Non-Surgical Lower-Limb Rehabilitation Enhances Quadriceps Strength in Inpatients with Hip Fracture: A Study on Force Capacity and Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Set up and Design
2.3. Rehabilitation Treatment
2.4. Signal Processing and Outcome Measures
2.5. Statistics
3. Results
3.1. MVC
3.2. Number of Repetitions
3.3. Multi-Channel EMG and Muscle Fatigue
4. Discussion
4.1. Summary of the Main Results
4.2. Results Interpretation
4.3. Application to the Clinics
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brown, C.J.; Redden, D.T.; Flood, K.L.; Allman, R.M. The underrecognized epidemic of low mobility during hospitalization of older adults. J. Am. Geriatr. Soc. 2009, 57, 1660–1665. [Google Scholar] [CrossRef] [PubMed]
- Everink, I.H.J.; Van Haastregt, J.C.M.; Van Hoof, S.J.M.; Schols, J.M.G.A.; Kempen, G.I.J.M. Factors influencing home discharge after inpatient rehabilitation of older patients: A systematic review Health services research. BMC Geriatr. 2016, 16, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, A.D.; Fan, E.; Brower, R.G.; Needham, D.M. Bench-to-bedside review: Mobilizing patients in the intensive care unit—From pathophysiology to clinical trials. Crit. Care 2009, 13, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, S.; Finger, C.; Huss, A.; Egger, M.; Stuck, A.E.; Clough-Gorr, K.M. Inpatient rehabilitation specifically designed for geriatric patients: Systematic review and meta-analysis of randomised controlled trials. BMJ 2010, 340, 1230. [Google Scholar] [CrossRef] [Green Version]
- Adler, J.; Malone, D. Early Mobilization in the Intensive Care Unit: A Systematic Review. Cardiopulm. Phys. Ther. J. 2012, 23, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Scano, A.; Zanoletti, M.; Pirovano, I.; Spinelli, L.; Contini, D.; Torricelli, A.; Re, R. NIRS-EMG for clinical applications: A systematic review. Appl. Sci. 2019, 9, 2952. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: Cellular mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef] [Green Version]
- Enoka, R.M.; Stuart, D.G. Neurobiology of muscle fatigue. J. Appl. Physiol. 1992, 72, 1631–1648. [Google Scholar] [CrossRef]
- Re, R.; Scano, A.; Pirovano, I.; Manunza, M.E.; Spinelli, L.; Contini, D.; Torricelli, A. Assessment of muscular sustained fatigue: A TD-NIRS and sEMG study. In Proceedings of the Optics InfoBase Conference Papers, Munich, Germany, 20–24 June 2021; Optica Publishing Group: Munich, Germany, 2021; p. ETu4A.6. [Google Scholar]
- Re, R.; Scano, A.; Tomba, A.; Pirovano, I.; Caserta, A.; Spinelli, L.; Contini, D.; Cubeddu, R.; Panella, L.; Torricelli, A. Vastus Lateralis Muscle’s Characterization on bedridden patients: A Time Domain fNIRS study. In Proceedings of the Optics InfoBase Conference Papers, Washington, DC, USA, 24–27 April 2022; Optica Publishing Group: Fort Lauderdale, FL, USA, 2022; p. JTu3A.9. [Google Scholar]
- Al-Mulla, M.R.; Sepulveda, F.; Colley, M. A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors 2011, 11, 3545–3594. [Google Scholar] [CrossRef] [Green Version]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef]
- Farina, D. Interpretation of the surface electromyogram in dynamic contractions. Exerc. Sport Sci. Rev. 2006, 34, 121–127. [Google Scholar] [CrossRef]
- Hou, X.; Liu, J.; Weng, K.; Griffin, L.; Rice, L.A.; Jan, Y.K. Effects of Various Physical Interventions on Reducing Neuromuscular Fatigue Assessed by Electromyography: A Systematic Review and Meta-Analysis. Front. Bioeng. Biotechnol. 2021, 9, 659138. [Google Scholar] [CrossRef] [PubMed]
- Griffith, E.E.; Yoon, T.; Hunter, S.K. Age and load compliance alter time to task failure for a submaximal fatiguing contraction with the lower leg. J. Appl. Physiol. 2010, 108, 1510–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalton, B.H.; Power, G.A.; Vandervoort, A.A.; Rice, C.L. The age-related slowing of voluntary shortening velocity exacerbates power loss during repeated fast knee extensions. Exp. Gerontol. 2012, 47, 85–92. [Google Scholar] [CrossRef]
