Effects of the Addition of Pecan Nuts on the Nutritional Properties and Final Quality of Merino Lamb Burgers
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Freeze-Dried Pecan Nuts as a Natural Ingredient
2.2. Lamb Burger Processing
2.3. Methods
2.3.1. Nutritional Composition
2.3.2. pH and Water-Holding Capacity
2.3.3. Instrumental Colour
2.3.4. Cooking Characteristics
2.3.5. Textural Characteristics of Cooked Burgers
2.3.6. Fatty Acid Profile
2.3.7. Determination of Antioxidant Compounds
2.3.8. Lipid and Protein Oxidations
2.3.9. Microbial Quality
2.3.10. Sensory Analysis
2.3.11. Statistical Analysis
3. Results and Discussion
3.1. Effects of the Various Portions of Added Pecan Nuts on Nutritional Composition
3.2. Effects of Proportion of Pecan Nuts on pH, Water-Holding Capacity and Instrumental Colour
3.3. Effects of the Pecan Nut Levels on the Cooking Properties
3.4. Effects of the Pecan Nut Levels on Textural Properties
3.5. Determination of the Fatty Acid Profile
3.6. Antioxidant Composition and Oxidative Status
3.7. Microbial Quality
3.8. Sensory Analysis
3.9. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiménez-Colmenero, F.; Sánchez-Muniz, F.J.; Olmedilla-Alonso, B. Design and development of meat-based functional foods with walnut: Technological, nutritional and health impact. Food Chem. 2010, 123, 959–967. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Red Meat and Processed Meat. Lyon (FR): International Agency for Research on Cancer; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Jiménez-Colmenero, F. Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends Food Sci. Technol. 2007, 18, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Horrillo, A.; Díaz-Caro, C.; Crespo-Cebada, E.; Tejerina, D.; Mesías, F.J.; Rodríguez-Ledesma, A.; García-Torres, S. Perceptions of Spanish consumers towards novel lamb burgers enriched with natural antioxidants and healthy fatty acids. Ital. J. Food Sci. 2022, 34, 11–24. [Google Scholar] [CrossRef]
- Vergara, H.; Cózar, A.; Rubio, N. Lamb meat burgers shelf life: Effect of the addition of different forms of rosemary (Rosmarinus officinalis L.). CyTA-J. Food 2021, 19, 606–613. [Google Scholar] [CrossRef]
- Rios-Mera, J.D.; Saldaña, E.; Patinho, I.; Selani, M.M.; Contreras-Castillo, C.J. Enrichment of NaCl-reduced burger with long-chain polyunsaturated fatty acids: Effects on physicochemical, technological, nutritional, and sensory characteristics. Meat Sci. 2021, 177, 108497. [Google Scholar] [CrossRef]
- Romano, A.; Gallo, V.; Ferranti, P.; Masi, P. ScienceDirect Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr. Opin. Food Sci. 2021, 40, 157–167. [Google Scholar] [CrossRef]
- Rabadán, A.; Martínez-Carrasco, L.; Brugarolas, M.; De Vera, C.N.-R.; Sayas-Barberá, E.; Bernabéu, R. Differences in Consumer Preferences for Lamb Meat before and during the Economic Crisis in Spain. Analysis and Perspectives. Foods 2020, 9, 696. [Google Scholar] [CrossRef]
- Fernandes, R.; Trindade, M.; Tonin, F.; Pugine, S.; Lima, C.; Lorenzo, J.; de Melo, M. Evaluation of oxidative stability of lamb burger with Origanum vulgare extract. Food Chem. 2017, 233, 101–109. [Google Scholar] [CrossRef]
- Munekata, P.; Franco, D.; Trindade, M.; Lorenzo, J.M. Characterization of phenolic composition in chestnut leaves and beer residue by LC-DAD-ESI-MS. LWT 2016, 68, 52–58. [Google Scholar] [CrossRef]
