Highly Active under VIS Light M/TiO2 Photocatalysts Prepared by Single-Step Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Characterization
2.3. Photocatalytic Evaluation
3. Results and Discussion
3.1. X-ray Diffraction Analysis (XRD)
3.2. X-ray Fluorescence Analysis (XRF)
3.3. N2 Absorption Studies
3.4. Photocatalytic Studies
3.4.1. Copper Loading Effect on Different Substrates
3.4.2. Influence of Silver Loading on Various Substrates
3.4.3. Effect of Catalyst Concentration
3.4.4. Rutile/Anatase Concentration Ratio Effect
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassanpour, M.; Safardoust-Hojaghan, H.; Salavati-Niasari, M. Degradation of Methylene Blue and Rhodamine B as Water Pollutants via Green Synthesized Co3O4/ZnO Nanocomposite. J. Mol. Liq. 2017, 229, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Chakhtouna, H.; Benzeid, H.; Zari, N.; Qaiss, A.E.K.; Bouhfid, R. Recent Progress on Ag/TiO2 Photocatalysts: Photocatalytic and Bactericidal Behaviors. Environ. Sci. Pollut. Res. Int. 2021, 28, 44638–44666. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Huang, Y.; Zhang, D.; Chen, S. Electrospinning Fabricating Au/TiO2 Network-like Nanofibers as Visible Light Activated Photocatalyst. Sci. Rep. 2019, 9, 8008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Rangaiah, G.P.; Zhao, X.S. Photocatalytic Degradation of Methylene Blue by Titanium Dioxide: Experimental and Modeling Study. Ind. Eng. Chem. Res. 2014, 53, 14641–14649. [Google Scholar] [CrossRef]
- Chauhan, R.; Kumar, A.; Pal Chaudhary, R. Photocatalytic Degradation of Methylene Blue with Cu Doped ZnS Nanoparticles. J. Lumin. 2014, 145, 6–12. [Google Scholar] [CrossRef]
- Reza, K.M.; Kurny, A.; Gulshan, F. Photocatalytic Degradation of Methylene Blue by Magnetite+H2O2+UV Process. Int. J. Environ. Sci. Dev. 2016, 7, 325–329. [Google Scholar] [CrossRef] [Green Version]
- Jing, H.-P.; Wang, C.-C.; Zhang, Y.-W.; Wang, P.; Li, R. Photocatalytic Degradation of Methylene Blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Trandafilović, L.V.; Jovanović, D.J.; Zhang, X.; Ptasińska, S.; Dramićanin, M.D. Enhanced Photocatalytic Degradation of Methylene Blue and Methyl Orange by ZnO:Eu Nanoparticles. Appl. Catal. B 2017, 203, 740–752. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Luo, Z.; Liu, J.; Li, P. Photocatalytic Degradation of Methylene Blue in Aqueous Solution by Using ZnO-SnO2 Nanocomposites. Mater. Sci. Semicond. Process. 2018, 87, 24–31. [Google Scholar] [CrossRef]
- Pirbazari, A.E.; Monazzam, P.; Kisomi, B.F. Co/TiO2 Nanoparticles: Preparation, Characterization and Its Application for Photocatalytic Degradation of Methylene Blue. Desalin Water Treat 2017, 63, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xu, L.; Wang, H.; Wang, W.; Zhang, L. TiO2/Graphene Porous Composite and Its Photocatalytic Degradation of Methylene Blue. Mater. Des. 2016, 108, 632–639. [Google Scholar] [CrossRef]
- Lu, K.-Q.; Li, Y.-H.; Tang, Z.-R.; Xu, Y.-J. Roles of Graphene Oxide in Heterogeneous Photocatalysis. ACS Mater. Au 2021, 1, 37–54. [Google Scholar] [CrossRef]
- Khalil, M.; Anggraeni, E.S.; Ivandini, T.A.; Budianto, E. Exposing TiO2 (001) Crystal Facet in Nano Au-TiO2 Heterostructures for Enhanced Photodegradation of Methylene Blue. Appl. Surf. Sci. 2019, 487, 1376–1384. [Google Scholar] [CrossRef]