- Yoon, T.; Schlinder-Delap, B.; Hunter, S.K. Fatigability and recovery of arm muscles with advanced age for dynamic and isometric contractions. Exp. Gerontol. 2013, 48, 259–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scano, A.; Pirovano, I.; Manunza, M.E.; Spinelli, L.; Contini, D.; Torricelli, A.; Re, R. Sustained fatigue assessment during isometric exercises with time-domain near infrared spectroscopy and surface electromyography signals. Biomed. Opt. Express 2020, 11, 7357. [Google Scholar] [CrossRef]
- Greco, A.; Valenza, G.; Bicchi, A.; Bianchi, M.; Scilingo, E.P. Assessment of muscle fatigue during isometric contraction using autonomic nervous system correlates. Biomed. Signal Process. Control 2019, 51, 42–49. [Google Scholar] [CrossRef]
- Steele, K.M.; Papazian, C.; Feldner, H.A. Muscle Activity After Stroke: Perspectives on Deploying Surface Electromyography in Acute Care. Front. Neurol. 2020, 11, 576757. [Google Scholar] [CrossRef]
- Sommers, J.; Van Den Boorn, M.; Engelbert, R.H.H.; Nollet, F.; Van Der Schaaf, M.; Horn, J. Feasibility of muscle activity assessment with surface electromyography during bed cycling exercise in intensive care unit patients. Muscle Nerve 2018, 58, 688–693. [Google Scholar] [CrossRef]
- Bellani, G.; Bronco, A.; Arrigoni Marocco, S.; Pozzi, M.; Sala, V.; Eronia, N.; Villa, G.; Foti, G.; Tagliabue, G.; Eger, M.; et al. Measurement of diaphragmatic electrical activity by surface electromyography in intubated subjects and its relationship with inspiratory effort. Respir. Care 2018, 63, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Zhang, Z.; Gu, X.; Fang, Q. Surface electromyography based muscle fatigue analysis for stroke patients at different Brunnstrom stages. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Orlando, FL, USA, 16–20 August 2016; IEEE: Glasgow, UK, 2016; Volume 2016, pp. 3781–3784. [Google Scholar]
- Skrzat, J.M.; Carp, S.J.; Dai, T.; Lauer, R.; Hiremath, S.V.; Gaeckle, N.; Tucker, C.A. Use of Surface Electromyography to Measure Muscle Fatigue in Patients in an Acute Care Hospital. Phys. Ther. 2020, 100, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Pirovano, I.; Laurini, A.; Tomba, A.; Scano, A.; Re, R.; Caserta, A.; Spinelli, L.; Contini, D.; Cubeddu, R.; Panella, L.; et al. Rehabilitation monitoring after bed rest in elderly: TD-NIRS and sEMG preliminary study. In Proceedings of the Optics InfoBase Conference Papers, Munich, Germany, 20–24 June 2021; Optica Publishing Group: Munich, Germany, 2021; p. ETu2A.33. [Google Scholar]
- Handoll, H.H.G.; Cameron, I.D.; Mak, J.C.S.; Finnegan, T.P. Multidisciplinary rehabilitation for older people with hip fractures. Cochrane Database Syst. Rev. 2009, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parry, S.M.; Puthucheary, Z.A. The impact of extended bed rest on the musculoskeletal system in the critical care environment. Extrem. Physiol. Med. 2015, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Belfatto, A.; Scano, A.; Chiavenna, A.; Mastropietro, A.; Mrakic-Sposta, S.; Pittaccio, S.; Tosatti, L.M.; Molteni, F.; Rizzo, G. A multiparameter approach to evaluate post-stroke patients: An application on robotic rehabilitation. Appl. Sci. 2018, 8, 2248. [Google Scholar] [CrossRef] [Green Version]
- Vereijken, A.; van Trijffel, E.; Aerts, I.; Tassignon, B.; Verschueren, J.; Meeusen, R. The non-injured leg can be used as a reference for the injured leg in single-legged hop tests. Int. J. Sport. Phys. Ther. 2021, 16, 1052–1066. [Google Scholar] [CrossRef]
- Wall, B.T.; Dirks, M.L.; Snijders, T.; Senden, J.M.G.; Dolmans, J.; Van Loon, L.J.C. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol. 2014, 210, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Panella, L.; Incorvaia, C.; Caserta, A.V.; Amata, O.; Consonni, D.; Pessina, L.; Leo, G.; Caselli, I.; Callegari, C. A bio-psycho-social approach in elderly population: Outcome of adapted physical activity in patients with osteoarthritis. Clin. Ter. 2019, 1, e74–e77. [Google Scholar] [CrossRef]