- Vergara, H.; Cózar, A.; Rubio, N. Effect of adding of different forms of oregano (Origanum vulgare) on lamb meat burgers quality during the storage time. CyTA-J. Food 2020, 18, 535–542. [Google Scholar] [CrossRef]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef] [PubMed]
- Jay, J.M. Fresh Meats and Poultry. In Modern Food Microbiology; Food Science Texts Series; Springer: Boston, MA, USA, 1998. [Google Scholar] [CrossRef]
- Honikel, K.O. Minced Meats. In Encyclopedia of Meat Sciences; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Vergara, H.; Cózar, A. Aspectos básicos de la conservación de la carne. I. Métodos físicos. Eurocarne 2015, 235, 140–148. [Google Scholar]
- Hassannejad, R.; Mohammadifard, N.; Kazemi, I.; Mansourian, M.; Sadeghi, M.; Roohafza, H.; Sarrafzadegan, N. Long-term nuts intake and metabolic syndrome: A 13-year longitudinal population-based study. Clin. Nutr. 2019, 38, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Blumberg, J.B. Phytochemical Composition of Nuts. Asia Pac. J. Clin. Nutr. 2008, 17, 329–332. [Google Scholar] [PubMed]
- Stuetz, W.; Schlörmann, W.; Glei, M. B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chem. 2017, 221, 222–227. [Google Scholar] [CrossRef]
- Thewes, F.R.; Both, V.; Thewes, F.R.; Brackmann, A.; Wagner, R.; Ribeiro, S.R.; Ludwig, V.; Rossato, F.P. Pecan storage: Effects of 1-MCP on the overall quality and volatile compounds profile of shelled and unshelled pecans. LWT 2021, 145, 111298. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official’s Analytical Chemists, 17th ed.; Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 2003. [Google Scholar]
- Foegeding, E.A.; Ramsey, S.R. Rheological and Water-Holding Properties of Gelled Meat Batters Containing Iota Carrageenan, Kappa Carrageenan or Xanthan gum. J. Food Sci. 1987, 52, 549–553. [Google Scholar] [CrossRef]
- Liu, Q.; Scheller, K.; Schaeffer, D. Technical note: A simplified procedure for vitamin E determination in beef muscle. J. Anim. Sci. 1996, 74, 2406–2410. [Google Scholar] [CrossRef] [Green Version]
- Cayuela, J.; Garrido, M.; Sancho Bañón, J.; Ros, J. Simultaneus HPLC Análisis of α-tocopherol and cholesterol in fresh pig meat. J. Agric. Food Chem. 2003, 51, 1120–1124. [Google Scholar] [CrossRef]
- Cano, A.; Hernández-Ruíz, J.; García-Cánovas, F.; Acosta, M.; Arnao, M.B. An End-point Method for Estimation of the Total Antioxidant Activity in Plant Material. Phytochem. Anal. 1998, 9, 196–202. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833-2; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Microorganisms. Colony-Count Technique at 30 °C by the Surface Plating Technique. ISO (International Organization for Standardization): Geneva, Switzerland, 2013.
- ISO 21528-2; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. ISO (International Organization for Standardization): Geneva, Switzerland, 2017.
- ISO 15214-1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Esophilic Lactic Acid Bacteria—Colony-Count Technique at 30 °C. ISO (International Organization for Standardization): Geneva, Switzerland, 1998.
- ISO 6579; Microbiology—General Guidance on Methods for the Detection of Salmonella. ISO (International Organization for Standardization): Geneva, Switzerland, 1993.
- ISO 8589:2007/Amd 1:2014; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO (International Organization for Standardization): Geneva, Switzerland, 2014.