- Lv, T.; Zhao, J.; Chen, M.; Shen, K.; Zhang, D.; Zhang, J.; Zhang, G.; Liu, Q. Boosted Visible-Light Photodegradation of Methylene Blue by V and Co Co-Doped TiO₂. Materials 2018, 11, 1946. [Google Scholar] [CrossRef] [Green Version]
- Murcia Mesa, J.J.; Guarín Romero, J.R.; Cely Macías, Á.C.; Rojas Sarmiento, H.A.; Cubillos Lobo, J.A.; Navío Santos, J.A.; Hidalgo López, M.D.C. Methylene Blue Degradation over M-TiO2 Photocatalysts (M = Au or Pt)/Degradación de Azul de Metileno Sobre Fotocatalizadores M-TiO2 (M = Au o Pt). Cienc. Desarro. 2017, 8, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Anwar, D.I.; Mulyadi, D. Synthesis of Fe-TiO2 Composite as a Photocatalyst for Degradation of Methylene Blue. Procedia Chem. 2015, 17, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Tariq, M.K.; Riaz, A.; Khan, R.; Wajid, A.; Haq, H.-U.; Javed, S.; Akram, M.A.; Islam, M. Comparative Study of Ag, Sn or Zn Doped TiO2 Thin Films for Photocatalytic Degradation of Methylene Blue and Methyl Orange. Mater. Res. Express 2019, 6, 106435. [Google Scholar] [CrossRef]
- Orlandi, M.; Dalle Carbonare, N.; Caramori, S.; Bignozzi, C.A.; Berardi, S.; Mazzi, A.; Koura, Z.E.; Bazzanella, N.; Patel, N.; Miotello, A. Porous versus Compact Nanosized Fe(III)-Based Water Oxidation Catalyst for Photoanodes Functionalization. ACS Appl. Mater. Interf. 2016, 8, 20003–20011. [Google Scholar] [CrossRef] [Green Version]
- Koura, Z.E.; Rossi, G.; Calizzi, M.; Amidani, L.; Pasquini, L.; Miotello, A.; Boscherini, F. XANES study of vanadium and nitrogen dopants in photocatalytic TiO2 thin films. Phys. Chem. Chem. Phys. 2018, 20, 221–231. [Google Scholar] [CrossRef]
- Koura, Z.E.; Patel, N.; Edla, R.; Miotello, A. Multilayer films of indium tin oxide/TiO2 codoped with vanadium and nitrogen for efficient photocatalytic water splitting. Int. J. Nanotechnol. 2014, 11, 1017. [Google Scholar] [CrossRef]
- Alkaykh, S.; Mbarek, A.; Ali-Shattle, E.E. Photocatalytic Degradation of Methylene Blue Dye in Aqueous Solution by MnTiO3 Nanoparticles under Sunlight Irradiation. Heliyon 2020, 6, e03663. [Google Scholar] [CrossRef] [PubMed]
- Rather, R.A.; Singh, S.; Pal, B. Photocatalytic Degradation of Methylene Blue by Plasmonic Metal-TiO₂ Nanocatalysts under Visible Light Irradiation. J. Nanosci. Nanotechnol. 2017, 17, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Jiang, J.; Du, L.; Liu, X.; Ding, Y. Stable and Highly Efficient Cu/TiO2 Nanocomposite Photocatalyst Prepared through Atomic Layer Deposition. Appl. Catal. A Gen. 2018, 568, 168–175. [Google Scholar] [CrossRef]
- Khannyra, S.; Mosquera, M.J.; Addou, M.; Gil, M.L.A. Cu-TiO2/SiO2 Photocatalysts for Concrete-Based Building Materials: Self-Cleaning and Air de-Pollution Performance. Constr. Build. Mater. 2021, 313, 125419. [Google Scholar] [CrossRef]
- De Los Santos, D.M.; Chahid, S.; Alcántara, R.; Navas, J.; Aguilar, T.; Gallardo, J.J.; Gómez-Villarejo, R.; Carrillo-Berdugo, I.; Fernández-Lorenzo, C. MoS2/Cu/TiO2 Nanoparticles: Synthesis, Characterization and Effect on Photocatalytic Decomposition of Methylene Blue in Water under Visible Light. Water Sci. Technol. 2018, 2017, 184–193. [Google Scholar] [CrossRef]
- Wang, M.; Peng, L.; Wang, J.; Li, C.; Guan, L.; Lin, Y. Enhanced Visible Light Photocatalytic Decolorization of Methylene Blue by Hierarchical Ternary Nanocomposites Cu-TiO₂-Mesoporous-Silica Microsphere. J. Nanosci. Nanotechnol. 2018, 18, 8269–8275. [Google Scholar] [CrossRef]