- Mathur, S.; Eng, J.J.; MacIntyre, D.L. Reliability of surface EMG during sustained contractions of the quadriceps. J. Electromyogr. Kinesiol. 2005, 15, 102–110. [Google Scholar] [CrossRef]
- Thamm, A.; Freitag, N.; Figueiredo, P.; Doma, K.; Rottensteiner, C.; Bloch, W.; Schumann, M. Can heart rate variability determine recovery following distinct strength loadings? A randomized cross-over trial. Int. J. Environ. Res. Public Health 2019, 16, 4353. [Google Scholar] [CrossRef] [Green Version]
- Akima, H.; Tomita, A.; Ando, R. Effect of knee joint angle on the neuromuscular activation of the quadriceps femoris during repetitive fatiguing contractions. J. Electromyogr. Kinesiol. 2019, 49, 102356. [Google Scholar] [CrossRef]
- Burnley, M. Estimation of critical torque using intermittent isometric maximal voluntary contractions of the quadriceps in humans. J. Appl. Physiol. 2009, 106, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Morel, B.; Trama, R.; Hautier, C.A. Influence of Fatigue on the Rapid Hamstring/Quadriceps Force Capacity in Soccer Players. Front. Physiol. 2021, 12, 627674. [Google Scholar] [CrossRef] [PubMed]
- Balshaw, T.G.; Fry, A.; Maden-Wilkinson, T.M.; Kong, P.W.; Folland, J.P. Reliability of quadriceps surface electromyography measurements is improved by two vs. single site recordings. Eur. J. Appl. Physiol. 2017, 117, 1085–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonato, P.; D’Alessio, T.; Knaflitz, M. A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait. IEEE Trans. Biomed. Eng. 1998, 45, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.D.S.C.; Gonçalves, M. EMG amplitude and frequency parameters of muscular activity: Effect of resistance training based on electromyographic fatigue threshold. J. Electromyogr. Kinesiol. 2009, 19, 295–303. [Google Scholar] [CrossRef]
- Kouzaki, M.; Shinohara, M.; Fukunaga, T. Non-uniform mechanical activity of quadriceps muscle during fatigue by repeated maximal voluntary contraction in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1999, 80, 9–15. [Google Scholar] [CrossRef]
- Pierella, C.; Pirondini, E.; Kinany, N.; Coscia, M.; Giang, C.; Miehlbradt, J.; Magnin, C.; Nicolo, P.; Dalise, S.; Sgherri, G.; et al. A multimodal approach to capture post-stroke temporal dynamics of recovery. J. Neural Eng. 2020, 17, 045002. [Google Scholar] [CrossRef]
- Maura, R.M.; Rueda Parra, S.; Stevens, R.E.; Weeks, D.L.; Wolbrecht, E.T.; Perry, J.C. Literature review of stroke assessment for upper-extremity physical function via EEG, EMG, kinematic, and kinetic measurements and their reliability. J. Neuroeng. Rehabil. 2023, 20, 21. [Google Scholar] [CrossRef]
- Borji, R.; Zghal, F.; Zarrouk, N.; Martin, V.; Sahli, S.; Rebai, H. Neuromuscular fatigue and recovery profiles in individuals with intellectual disability. J. Sport Health Sci. 2019, 8, 242–248. [Google Scholar] [CrossRef]
- Brereton, L.C.; McGill, S.M. Effects of physical fatigue and cognitive challenges on the potential for low back injury. Hum. Mov. Sci. 1999, 18, 839–857. [Google Scholar] [CrossRef]
- Jonkers, I.; Nuyens, G.; Seghers, J.; Nuttin, M.; Spaepen, A. Muscular effort in multiple sclerosis patients during powered wheelchair manoeuvres. Clin. Biomech. 2004, 19, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Yousif, H.A.; Zakaria, A.; Rahim, N.A.; Salleh, A.F.B.; Mahmood, M.; Alfarhan, K.A.; Kamarudin, L.M.; Mamduh, S.M.; Hasan, A.M.; Hussain, M.K. Assessment of Muscles Fatigue Based on Surface EMG Signals Using Machine Learning and Statistical Approaches: A Review. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Pulau Pinang, Malaysia, 26–27 August 2019; IOP Publishing: Pulau Pinang, Malaysia, 2019; Volume 705, p. 012010. [Google Scholar]