- Ayo, J.; Carballo, J.; Solas, M.; Jiménez-Colmenero, F. Physicochemical and sensory properties of healthier frankfurters as affected by walnut and fat content. Food Chem. 2008, 107, 1547–1552. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Sabharanjak, S.M.; Zengin, G.; Mollica, A.; Szostak, A.; Simirgiotis, M.; Huminiecki, Ł.; Horbanczuk, O.K.; Nabavi, S.M.; Mocan, A. Pecan nuts: A review of reported bioactivities and health effects. Trends Food Sci. Technol. 2018, 71, 246–257. [Google Scholar] [CrossRef]
- Reyes-Padilla, E.; Valenzuela-Melendres, M.; Camou, J.P.; Sebranek, J.G.; Alemán-Mateo, H.; Dávila-Ramírez, J.L.; Cumplido-Barbeitia, G.; González-Ríos, H. Quality evaluation of low fat bologna-type meat product with a nutritional profile designed for the elderly. Meat Sci. 2018, 135, 115–122. [Google Scholar] [CrossRef]
- Cadavez, V.A.; Popova, T.; Bermúdez, R.; Osoro, K.; Purriños, L.; Bodas, R.; Lorenzo, J.M.; Gonzales-Barron, U. Compositional attributes and fatty acid profile of lamb meat from Iberian local breeds. Small Rumin. Res. 2020, 193, 106244. [Google Scholar] [CrossRef]
- Linares, M.B.; Cózar, A.; Garrido, M.D.; Vergara, H. Nutritional Attributes and Sensory Quality during Storage Time of Spiced Lamb Burgers from Manchego Spanish Breed. Foods 2020, 9, 1466. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Serrano, A.; Ayo, J.; Solas, M.T.; Cofrades, S.; Carballo, J. Physicochemical and sensory characteristics of restructured beef steak with added walnuts. Meat Sci. 2003, 65, 1391–1397. [Google Scholar] [CrossRef]
- Alvarez-Parrilla, E.; Urrea-López, R.; de la Rosa, L.A. Bioactive components and health effects of pecan nuts and their byproducts: A review. J. Food Bioact. 2018, 1, 56–92. [Google Scholar] [CrossRef] [Green Version]
- De la Rosa, L.A.; Álvarez-Parrilla, E.; García-Fajardo, J.A. Identificación de compuestos fenólicos en extractos de almendra (Prunus dulcis) y nuez pecana (Carya illinoinensis) mediante cromatografía líquida acoplada a espectrometría de masas en tándem (HPLC-MS/MS). TIP Rev. Espec. Cienc. Quím.-Biól. 2019, 22, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ayo, J.; Carballo, J.; Solas, M.T.; Jiménez-Colmenero, F. High pressure processing of meat batters with added walnuts. Int. J. Food Sci. Technol. 2005, 40, 47–54. [Google Scholar] [CrossRef]
- Cofrades, S.; Ayo, J.; Serrano, A.; Carballo, J.; Jiménez-Colmenero, F. Walnut, microbial transglutaminase and chilling storage time effects on salt-free beef batter characteristics. Eur. Food Res. Technol. 2006, 222, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, R.A.; Ledward, D. Lawrie’s Meat Science, 7th ed.; Woodhead Publishing: Cambridge, UK, 2006; 442p. [Google Scholar]
- Perez Alvarez, J.A.; Fernandez Lopez, J.; Sayas Barbera, M.E.; Cartagena Garcia, R. Caracterización de los parámetros de color de diferentes materias primas usadas en la industria cárnica. Eurocarne 1998, 63, 115–122. [Google Scholar]
- Serrano Agulló, M.A. Desarrollo de Reestructurados Cárnicos Potencialmente Funcionales Mediante la Incorporación de Nuez. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 12 May 2006. [Google Scholar]
- Florowski, T.; Florowska, A.; Chmiel, M.; Dasiewicz, K.; Adamczak, L.; Pietrzak, D. The effect of nuts and oilseeds enriching on the quality of restructured beef steaks. LWT 2019, 104, 128–133. [Google Scholar] [CrossRef]
