Actinidia arguta (Baby Kiwi) Waste: Preliminary Considerations on Seed Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material and Sample Preparation
2.2. Baby Kiwi Seed Oil Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helkar, P.B.; Sahoo, A.K.; Patil, N.J. Review: Food industry by-products used as functional food ingredients. Int. J. Waste Resour. 2016, 6, 1000248. [Google Scholar]
- Mourad, M. Recycling, recovering and preventing “food waste”: Competing solutions for food systems sustainability in the United States and France. J. Clean. Prod. 2016, 126, 461–477. [Google Scholar] [CrossRef] [Green Version]
- Putnik, P.; Barba, F.J.; Španića, I.; Zorića, Z.; Dragović-Uzelaca, V.; Bursać Kovačevića, D. Green extraction approach for the recovery of polyphenols from Croatian olive leaves (Olea Europea). Food Bioprod. Process. 2017, 106, 19–28. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Growth Within: A Circular Economy Vision for a Competitive Europe; Ellen MacArthur Foundation Publishing: Isle of Wight, UK, 2015. [Google Scholar]
- Barba, F.J.; Orlien, V. Processing, bioaccessibility and bioavailability of bioactive sulphur compounds: Facts and gaps. J. Food Compos. Anal. 2017, 61, 1–3. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govers, C.; Kasikci, M.B.; Van Der Sluis, A.A.; Mes, J.J. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. Nutr. Rev. 2018, 76, 29–46. [Google Scholar] [CrossRef]
- Ajebli, M.; Eddouks, M. Phytotherapy of Hypertension: An Updated Overview. Endocr. Metab. Immune. Disord. Drug Targets 2020, 20, 812–839. [Google Scholar] [CrossRef]
- Mullins, A.P.; Arjmandi, B.H. Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef]
- Lee, J.; Han, Y.; Wang, W.; Jo, H.; Kim, H.; Kim, S.; Yang, K.-M.; Kim, S.-J.; Dhanasekaran, D.N.; Song, Y.S. Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules 2021, 11, 1107. [Google Scholar] [CrossRef]
- van Breda, S.G.; de Kok, T.M. Smart combinations of bioactive compounds in fruits and vegetables may guide new strategies for per-sonalized prevention of chronic diseases. Mol. Nutr. Food Res. 2018, 62, 1700597. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Rajoka, M.S.R.; Barba, F.J.; Cao, H.; Xiao, J.; Prieto, M.; Simal-Gandara, J. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chem. 2021, 370, 131315. [Google Scholar] [CrossRef] [PubMed]
- Latocha, P.; Krupa, T.; Wołosiak, R.; Worobiej, E.; Wilczak, J. Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int. J. Food Sci. Nutr. 2010, 61, 381–394. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki-Katamura, S.; Yoneta-Wada, M.; Kozuka, M.; Sakaue, T.; Yamane, T.; Suzuki, J.; Arakawa, Y.; Ohkubo, I. Purifi-cation and biochemical characterization of cysteine protease from baby kiwi (Actinidia arguta). Open Biochem. J. 2019, 13, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Fisk, C.L.; Silver, A.M.; Strik, B.C.; Zhao, Y. Postharvest quality of hardy Kiwifruit (Actinidia arguta Ananasnaya) as-sociated with packaging and storage conditions. Postharvest Biol. Technol 2008, 47, 338–345. [Google Scholar] [CrossRef]
- Giuggioli, N.R.; Briano, R.; Baudino, C.; Peano, C. Post-Harvest Warehouse Management for Actinidia arguta Fruits. Pol. J. Food Nutr. Sci. 2019, 69, 63–70. [Google Scholar] [CrossRef]
- Giacalone, G.; DA Silva, T.; Peano, C.; Giuggioli, N. Development of fruit leather from Actinidia arguta by-product: Quality assessment and shelf-life studies. Ital. J. Food Sci. 2019, 31, 470–486. [Google Scholar] [CrossRef]
- Silva, A.M.; Pinto, D.; Fernandes, I.; Albuquerque, T.G.; Costa, H.S.; Freitas, V.; Rodrigues, F.; Oliveira, M.B.P. Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food Chem. 2019, 289, 625–634. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Anwar, S.; Yunusa, B.M.; Nayik, G.A.; Khaneghah, A.M. The potential of apricot seed and oil as functional food: Composition, biological properties, health benefits & safety. Food Biosci. 2023, 51, 102336. [Google Scholar] [CrossRef]
