt
i ‖2

is smaller, so they should contribute less to the loss and therefore have less weight; ∆tgt
i is
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the true offset of the point to the extreme point. ∆tpred
i is the offset predicted by the network

for each point; X is a vector; ωi(X) is a function to calculate the dynamic weight according
to the length of vector X. Points near the extreme of the tree are less dependent on extreme
offset and ‖X‖2 denotes the length of the vector X.

2.3. Mean Shift Algorithm with Dynamic Bandwidth

After the extreme offset, the scattered points gather toward the corresponding tree-
top, the density of the treetop increases significantly, and the density of the non-tree top
decreases significantly. According to this density discrimination, the mean shift algorithm
with dynamic bandwidth is adopted to cluster the offset point cloud, divide the offset point
cloud set, and complete the labeling.

The principle of the mean shift algorithm [29] is to use the probability density to obtain
the local optimal solution, and the schematic diagram of the mean shift process is shown in
Figure 4. Firstly, the mean shift vector of the current center point is calculated. Secondly, the
point is moved to the end of the mean shift vector. Then, it is taken as the new starting point
and continued to move until the length of the mean shift vector is less than the allowable
error. Finally, the iteration is terminated when all points have been marked. The mean shift
vector is shown in Equation (4):

m(p t) =
∑n

i=1−g
(
‖ pt−pi

h ‖
2)

pi

∑n
i=1−g

(
‖ pt−pi

h ‖
2) − pt, (4)

where pt is the center point; pi is the point in the bandwidth; n is the number of points in
the bandwidth; g(·) is the derivative of the RBF kernel function; h is the bandwidth, which
is determined by the following dynamic bandwidth strategy.
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The dynamic bandwidth strategy is given in Equation (5). Firstly, the KDTree is
constructed by the offset point cloud. KDTree is constructed to arrange the unordered point
clouds in a certain order, which is convenient for fast and efficient retrieval. Second, the
average distance of each point to its k nearest neighbors is calculated according to KDTree.
Finally, these average distances are averaged, and the resulting average nearest neighbor
distance is used as the dynamic bandwidth h.

h = Λ
({

Υk
i

({
p′i
}n

i=1

)}n

i=1

)
, (5)
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where,
{

p′i
}n

i=1 is the offset point cloud; n is the total number of points. k is a number of
nearest neighbors of a point, equal to 5% of the number of points in the point cloud. Υk

i (·)
is used to calculate the average distance of point p′i to its k nearest neighbors. Λ(·) is used
to find the average nearest neighbor distance, which is used as the dynamic bandwidth h.

After self-adaptive mean shift clustering on the offset point cloud, all the offset points
are labeled. As the order of the points is not changed before and after the extreme offset, the
label vector after the cluster in the offset point cloud is concatenated with the original point
cloud space so that the offset point cloud after the cluster is mapped back to the original
point cloud space, and the preliminary ITS is completed.

2.4. ITS Set Aggregation Based on Gradient Change

Due to the offset randomness caused by the deep network, the mean shift may indi-
vidually cluster some branches, resulting in under-segmentation errors. In order to reduce
the over-segmentation error, the ITS set aggregation algorithm is designed.

When two sets are aggregated, the smaller set should be aggregated into the larger set.
In the process of extreme offset, most of the points are successfully offset to the treetop, but
a small part of the points are invalid offset. Therefore, the larger scale of the set, the closer
the set is to the correct segmentation result. Therefore, the set with a relatively large scale is
regarded as part of the correctly segmented individual tree, and the set with a relatively
small scale is regarded as a fragment generated by an invalid offset.

The ITS set aggregation algorithm based on gradient change criterion is as follows. If
the horizontal distance between the fragment vertex point and the nearest neighbor point
of the other set is greater than the preset bandwidth, then the gradient between the two sets
is considered to change dramatically; therefore, they belong to different trees, respectively,
and should not be aggregated, as shown in Figure 5a.
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Figure 5. Schematic diagram of the ITS set aggregation. (a) The purple and green sets should not be
aggregated; (b) The green and blue sets should be aggregated.