- Romero, C. Caracterizacion Fisico Quimica de un Reestructurado de Carne de Llama (Lama glama) con Inclusion de Nuez y Transglutaminasa. Ph.D. Thesis, Universidad Nacional Mayor de San Marcos, Lima, Peru, 19 June 2019. [Google Scholar]
- Sánchez-Zapata, E.; Muñoz, C.; Fuentes, E.; Fernández-López, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Alvarez, J. Effect of tiger nut fibre on quality characteristics of pork burger. Meat Sci. 2010, 85, 70–76. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez-Ortí, M.; Martínez, E.; Pardo-Giménez, A.; Zied, D.; Pardo, J. Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers. LWT 2021, 136, 110307. [Google Scholar] [CrossRef]
- Cabeza de Vaca, M.; García-Torres, S.; Romero, P.; Nuez, R.; Domínguez, G.; López-Corrales, M. Perfil de ácidos grasos de la colección de pecanero en Extremadura. In Proceedings of the XII Simposio Nacional y el X Ibérico de Maduración y Postcosecha, Badajoz, Spain, 7 June 2018; pp. 260–263. [Google Scholar]
- Ryan, E.; Galvin, K.; O’Connor, T.P.; Maguire, A.R.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of brazil, pecan, pine, pistachio and cashew nuts. Int. J. Food Sci. Nutr. 2006, 57, 219–228. [Google Scholar] [CrossRef]
- Sales-Campos, H.; Souza, P.R.; Peghini, B.C.; da Silva, J.S.C.C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Linares, M.B.; Cózar, A.; Garrido, M.D.; Vergara, H. Chemical and sensory quality of lamb meat burgers from Manchego Spanish breed. Int. J. Food Sci. Nutr. 2012, 63, 843–852. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Szendrő, Z.; Fratini, F.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci. 2015, 110, 93–100. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, F.A.L.; Lorenzo, J.M.; Pateiro, M.; Bermúdez, R.; Purriños, L.; Trindade, M.A. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 °C. Food Res. Int. 2019, 125, 108554. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Vargas, F.C.; Strozzi, I.; Pateiro, M.; Furtado, M.M.; Sant’Ana, A.S.; Rocchetti, G.; Barba, F.J.; Dominguez, R.; Lucini, L.; et al. Influence of pitanga leaf extracts on lipid and protein oxidation of pork burger during shelf-life. Food Res. Int. 2018, 114, 47–54. [Google Scholar] [CrossRef]
- EC Regulation 1441/2007. COMMISSION REGULATION (EC) No 1441/2007 of 5 December 2007 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs. Official Journal of the European Union. 2007. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:322:0012:0029:EN:PDF (accessed on 8 May 2023).
- EC Regulation 2073/2005. COMMISSION REGULATION (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Official Journal of the European Union. 2005. Available online: http://data.europa.eu/eli/reg/2005/2073/oj (accessed on 8 May 2023).
- EC Regulation 229/2019. COMMISSION REGULATION (EU) No 2019/229 of 7 February 2019 Amending Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs as Regards Certain Methods, the Food Safety Criterion for Listeria Monocytogenes in Sprouted Seeds, and the Process Hygiene Criterion and Food Safety Criterion for Unpasteurised Fruit and Vegetable Juices (Ready-to-Eat). Official Journal of the European Union. 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/229/oj (accessed on 8 May 2023).