- Boyapati, T.; Rana, S.S.; Ghosh, P. Microwave-assisted extraction of dragon fruit seed oil: Fatty acid profile and functional properties. J. Saudi Soc. Agric. Sci. 2023, 22, 149–157. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Q.; Zhang, Q.; Zhang, C.; Liu, D.D.; Yang, H. Comparative study on composition, physicochemical and anti-oxidant characteristics of different varieties of kiwifruit seed oil in China. Food Chem. 2018, 264, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Liu, Q.; Zhang, Q.; Tuo, X.; Fan, D.; Deng, J.; Yang, H. Kiwifruit seed oil prevents obesity by regulating inflammation, thermogenesis, and gut microbiota in high-fat diet-induced obese C57BL/6 mice. Food Chem. Toxicol. 2018, 125, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yu, L. Fatty Acid Composition and Antioxidant Properties of Cold-Pressed Marionberry, Boysenberry, Red Raspberry, and Blueberry Seed Oils. J. Agric. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.M.; Briano, R.; Peano, C.; Giuggioli, N.R. The use of a new explanatory methodology to assess maturity and ripening indices for kiwiberry (Actinidia arguta): Preliminary results. Postharvest Biol. Technol. 2020, 163, 111122. [Google Scholar] [CrossRef] [Green Version]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society, Determination of Saturated, Cis-Monounsaturated and Cis-Polyunsaturated Fatty Acids in Marine and Other Oils Containing Long-Chain Polyunsaturated Fatty Acids (PUFA) by Capillary GLC., 7th ed.; AOCS: Urbana, IL, USA, 2017. [Google Scholar]
- AOCS Official Method Ch 6-91—Determination of the Composition of the Sterol Fraction of Animal and Vegetable Oils and Fats by TLC and Capillary GLC, 7th ed.; American Oil Chemists’ Society: Urbana, IL, USA, 2017.
- ISO 9936; Animal and Vegetable Fats and Oils—Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography. ISO: Geneva, Switzerland, 2006.
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Fatty acid composition, bioactive phytochemicals, antioxidant properties and oxidative stability of edible fruit seed oil: Effect of preharvest and processing factors. Heliyon 2020, 6, e04962. [Google Scholar] [CrossRef]
- Kerschbaum, S.; Schweiger, P. Untersuchungen über die Fettsäure- und Tocopherolgehalte von Pflanzenölen, Aschlußbericht über das Arbeitsprojekt „Pflanzenöle“, Information für die Pflanzenproduktion, Sonderheft 1/2001; Landesanstalt für Pflanzenbau Forchheim: Rheinstetten, Germany, 2001. [Google Scholar]
- Linder, C.R. Adaptive evolution of seed oils in plants: Accounting for the biogeographic distribution of saturated and unsatu-rated fatty acids in seed oils. Am. Nat. 2000, 156, 442–458. [Google Scholar] [CrossRef]
- Piombo, G.; Barouh, N.; Barea, B.; Boulanger, R.; Brat, P.; Pina, M.; Villeneuve, P. Characterization of the seed oils from kiwi (Actinidia chinensis), passion fruit (Passiflora edulis) and guava (Psidium guajava). Oléagineux Corps Gras Lipides 2006, 13, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Goyens, P.L.; Mensink, R.P. The dietary α-linolenic acid to linoleic acid ratio does not affect the serum lipoprotein profile in humans. J. Nutr. 2005, 135, 12. [Google Scholar] [CrossRef] [Green Version]
- Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative stability of selected edible oils. Molecules 2008, 23, 1746. [Google Scholar] [CrossRef] [Green Version]
- Traitler, H.; Wille, H.J.; Studer, A. Fractionation of black currant seed oil. J. Am. Oil Chem. Soc. 1988, 65, 755–760. [Google Scholar] [CrossRef]
- Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; Verhe, R. Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. J. Food Lipids 2009, 16, 33–49. [Google Scholar] [CrossRef]