If the horizontal distance between the fragment vertex point and the nearest neighbor
point of the other set is less than the preset bandwidth, then the gradient change between
the two sets is considered to be gentle, and they should belong to the same tree; therefore,
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the two sets are aggregated, as shown in Figure 5b. The ITS set aggregation is shown in
Equations (6)–(8).

{Pi}m
i=1 =

{
∪m

j=iΘ
(

Pi, Pj
)∣∣∣∣i, j ∈ {1, 2, · · · , m}

i ≤ j

}
, (6)

Θ
(

Pi, Pj
)
=

{
Pj, disxoy

(
Pi, Pj

)
< k · w

Pi, disxoy
(

Pi, Pj
)
≥ k · w , (7)

disxoy
(

Pi, Pj
)
=

{
‖tPi−nearPj‖2

, NPi< NPj

‖tPj−nearPi‖2
, NPi ≥ NPj

, (8)

where {Pi}m
i=1 represents the point set after set aggregation; m denotes the number of sets

currently; Θ
(

Pi, Pj
)

decides whether to merge the two sets Pi, Pj; disxoy
(

Pi, Pj
)

computes
the Euclidean distance between two sets in the xoy plane; tPi is the highest point in the set
Pi; nearPj is the nearest point from the set Pj to other set Pi; NPi denotes the total number
of points in the set Pi; NPj denotes the total number of points in the set Pj; w is the raster
width (0.5 by default); k is the preset bandwidth (1.5 w by default).

After the above processing, there may be noisy point sets with a small number of
points. These noisy point sets will be directly aggregated into the nearest sets.

3. Experimental Data and Evaluation Methods
3.1. ALS Point Cloud in Germany and USA

In order to test and investigate the universality of the proposed method to different
stand structures, we use the ALS point cloud provided by Weiser et al. [30] in Germany
and http://forsys.cfr.washington.edu (accessed on 11 June 2018) in the USA. In Germany,
the ALS point cloud was acquired by MILAN Geoservice GmbH using a RIEGL VQ-780i
installed on a Cessna C207 aircraft. The nominal specifications of the ALS instrument are as
follows. The precision is 20 mm in the 250 m scanning range, the laser beam divergence is
less than 0.25 mrad, and the point density is 115.2 points/m2. In the USA, a small footprint,
discrete return lidar system was used to map the study area. The contractor used a Saab
TopEye lidar system mounted on a helicopter to collect data over the study site. Flying
height is 200 m, flying speed is 25 m/s, scanning swath width is 70 m, forward tilt is
8 degrees, laser pulse rate is 7000 points/s, maximum returns per pulse is 4, footprint
diameter is 40 cm, and point density is 4.86 points/m2.

3.2. Dataset

After data preprocessing, in order to better train and evaluate the network, 211 sub-
plots 25 m × 25 m are randomly divided into a training set and validation set according
to the ratio of 8:2, resulting in 169 plots as the training set (containing 1558 trees) and
42 sub-plots as the validation set (containing 382 trees). During training, the epoch of the
extreme offset deep network is 50, the training time is about 2 h, the initial learning rate
is set to 0.001, the RMSprop optimizer is used, and the smoothing constant alpha is set to
0.9. The StepLR method, which dynamically adjusts the learning rate, is used, where the
learning rate adjustment factor gamma is set to 0.1.

Experimental area 1, the conifer forest in Washington, USA, is selected. In experimental
area 2, a mixed forest in Bretten, Germany, is selected. The test set consists of four different
plots, labeled U1, U2, G1, and G2, where U1 and U2 belong to the Blue Ridge region of
the Congressional National Forest in western Washington. G1 and G2 belong to the mixed
forest near Bretten, Germany. The four sample plots of the test set are shown in Figure 6.

http://forsys.cfr.washington.edu
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Refer Canopy Density (RCD) is used to indicate the canopy density among different
plots. RCD is obtained by dividing the number of grids containing points by the total
number of grids, as shown in Equation (9):

RCD = ∑i
n

oi
n

, (9)

where RCD is used to indicate the canopy density among different plots; n is the total
number of grids; oi is the marking bit, if any points exist in grid i, oi = 1, otherwise oi = 0.