- Koura, Z.E.; Cazzanelli, M.; Bazzanella, N.; Patel, N.; Fernandes, R.; Arnaoutakis, G.E.; Gakamsky, A.; Dick, A.; Quaranta, A.; Miotello, A. Synthesis and Characterization of Cu and N Codoped RF-Sputtered TiO2 Films: Photoluminescence Dynamics of Charge Carriers Relevant for Water Splitting. J. Phys. Chem. C 2016, 120, 12042–12050. [Google Scholar] [CrossRef]
- Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D.C.; Miotello, A. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B 2015, 168–169, 333–341. [Google Scholar] [CrossRef]
- Skiba, M.; Vorobyova, V. Synthesis of AG/TIO2 Nanocomposite via Plasma Liquid Interactions and Degradation Methylene Blue. Appl. Nanosci. 2020, 10, 4717–4723. [Google Scholar] [CrossRef]
- Singh, J.; Tripathi, N.; Mohapatra, S. Synthesis of Ag–TiO2 Hybrid Nanoparticles with Enhanced Photocatalytic Activity by a Facile Wet Chemical Method. Nano-Struct. Nano-Objects 2019, 18, 100266. [Google Scholar] [CrossRef]
- Díaz-Uribe, C.; Viloria, J.; Cervantes, L.; Vallejo, W.; Navarro, K.; Romero, E.; Quiñones, C. Photocatalytic Activity of Ag-TiO2 Composites Deposited by Photoreduction under UV Irradiation. Int. J. Photoenergy 2018, 2018, 6080432. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.; Pal, B. Photodeposition of Ag and Cu Binary Co-Catalyst onto TiO2 for Improved Optical and Photocatalytic Degradation Properties. Adv. Powder Technol. 2018, 29, 2119–2128. [Google Scholar] [CrossRef]
- Xie, L.; Hao, J.-G.; Chen, H.-Q.; Li, Z.-X.; Ge, S.-Y.; Mi, Y.; Yang, K.; Lu, K.-Q. Recent advances of nickel hydroxide-based cocatalysts in heterogeneous photocatalysis. Catal. Commun. 2022, 162, 106371. [Google Scholar] [CrossRef]
- Chen, H.-Q.; Hao, J.-G.; Wei, Y.; Huang, W.-Y.; Zhang, J.-L.; Deng, T.; Yang, K.; Lu, K.-Q. Recent Developments and Perspectives of Cobalt Sulfide-Based Composite Materials in Photocatalysis. Catalysts 2023, 13, 544. [Google Scholar] [CrossRef]
- Yakoumis, I. PROMETHEUS: A Copper-Based Polymetallic Catalyst for Automotive Applications. Part I: Synthesis and Characterization. Materials 2021, 14, 622. [Google Scholar]
- Yakoumis, I. Copper and Noble Metal Polymetallic Catalysts for Engine Exhaust Gas Treatment. European Patent EP3569309, 20 November 2019. [Google Scholar]
- Ijadpanah-Saravy, H.; Safari, M.; Khodadadi-Darban, A.; Rezaei, A. Synthesis of Titanium Dioxide Nanoparticles for Photocatalytic Degradation of Cyanide in Wastewater. Anal.Lett. 2014, 47, 1772–1782. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Broekhoff, J.C.P. Mesopore determination from nitrogen sorption isotherms: Fundamentals, scope, limitations. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1979; Volume 3, pp. 663–684. [Google Scholar]
- Kumar, K.V.; Gadipelli, S.; Wood, B.; Ramisetty, K.A.; Stewart, A.A.; Howard, C.A.; Brett, D.J.B.; Rodriguez-Reinoso, F. Characterization of adsorption site energies and heterogeneous surfaces of porous materials. J. Mater. Chem. A 2019, 7, 10104–10137. [Google Scholar] [CrossRef] [Green Version]
- Bouras, P.; Stathatos, E.; Lianos, P. Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl. Catal. B 2007, 73, 51–59. [Google Scholar] [CrossRef]
- Lynggaard, H.; Andreasen, A.; Stegelmann, C.; Stoltze, P. Analysis of simple kinetic models in heterogeneous catalysis. Prog. Surf. Sci. 2004, 77, 71–137. [Google Scholar] [CrossRef]