- Andrés, A.; Petrón, M.; Adámez, J.; López, M.; Timón, M. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.I.; Tejeda, J.F.; Carrapiso, A.I.; Petrón, M.J.; Lara, M.S.; Andrés, A.I. Shelf life of Merino lamb meat retail packaged under atmospheres of various compositions. Int. J. Food Sci. Technol. 2011, 46, 492–499. [Google Scholar] [CrossRef]
- Serrano, A.; Cofrades, S.; Jiménez-Colmenero, F. Characteristics of restructured beef steak with different proportions of walnut during frozen storage. Meat Sci. 2006, 72, 108–115. [Google Scholar] [CrossRef]
- Lutz, M.; Morales, D.; Sepúlveda, S.; Alviña, M. Sensory evaluation of culinary preparations containing novel functional foods oriented to the elderly. Rev. Chil. Nutr. 2008, 35, 93–99. [Google Scholar]
Control | With Pecan | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% | 10% | 15% | ||||
Protein content | 16.74 | 17.46 | 17.63 | 16.63 | 0.20 | 0.178 |
Fat content | 13.98 c | 14.94 bc | 15.71 b | 18.27 a | 0.34 | 0.000 |
Moisture | 62.25 a | 59.10 ab | 57.08 bc | 53.43 c | 0.74 | 0.000 |
Ash content | 4.34 a | 3.24 b | 3.61 b | 3.29 b | 0.10 | 0.000 |
Total phenol content | 0.82 c | 1.17 b | 1.49 a | 1.54 a | 0.06 | 0.000 |
Calories (kcal/g DM) | 14.66 a | 13.98 ab | 13.76 bc | 13.28 c | 0.16 | 0.002 |
Control | With Pecans | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% | 10% | 15% | ||||
pH | 6.06 c | 6.28 b | 6.33 ab | 6.37 a | 0.02 | 0.000 |
WHC (%) | 14.85 b | 15.99 ab | 19.31 a | 17.97 ab | 0.56 | 0.014 |
Colour parameters | ||||||
L* | 48.13 c | 50.38 bc | 52.71 ab | 54.96 a | 0.65 | 0.000 |
a* | 15.50 a | 13.15 b | 10.50 d | 11.73 c | 0.37 | 0.000 |
b* | 10.81 c | 12.50 b | 13.05 ab | 14.28 a | 0.28 | 0.000 |
C* | 18.96 a | 18.18 a | 16.75 b | 18.48 a | 0.23 | 0.001 |
Hº | 34.85 c | 43.54 b | 51.18 a | 50.60 a | 1.28 | 0.000 |
Control | With Pecans | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% | 10% | 15% | ||||
% Cooking loss | 24.84 b | 28.19 a | 25.00 b | 24.72 b | 0.53 | 0.023 |
% Diameter reduction | 16.358 | 18.552 | 16.709 | 16.078 | 1.16 | 0.883 |
Control | With Pecans | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% | 10% | 15% | ||||
Shear/Compression force | ||||||
Hardness (N) | 38.29 | 36.93 | 32.96 | 33.29 | 7.34 | 0.387 |
TPA 50 | ||||||
Hardness(N/cm2) | 19.20 | 13.91 | 14.05 | 14.89 | 4.54 | 0.055 |
Springiness (cm) | 0.85 a | 0.81 ab | 0.81 ab | 0.75 b | 0.07 | 0.022 |
Cohesiveness | 0.66 a | 0.69 a | 0.62 a | 0.53 b | 0.08 | 0.000 |
Gumminess (N cm s2) | 12.64 a | 9.56 ab | 8.77 ab | 8.20 b | 3.32 | 0.027 |
Chewiness (N cm s2) | 10.74 a | 7.90 ab | 7.07 b | 6.33 b | 2.99 | 0.011 |
Control | With Pecan | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% | 10% | 15% | ||||
C16:0 | 24.41 a | 21.04 b | 19.07 c | 17.17 d | 0.49 | 0.000 |
C18:0 | 15.56 a | 13.04 b | 11.64 c | 10.57 d | 0.34 | 0.000 |