In U1, U2, G1, and G2, the number of individual trees is 127, 186, 108, and 261; RCD
is 61.58%, 69.09%, 93.25%, and 96.40%, respectively. Due to the difference in vegetation
distribution and different acquisition equipment in the two areas, the point cloud density
is quite different. Therefore, it is representative that the sample plots in these two areas are
selected to test the method. A detailed description of the data is shown in Table 1.

Table 1. A detailed description of the test set.

Plot IDs Number of Individual Trees RCD (%) Number of Sub-Plots

U1 132 61.58 16
U2 186 69.09 16

G1 108 93.25 12
G2 261 96.40 16

3.3. Assessment Criteria

In order to evaluate the performance of the proposed method, the matching strategy
proposed by Kaiguang Zhao et al. [31] is used to pair the reference tree (true value) with
the estimated tree (predicted value), as shown in Equation (10):

D =

√(
xi−xj

)2
+
(

yi−yj

)2
+k ·

(
zi−zj

)2, (10)

where D is the relative distance between the reference tree and the estimated tree; (x i, yi, zi)

and (x j, yj, zj

)
represent the treetop coordinates of the reference tree and the estimated

tree, respectively. The estimated tree i and the reference tree j match successfully when the
two three-dimensional spatial points representing the location information of the tree are
closest. k is the weight for the height difference (0.5 by default).

Three metrics, recall (r), precision (p), and F-score (F), are used to evaluate the perfor-
mance of the proposed method, as shown in Equations (11)–(13):

r =
MT

MT + OE
, (11)
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p =
MT

MT + CE
, (12)

F = 2× r× p
r + p

, (13)

where MT represents the one-to-one matching relationship between the reference tree and
the estimated tree, that is, the correct segmentation; OE represents that some reference trees
are not matched to the estimated tree, that is, an individual tree is considered as a branch
belonging to other trees, so it is not detected, resulting in under-segmentation; CE indicates
that the reference tree and the estimated tree have a one-to-many relationship; that is, an
individual tree is divided into multiple trees, resulting in over-segmentation; r, p, and F are
recall, precision, and F-score, respectively.

4. Results
4.1. Validity Experiment

The segmentation process and results of partial subgraphs in the test set are shown in
Figure 7. Different colors represent different sets, where the red point represents the treetop
of the actual individual tree, and the blue triangle represents the treetop of the predicted
individual tree. Where (a) represents the forest point cloud after data preprocessing;
(b) represents the offset point cloud obtained after extreme offset; (c) represents the offset
point cloud with label obtained by mean shift; (d) shows the result after mapping back to
the origin point cloud space; (e) represents the result after ITS set aggregation; (f) represents
the final segmentation result after postprocessing.
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Figure 7. Partial segmentation results of the proposed method are shown, where the red circle
represents the actual individual treetop, and the blue triangle represents the predicted individual
treetop. (a) The point cloud after data preprocessing; (b) The offset point cloud after extreme offset;
(c) The offset point cloud after mean shift cluster; (d) The point cloud after space mapping; (e) The
point cloud after ITS set aggregation; (f) The origin point cloud after postprocessing.
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The 3D segmentation results of the proposed method are shown in Figure 8, where
(a), (b) represent the sample plot of the Blue Ridge region of the United States, and (c),
(d) represent the sample plot of the Bretten in Germany. The ITS results of the proposed
method in four sample plots are shown in Table 2, where TN is the actual number of tree
individuals; MT is the number of correctly segmented individual trees; OE is the number
of under-segmented individual trees; CE is the number of over-segmented individual trees;
Calculate p, r, and F according to Equations (11)–(13).
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Figure 8. The overall 3D segmentation results of the proposed method are shown. (a) U1; (b) U2;
(c) G1; (d) G2.

Table 2. Assessment of the accuracy of the proposed method in four plots.

Plot TN 1 MT 2 OE 3 CE 4 p r F

U1 132 110 9 15 0.88000 0.92437 0.90164
U2 186 158 13 15 0.91329 0.92398 0.91860
G1 108 87 16 5 0.94565 0.87931 0.90667
G2 261 203 46 13 0.93981 0.81526 0.87312

Overall 687 558 84 48 0.91968 0.88573 0.90000
1 The actual number of individual trees in the plot. 2 The number of correctly segmented individual trees. 3 The
number of under-segmented individual trees. 4 The number of over-segmented individual trees.