- Amata, O.; Panella, L.; Incorvaia, C.; Tomba, A.; Gervasoni, F.; Caserta, A.V.; Callegari, C. Role of frailty in functional recovery after hip fracture, the variable impact in restoring autonomy. Acta Biomed. 2021, 92, e2021387. [Google Scholar] [CrossRef]
- Amata, O.; Ridolo, E.; Costantino, V.; Panella, L.; Incorvaia, C.; Caserta, A.V.; Callegari, C. Maximizing rehabilitation outcomes in geriatric hip fracture patients: The impact of surgical variables. Acta Biomed. 2023, 94, e2023046. [Google Scholar] [CrossRef] [PubMed]
MVCPRE (N) | MVCPOST (N) | N REP PRE | N REP POST | |
---|---|---|---|---|
S1 | 300 | 290 | 20 | 20 |
S2 | 230 | 272 | 20 | 20 |
S3 | 240 | 455 | 20 | 19 |
S4 | 268 | 189 | 20 | 20 |
S5 | 660 ^ | 346 ^ | 20 | 20 |
S6 | 170 | 330 | 20 | 20 |
S7 | 141 | 196 | 20 | 20 |
S8 | 326 | 413 | 20 | 20 |
S9 | 211 | 216 | 20 | 20 |
S10 | 226 | 349 | 20 | 20 |
S11 | 568 | 458 | 14 | 19 |
S12 | 275 | 366 | 20 | 20 |
S13 | 201 | 221 | 20 | 20 |
S14 | 210 | 240 | 20 | 20 |
S15 | 283 | 326 | 20 | 20 |
S16 | 550 | 400 | 20 | 20 |
S17 | 247 | 329 | 20 | 20 |
S18 | 252 | 323 | 19 | 19 |
S19 | 301 | 438 | 20 | 20 |
S20 | 306 | 433 | 20 | 20 |
Mean | 278 | 322 | 19.7 | 19.9 |
Std | 112 | 88 | 1.34 | 0.36 |
p | 0.015 * | 0.223 |
PRE | POST | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vastus Lat. (prox) | Rectus Fem. (prox) | Vastus Med. | Vastus Lat. (dist) | Rectus Fem. (dist) | Total | Vastus Lat. (prox) | Rectus Fem. (prox) | Vastus Med. | Vastus Lat. (dist) | Rectus Fem. (dist) | Total | |
S1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 2 |
S2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S3 | 0 | 1 | 1 | 0 | 1 | 3 | 0 | 1 | 1 | 0 | 0 | 2 |
S4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S8 | 0 | 1 | 1 | 1 | 1 | 4 | 0 | 0 | 0 | 1 | 0 | 1 |
S9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
S10 | 1 | 1 | 1 | 1 | 1 | 5 | 1 | 1 | 1 | 1 | 1 | 5 |
S11 | 0 | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 5 |
S12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S13 | 1 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 1 |
S14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S16 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 1 | 1 | 1 | 3 |
S17 | 1 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
S18 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
S19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S20 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 1 | 1 | 2 |
Mean | 1.40 | 1.15 | ||||||||||
Std | 1.70 | 1.59 | ||||||||||
p | 0.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scano, A.; Re, R.; Tomba, A.; Amata, O.; Pirovano, I.; Brambilla, C.; Contini, D.; Spinelli, L.; Amendola, C.; Caserta, A.V.; et al. Non-Surgical Lower-Limb Rehabilitation Enhances Quadriceps Strength in Inpatients with Hip Fracture: A Study on Force Capacity and Fatigue. Appl. Sci. 2023, 13, 6855. https://doi.org/10.3390/app13116855
Scano A, Re R, Tomba A, Amata O, Pirovano I, Brambilla C, Contini D, Spinelli L, Amendola C, Caserta AV, et al. Non-Surgical Lower-Limb Rehabilitation Enhances Quadriceps Strength in Inpatients with Hip Fracture: A Study on Force Capacity and Fatigue. Applied Sciences. 2023; 13(11):6855. https://doi.org/10.3390/app13116855
Chicago/Turabian StyleScano, Alessandro, Rebecca Re, Alessandro Tomba, Oriana Amata, Ileana Pirovano, Cristina Brambilla, Davide Contini, Lorenzo Spinelli, Caterina Amendola, Antonello Valerio Caserta, and et al. 2023. "Non-Surgical Lower-Limb Rehabilitation Enhances Quadriceps Strength in Inpatients with Hip Fracture: A Study on Force Capacity and Fatigue" Applied Sciences 13, no. 11: 6855. https://doi.org/10.3390/app13116855
APA StyleScano, A., Re, R., Tomba, A., Amata, O., Pirovano, I., Brambilla, C., Contini, D., Spinelli, L., Amendola, C., Caserta, A. V., Cubeddu, R., Panella, L., & Torricelli, A. (2023). Non-Surgical Lower-Limb Rehabilitation Enhances Quadriceps Strength in Inpatients with Hip Fracture: A Study on Force Capacity and Fatigue. Applied Sciences, 13(11), 6855. https://doi.org/10.3390/app13116855