C18:1 | 45.53 d | 49.82 c | 52.45 b | 54.75 a | 0.63 | 0.000 |
C18:2 n-6 | 3.53 d | 6.45 c | 8.49 b | 10.246 a | 0.46 | 0.000 |
C18:3 n-3 | 0.41 d | 0.58 c | 0.68 b | 0.76 a | 0.03 | 0.000 |
SFA | 43.75 a | 37.25 b | 33.47 c | 30.06 d | 0.93 | 0.000 |
MUFA | 49.50 d | 53.33 c | 55.52 b | 57.18 a | 0.53 | 0.000 |
PUFA | 3.94 d | 7.03 c | 9.17 b | 11.01 a | 0.49 | 0.000 |
PUFA/SFA | 0.09 d | 0.19 c | 0.27 b | 0.37 a | 0.02 | 0.000 |
AI | 0.73 a | 0.55 b | 0.46 c | 0.38 d | 0.02 | 0.000 |
TI | 1.22 a | 0.80 b | 0.62 c | 0.50 d | 0.05 | 0.000 |
Control | With Pecans | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% | 10% | 15% | ||||
Antioxidant composition (μg g−1) | ||||||
α-tocopherol | 4.21 b | 4.97 ab | 4.57 ab | 5.31 a | 0.14 | 0.019 |
γ-tocopherol | 0.16 d | 11.18 b | 18.64 b | 27.74 a | 1.84 | 0.000 |
AAT | 0.65 c | 0.71 c | 0.82 b | 0.96 a | 0.02 | 0.000 |
Oxidative status | ||||||
Lipid oxidation (μg MDA g−1) | 1.46 a | 0.59 b | 0.59 b | 0.58 b | 0.07 | 0.000 |
Protein oxidation (nmol carbonyls mg proteins g−1) | 2.26 a | 1.56 b | 1.73 ab | 2.13 ab | 0.09 | 0.013 |
Control | With Pecans | SEM | p-Value | |||
---|---|---|---|---|---|---|
5% | 10% | 15% | ||||
Mesophilic aerobic bacteria | 5.41 | 5.05 | 5.09 | 5.03 | 0.07 | 0.188 |
Enterobacteriaceae | 2.38 | 2.22 | 2.01 | 2.22 | 0.07 | 0.320 |
Lactic acid bacteria | 2.85 a | 2.71 a | 2.34 b | 2.79 a | 0.06 | 0.000 |
P. aeruginosa | 1.46 | 1.22 | 1.52 | 1.03 | 0.28 | 0.941 |
E. coli | ND | ND | ND | ND | - | - |
Salmonella spp. | absence | absence | absence | absence | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Mateos, M.J.; León, L.; Ortiz, A.; Tejerina, D.; Barraso, C.; López-Parra, M.M.; Curbelo, P.; García-Torres, S. Effects of the Addition of Pecan Nuts on the Nutritional Properties and Final Quality of Merino Lamb Burgers. Appl. Sci. 2023, 13, 6860. https://doi.org/10.3390/app13116860
Martín-Mateos MJ, León L, Ortiz A, Tejerina D, Barraso C, López-Parra MM, Curbelo P, García-Torres S. Effects of the Addition of Pecan Nuts on the Nutritional Properties and Final Quality of Merino Lamb Burgers. Applied Sciences. 2023; 13(11):6860. https://doi.org/10.3390/app13116860
Chicago/Turabian StyleMartín-Mateos, María Jesús, Lucía León, Alberto Ortiz, David Tejerina, Carmen Barraso, María Montaña López-Parra, Palmira Curbelo, and Susana García-Torres. 2023. "Effects of the Addition of Pecan Nuts on the Nutritional Properties and Final Quality of Merino Lamb Burgers" Applied Sciences 13, no. 11: 6860. https://doi.org/10.3390/app13116860
APA StyleMartín-Mateos, M. J., León, L., Ortiz, A., Tejerina, D., Barraso, C., López-Parra, M. M., Curbelo, P., & García-Torres, S. (2023). Effects of the Addition of Pecan Nuts on the Nutritional Properties and Final Quality of Merino Lamb Burgers. Applied Sciences, 13(11), 6860. https://doi.org/10.3390/app13116860