4.2. Ablation Experiment

In order to verify the necessity of the three core steps of the proposed method, ablation
experiments were designed, as shown in Table 3. Firstly, the advantage of extreme offset
over center offset is explored. Secondly, the advantage of dynamic bandwidth mean
shift clustering compared with fixed bandwidth HAIS clustering is explored. Finally, the
advantage of the ITS set aggregation compared with the HAIS set aggregation are explored.

Table 3. For the ablation study of extreme offset, dynamic bandwidth, and ITS set aggregation.

Extreme Offset Dynamic Bandwidth ITS Set Aggregation p r F

0.54379 0.38114 0.43816√
0.79675 0.72826 0.75743√ √
0.87075 0.85266 0.85876√ √
0.91801 0.76391 0.83285√ √ √
0.91968 0.88573 0.90000

(1) Extreme offset

In order to verify the effectiveness of extreme offset, the deep network is trained by
extreme offset and center offset, respectively. The loss curve obtained from the training and
validation set is shown in Figure 9a,b, respectively. It can be seen that when using extreme
offset, the loss value with the smallest final convergence value of the training set and the
validation set is the smallest, which is 0.064 and 0.059, respectively. When using the center
offset, the final convergence loss values of the training set and the validation set are 0.11
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and 0.088, respectively. It shows that the introduced extreme offset strategy can effectively
enhance the robustness of the deep network.
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In addition, Table 4 compares the effect of using extreme offset or center offset on
the segmentation accuracy of the proposed method. When extreme offset is adopted, the
average F-score of the proposed method is 0.75, which is much higher than the average
F-score of center offset (0.43). It shows the effectiveness and superiority of extreme offset.

Table 4. Extreme offset vs. Center offset.

Method Plots RCD TN 1 MT 2 OE 3 CE 4 p r F

Center offset

U1 61.58% 132 51 52 28 0.64557 0.49515 0.56044
U2 69.09% 186 57 75 91 0.38514 0.43182 0.40714
G1 93.25% 108 26 56 18 0.59091 0.31707 0.41270
G2 96.40% 261 62 159 50 0.55357 0.28054 0.37237

Overall 687 196 342 187 0.54379 0.38114 0.43816

Extreme offset

U1 61.58% 132 86 19 27 0.76106 0.81905 0.78899
U2 69.09% 186 112 58 16 0.87500 0.65882 0.75168
G1 93.25% 108 63 18 17 0.78750 0.77778 0.78261
G2 96.40% 261 142 74 44 0.76344 0.65741 0.70647

Overall 687 403 169 104 0.79675 0.72826 0.75743

1 The actual number of individual trees in the plot. 2 The number of correctly segmented individual trees. 3 The
number of under-segmented individual trees. 4 The number of over-segmented individual trees.

(2) Dynamic bandwidth

Mean shift with dynamic bandwidth and HAIS clustering with fixed bandwidth are
used, respectively, and the segmentation results of the proposed method are shown in
Figure 10. After many experiments, when the HAIS clustering with fixed bandwidth is
set to 0.05, the segmentation result is the best, and the average F-score of the four plots is
0.78, 0.75, 0.78, and 0.70, respectively. When the mean shift with dynamic bandwidth is
used, the average F-score of the algorithm in the four plots reaches 0.85, 0.90, 0.84, and 0.84,
respectively, which is significantly higher than the HAIS clustering with fixed bandwidth,
as shown in Table 5. The results show that the mean shift with dynamic bandwidth is
effective and superior.
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Table 5. Fixed bandwidth vs. Dynamic bandwidth.