- Bada, J.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of Berry and Currant Seed Oils from Asturias, Spain. Int. J. Food Prop. 2014, 17, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Firestone, D. Physical and Chemical Characteristics of Oils, Fats and Waxes; AOCS Press: Champaign, IL, USA, 1999. [Google Scholar]
- Tsuzuki, T.; Kawakami, Y.; Abe, R.; Nakagawa, K.; Koba, K.; Imamura, J.; Iwata, T.; Ikeda, I.; Miyazawa, T. Conjugated linoleic acid is slowly absorbed in rat intestine, but quickly converted to conjugated linoleic acid. J. Nutr. 2006, 136, 2153–2159. [Google Scholar] [CrossRef] [Green Version]
- Matthaeus, B.; Öczan, M.M. Fatty acid and tocopherol contents of some Prunus spp. kernel oils. J. Food Lipids 2009, 16, 187–199. [Google Scholar] [CrossRef]
- Verardo, V.; Garcia-Salas, P.; Baldi, E.; Segura-Carretero, A.; Fernandez-Gutierrez, A.; Caboni, M.F. Pomegranate seeds as a source of nutraceutical oil naturally rich in bioactive lipids. Food Res. Int. 2014, 65, 445–452. [Google Scholar] [CrossRef]
Fatty Acid Content (g/100 g) | |
---|---|
Palmitic acid (C16:0) | 5.5 ± 0.2 |
Stearic acid (C18:0) | 1.9 ± 0.0 |
Oleic acid (C18:1) | 0.6 ± 0.0 |
Linoleic acid (C18:2ϖ6) | 9.3 ± 0.3 |
α-linolenic acid (C18:3ϖ3) | 82.7 ± 0.2 |
Σ Saturated fatty acids | 7.4 ± 0.2 |
Σ Unsaturated fatty acids | 92.6 ± 0.5 |
ϖ6:3 | 0.1 |
Fatty Acid | Redcurrant (g/100 g) [36] | Blackberry (g/100 g) [37] | Blueberry (g/100 g) [38] | Raspberry (g/100 g) [38] | Grapeseed (g/100 g) [39] | Pomenagrate (g/100 g) [40] | Sour Cherry (g/100 g) [41] |
---|---|---|---|---|---|---|---|
Palmitic acid (C16:0) | 4–5 | 3.71 | 4.98 | 2.73 | 7.40 | 3.90 | 5.30 |
Stearic acid (C18:0) | 1–2 | 2.18 | 1.47 | 0.87 | 3.90 | 2.60 | 1.50 |
Oleic acid (C18:1) | 14–16 | 14.72 | 18.00 | 11.76 | 15.60 | 6.60 | 63.90 |
Linoleic acid (C18:2ϖ6) | 41–42 | 61.22 | 35.84 | 54.27 | 72.20 | 6.90 | 27.00 |
α-linolenic acid (C18:3ϖ3) | 29–31 | 17.60 | 36.08 | 26.68 | 0.24 | - | 0.10 |
Σ Saturated fatty acids | 6.00 | 5.89 | 6.45 | 3.30 | 11.30 | 6.50 | 6.80 |
Σ Unsaturated fatty acids | 94.00 | 94.11 | 93.55 | 96.70 | 88.70 | 93.50 | 93.20 |
ϖ6:3 | 1.40 | 3.50 | 0.90 | 2.00 | >100 | - | >100 |
Tocopherol Amount (g/100 g) | Squalene (mg/g) | Sterols (mg/g) | |
---|---|---|---|
Total amount | 0.027 | 19.3 ± 0.3 | 2.0 ± 0.0 |
α-tocopherol | 0.004 | (β-sitosterol) | |
β-tocopherol | Tr | ||
γ-tocopherol | 0.023 | ||
δ-tocopherol | Tr |
Tocopherol | Redcurrant (mg/Kg) [39] | Blackberry (mg/Kg) [37] | Blueberry (mg/100 g) [38] | Raspberry (mg/100 g) [38] | Grapeseed (mg/100 g) [39] | Pomenagrate (mg/Kg) [42] | Sour Cherry (mg/Kg) [41] |
---|---|---|---|---|---|---|---|
Total amount | 1043 | 1388.7 | 32–52 | 1281.4–1833.8 | 240.2 | ||
α-tocopherol | 320 | 25.4 | 0.11 | 27.7 | 26–39 | 122.5–48.2 | 4.7 |
β-tocopherol | 8 | - | 0.06 | 0.65 | 2–14 | - | 0.4 |
γ-tocopherol | - | 1311.7 | 0.96 | 58.2 | 10–34 | 1176.3–1732.5 | 197.2 |
γ-tocotrienol | - | 20.0 | 6.16 | - | 15–34 | - | 21.5 |
δ-tocopherol | - | 31.7 | 0.27 | - | Tr | 7.8–35.6 | 15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuggioli, N.R.; Peano, C.; Brondino, L. Actinidia arguta (Baby Kiwi) Waste: Preliminary Considerations on Seed Recovery. Appl. Sci. 2023, 13, 6859. https://doi.org/10.3390/app13116859
Giuggioli NR, Peano C, Brondino L. Actinidia arguta (Baby Kiwi) Waste: Preliminary Considerations on Seed Recovery. Applied Sciences. 2023; 13(11):6859. https://doi.org/10.3390/app13116859
Chicago/Turabian StyleGiuggioli, Nicole Roberta, Cristiana Peano, and Luca Brondino. 2023. "Actinidia arguta (Baby Kiwi) Waste: Preliminary Considerations on Seed Recovery" Applied Sciences 13, no. 11: 6859. https://doi.org/10.3390/app13116859
APA StyleGiuggioli, N. R., Peano, C., & Brondino, L. (2023). Actinidia arguta (Baby Kiwi) Waste: Preliminary Considerations on Seed Recovery. Applied Sciences, 13(11), 6859. https://doi.org/10.3390/app13116859