- Xia, X.H.; Gao, Y.; Wang, Z.; Jia, Z.J. Structure and photocatalytic properties of copper-doped rutile TiO2 prepared by a low-temperature process. J. Phys. Chem. Solids 2008, 69, 2888–2893. [Google Scholar] [CrossRef]
- Tichapondwa, S.M.; Newman, J.P.; Kubhek, O. Effect of TiO2 phase on the photocatalytic degradation of methylene blue dye. Phys. Chem. Earth Parts A/B/C 2020, 118–119, 102900. [Google Scholar] [CrossRef]
- Miyagi, T.; Kamei, M.; Mitsuhashi, T.; Ishigaki, T.; Yamazaki, A. Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chem. Phys. Lett. 2004, 390, 399–402. [Google Scholar] [CrossRef]
- Xiao, Q.; Si, Z.; Yu, Z.; Qiu, G. Sol–gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. MSEB 2007, 137, 189–194. [Google Scholar] [CrossRef]
Photocatalysts’ Name | Metal | Metal Loading, wt% | Substrate Composition | Metal Concentration Determined by XRF, ppm |
---|---|---|---|---|
0.1Cu/TiO2 (R) | Cu | 0.1 | 100% Rutile | 998 |
0.25Cu/TiO2 (R) | Cu | 0.25 | 100% Rutile | 2183 |
0.5Cu/TiO2 (R) | Cu | 0.5 | 100% Rutile | 4012 |
1Cu/TiO2 (R) | Cu | 1 | 100% Rutile | 8062 |
0.1Cu/TiO2 (A) | Cu | 0.1 | 100% Anatase | 991 |
0.25Cu/TiO2 (A) | Cu | 0.25 | 100% Anatase | 2216 |
0.5Cu/TiO2 (A) | Cu | 0.5 | 100% Anatase | 4086 |
1Cu/TiO2 (A) | Cu | 1 | 100% Anatase | 7972 |
0.1Ag/TiO2 (A) | Ag | 0.1 | 100% Anatase | 997 |
0.25Ag/TiO2 (A) | Ag | 0.25 | 100% Anatase | 2149 |
0.1Ag/TiO2 (R) | Ag | 0.1 | 100% Rutile | 1002 |
0.25Ag/TiO2 (R) | Ag | 0.25 | 100% Rutile | 2204 |
0.1Cu/TiO2 (95 R) | Cu | 0.1 | 95% Rutile/5% Anatase | 1015 |
0.1Cu/TiO2 (90 R) | Cu | 0.1 | 90% Rutile/10% Anatase | 1015 |
0.1Cu/TiO2 (80 R) | Cu | 0.1 | 80% Rutile/20% Anatase | 1015 |
0.1Cu/TiO2 (70 R) | Cu | 0.1 | 70% Rutile/30% Anatase | 1004 |
0.25Ag/TiO2 (95 R) | Ag | 0.25 | 95% Rutile/5% Anatase | 1007 |
0.25Ag/TiO2 (90 R) | Ag | 0.25 | 90% Rutile/10% Anatase | 1009 |
0.25Ag/TiO2 (80 R) | Ag | 0.25 | 80% Rutile/20% Anatase | 1012 |
0.25Ag/TiO2 (70 R) | Ag | 0.25 | 70% Rutile/30% Anatase | 1003 |
Sample Name | BET m2/g | BJH Adsorption Cumulative Pore Volume, cm3/g | Adsorption Average Pore Diameter, Å |
---|---|---|---|
TiO2—Anatase | 9.93 | 0.025 | 127 |
TiO2—Rutile | 4.38 | 0.009 | 100 |
0.1Cu/TiO2 (R) | 3.91 | 0.010 | 110 |
0.25Cu/TiO2 (R) | 3.91 | 0.010 | 109 |
0.5Cu/TiO2 (R) | 3.89 | 0.010 | 131 |
0.25Cu/TiO2 (A) | 9.40 | 0.027 | 142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thoda, O.; Moschovi, A.M.; Sakkas, K.M.; Polyzou, E.; Yakoumis, I. Highly Active under VIS Light M/TiO2 Photocatalysts Prepared by Single-Step Synthesis. Appl. Sci. 2023, 13, 6858. https://doi.org/10.3390/app13116858
Thoda O, Moschovi AM, Sakkas KM, Polyzou E, Yakoumis I. Highly Active under VIS Light M/TiO2 Photocatalysts Prepared by Single-Step Synthesis. Applied Sciences. 2023; 13(11):6858. https://doi.org/10.3390/app13116858
Chicago/Turabian StyleThoda, Olga, Anastasia M. Moschovi, Konstantinos Miltiadis Sakkas, Ekaterini Polyzou, and Iakovos Yakoumis. 2023. "Highly Active under VIS Light M/TiO2 Photocatalysts Prepared by Single-Step Synthesis" Applied Sciences 13, no. 11: 6858. https://doi.org/10.3390/app13116858
APA StyleThoda, O., Moschovi, A. M., Sakkas, K. M., Polyzou, E., & Yakoumis, I. (2023). Highly Active under VIS Light M/TiO2 Photocatalysts Prepared by Single-Step Synthesis. Applied Sciences, 13(11), 6858. https://doi.org/10.3390/app13116858