Bandwidth Plots RCD TN 1 MT 2 OE 3 CE 4 p r F

Fixed bandwidth

U1 61.58% 132 86 19 27 0.76106 0.81905 0.78899
U2 69.09% 186 112 58 16 0.87500 0.65882 0.75168
G1 93.25% 108 63 18 17 0.78750 0.77778 0.78261
G2 96.40% 261 142 74 44 0.76344 0.65741 0.70647

Overall 687 403 169 104 0.79675 0.72826 0.75743

Dynamic
bandwidth

U1 61.58% 132 103 9 27 0.79231 0.91964 0.85124
U2 69.09% 186 153 18 16 0.90533 0.89474 0.90000
G1 93.25% 108 70 15 11 0.86420 0.82353 0.84337
G2 96.40% 261 187 55 16 0.92118 0.77273 0.84045

Overall 687 513 97 70 0.87075 0.85266 0.85876

1 The actual number of individual trees in the plot. 2 The number of correctly segmented individual trees. 3 The
number of under-segmented individual trees. 4 The number of over-segmented individual trees.

(3) ITS set aggregation

Table 6 and Figure 11 show that after the introduction of ITS set aggregation, the
segmentation accuracy of the proposed method for the four plots is effectively improved,
the F-score in the four plots reach 0.86, 0.83, 0.80, and 0.82, respectively, the average F-score
in all plots reach 0.83. In the coniferous forest plots (U1, U2) and mixed forest plots (G1,
G2), the average F-score is improved by 16% and 14%, respectively, compared with the
HAIS set aggregation.

Table 6. HAIS set aggregation vs. ITS set aggregation.

Method Plots RCD TN 1 MT 2 OE 3 CE 4 p r F

HAIS set aggregation

U1 61.58% 132 86 19 27 0.76106 0.81905 0.78899
U2 69.09% 186 112 58 16 0.87500 0.65882 0.75168
G1 93.25% 108 63 18 17 0.78750 0.77778 0.78261
G2 96.40% 261 142 74 44 0.76344 0.65741 0.70647

Overall 687 403 169 104 0.79675 0.72826 0.75743

ITS set aggregation

U1 61.58% 132 100 20 12 0.89286 0.83333 0.86207
U2 69.09% 186 133 47 6 0.95683 0.73889 0.83386
G1 93.25% 108 65 24 7 0.90278 0.73034 0.80745
G2 96.40% 261 183 60 16 0.91960 0.75309 0.82805

Overall 687 481 151 41 0.91801 0.76391 0.83285

1 The actual number of individual trees in the plot. 2 The number of correctly segmented individual trees. 3 The
number of under-segmented individual trees. 4 The number of over-segmented individual trees.
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5. Discussion
5.1. Comparison with Existing Methods

Multiple ITS methods are used in the four plots to test separately, and the test results
are shown in Table 7. The average p, r, F, and time(min) of the SHDR method [12] in the four
plots reached 0.84, 0.85, 0.84, and 23.3, respectively. The average p, r, F, and time(min) of the
DK method [10] in the four plots reached 0.66, 0.59, 0.62, and 12.5, respectively. The average
p, r, F, and time(min) of the Improved DK method in the four plots reached 0.83, 0.86, 0.85,
and 14.9, respectively. The average p, r, F, and time(min) of the HAIS method [25] in the
four plots reached 0.79, 0.72, 0.75, and 13.7, respectively. The average p, r, F, and time(min)
of the proposed method in the four plots reached 0.91, 0.88, 0.90, and 13.5, respectively.

Table 7. Comparison of individual tree segmentation accuracy of SHDR method, DK method, HAIS
method, Improved DK method, and the proposed method in four plots.

Method Plots RCD TN 1 MT 2 OE 3 CE 4 p r F Time(Min) 5

SHDR method

U1 61.58% 132 91 25 12 0.88350 0.78448 0.83105 4.5
U2 69.09% 186 141 22 26 0.84431 0.86503 0.85455 4.7
G1 93.25% 108 94 13 18 0.83929 0.87850 0.85845 6.6
G2 96.40% 261 194 27 42 0.82203 0.87783 0.84902 7.5

Overall 687 520 87 98 0.84728 0.85146 0.84826 23.3

DK method

U1 61.58% 132 56 40 38 0.59574 0.58333 0.58947 1.9
U2 69.09% 186 74 48 82 0.47436 0.60656 0.53237 2.2
G1 93.25% 108 61 35 18 0.77215 0.63542 0.69714 3.9
G2 96.40% 261 67 52 13 0.83750 0.56303 0.67337 4.5

Overall 687 258 175 151 0.66993 0.59708 0.62308 12.5

Improved DK method

U1 61.58% 132 102 7 16 0.86441 0.93578 0.89868 2.7
U2 69.09% 186 140 19 22 0.86420 0.88050 0.87227 2.6
G1 93.25% 108 76 14 23 0.76768 0.84444 0.80423 4.1
G2 96.40% 261 184 42 34 0.84404 0.81416 0.82883 5.5

Overall 687 502 82 95 0.83508 0.86872 0.85084 14.9

HAIS method

U1 61.58% 132 86 19 27 0.76106 0.81905 0.78899 2.2
U2 69.09% 186 112 58 16 0.87500 0.65882 0.75168 2.6
G1 93.25% 108 63 18 17 0.78750 0.77778 0.78261 4.1
G2 96.40% 261 142 74 44 0.76344 0.65741 0.70647 4.8

Overall 687 403 169 104 0.79675 0.72826 0.75743 13.7

The proposed method

U1 61.58% 132 110 9 15 0.88000 0.92437 0.90164 2.1
U2 69.09% 186 158 13 15 0.91329 0.92398 0.91860 2.5
G1 93.25% 108 87 16 5 0.94565 0.87931 0.90667 4.0
G2 96.40% 261 203 46 13 0.93981 0.81526 0.87312 4.9

Overall 687 558 84 48 0.91968 0.88573 0.90000 13.5

1 The actual number of individual trees in the plot. 2 The number of correctly segmented individual trees.
3 The number of under-segmented individual trees. 4 The number of over-segmented individual trees. 5 The time
consumption of the method.

The spatial horizontal distance rule (SHDR) is a top-down method. This method has
high segmentation accuracy, but it has high time complexity and is sensitive to the selection
of the horizontal distance threshold parameter, which leads to poor universality.
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DBSCAN with K-means (DK) is a bottom-up method. The advantage of this method
is that it can segment the trees with obvious trunk characteristics well. However, the trunk
points scanned by airborne laser lidar in forests with high canopy density are sparse, which
leads to the inaccurate center points found by the DBSCAN algorithm, and then affects the
final segmentation results.

HAIS is a deep learning method for instance segmentation. This method can achieve
good results when segmenting indoor datasets. However, indoor objects are far apart from
each other, and individual trees are close to each other. If HAIS is directly applied to ITS, it
may cause serious over-segmentation and under-segmentation problems.

The Improved DBSCAN and K-means method (Improved DK) is an improved strategy
that integrates extreme offset deep learning and the DK method. Experiments show that
the introduction of extreme offset makes the segmentation accuracy of the DK method
significantly improved in high-canopy-density forests.

As shown in Figure 12a, the overall p, r, and F of the proposed method in the four
plots are higher than other comparison methods. As shown in Figure 12b, the F-score of
the proposed method is only slightly higher than the improved DK method in U1 with
low canopy density. However, in the actual forest resource survey, the difficulty is usually
the forest with high canopy density. Although the F-score of the proposed method is only
slightly higher than the Improved DK method in U1, the F-score of the proposed method is
much higher than the other comparison methods in other plots with high canopy density,
which indicates the superiority of the proposed method. In addition, the average F-score of
the Improved DK method (85%) is much higher than the average F-score of the DK method
(68%). Although the proposed method consumes slightly more time (13.5 min total) than
the DK method (12.5 min total) in the four plots, the segmentation accuracy of the proposed
method is significantly higher than the DK method.
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This indicates that the proposed method is effective, and the extreme offset deep
learning can significantly improve the segmentation accuracy of the bottom-up method
and has good extendibility in the high-canopy-density woodland of the ALS point cloud.

5.2. Analysis of Extreme Offset, Dynamic Bandwidth Strategy, and ITS Set Aggregation

Extreme offset analysis. Due to airborne laser lidar having poor penetration and cannot
scan complete individual trees (especially in locations with severe canopy occlusion) [8],
at this time, the calculated individual tree center point has a huge gap with the actual
individual tree center point, which seriously interferes with the learning effect of the
deep network, resulting in the poor ability to enhance the discrimination among trees.
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Considering the treetop points are distinct and stable, an extreme offset loss function for
ITS is designed based on HAIS, which makes the points offset to their respective treetops to
enhance the discrimination among different trees. Then, the density of the treetop increases
significantly after points are offset to their treetops.

Dynamic bandwidth strategy analysis. Due to the deep network randomness, the offset
effect of some points is poor. Directly using the mean shift algorithm for clustering may
suffer from serious under-segmentation and over-segmentation problems. Considering the
treetop density increases significantly after extreme offset, the average proximity distance
is adaptively generated as the bandwidth of the mean shift algorithm so that the dense
points near the treetop are clustered into one class. At the same time, the isolated points
with poor offset are clustered separately to eliminate the under-segmentation error as much
as possible.

ITS set aggregation analysis. Due to the erroneous offset point, this inevitably causes
an under-segmentation issue of the mean shift algorithm. The HAIS set aggregation
approach merely aggregates sets that are close to one another, which may result in the
improper aggregation of neighboring sets of different trees. In order to effectively prevent
neighboring sets of various trees from being aggregated, the ITS set aggregation approach
takes into account the gradient features of the individual trees. This method reduces
over-segmentation mistakes and boosts segmentation accuracy.

5.3. Potential Improvements

In the future, we intend to improve the proposed method from the following aspects.
(1) Improving deep networks. In order to better adapt to the ITS task, researchers can
continue to improve the deep learning networks and make improvements to the existing
ITS methods to improve the accuracy and robustness of the model so that the model may
better handle the tree morphology with complex structures. (2) Application of leafless data.
Using leafless data to extract trunk points and send them as features into deep networks for
learning may further improve the accuracy and robustness of ITS tasks because leafless data
can provide more information on the trunk structure and better reflect the morphological
characteristics of trees. (3) Data Augmentation. A suitable data augmentation strategy
may enhance the learning ability of deep networks and further improve the generalization
ability and robustness of the model. Data augmentation can increase the diversity of the
dataset, reduce overfitting, and improve the accuracy and robustness of the model by
processing the data. In conclusion, by enhancing the deep network, applying leafless data,
and data augmentation, which may better serve applications in tree-related fields, the
accuracy and resilience of ITS tasks can be further enhanced.

6. Conclusions

In this paper, an ITS method based on extreme offset deep learning is designed for
complex stand structures. The key steps are as follows: (1) preprocessing; (2) extreme offset;
(3) self-adaptive clustering; (4) space mapping; (5) set aggregation; (6) postprocessing. In
order to verify the universality and accuracy of the proposed method, coniferous forest
plots in the Blue Ridge area of Washington, USA, and mixed forest plots near Bretten,
Germany, are selected as the test plots. The point density is low, and the stand structure is
relatively simple in the coniferous forest of the Blue Ridge in the USA. The point density is
high, and the stand structure is complex in the mixed forest of Bretten in Germany. The test
of the algorithm in these two areas can effectively verify the universality and accuracy of
the algorithm. The experimental results show that after the introduction of step (2) extreme
offset, it can effectively enhance the discrimination among different trees and then improve
the ITS accuracy (the average p, r, and F reach 0.79, 0.72, and 0.75, respectively). After the
introduction of step (2) and step (3) adaptive bandwidth strategy, it has better segmentation
accuracy and can better adapt to complex scenes and changing environments (the average
p, r, F reach 0.87, 0.85, 0.85, respectively). After the introduction of step (2) and step (5)
ITS set aggregation, it can effectively reduce the over-segmentation error and improve the
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segmentation accuracy of the proposed method (the average p, r, F reach 0.91, 0.76, 0.83,
respectively). After the introduction of steps (2), (3) and (5), the average p, r, and F of the
proposed method in all plots reach 0.91, 0.88, and 0.90, respectively. In the future, we intend
to improve the proposed method from the following aspects. (1) Improve the deep network
to better adapt to the ITS task, (2) the tree trunk point coordinates may be extracted using
the leafless data and fed into the deep network as features for learning, and (3) appropriate
data augmentation methods may be used to enhance the learning ability of the network.
In summary, the experimental results effectively verify the universality and accuracy of
the proposed method and show the superiority and application potential in segmenting
complex forest environments by comparing them with other algorithms.
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