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Abstract: In the present study, to predict the transverse velocity field in the near-wake of laminar flow
over a circular cylinder at the Reynolds numbers of 60 and 300, we construct neural networks with
instantaneous wall pressures on the cylinder surface as the input variables. For the two-dimensional
unsteady flow at Re = 60, a fully connected neural network (FCNN) is considered. On the other hand,
for a three-dimensional unsteady flow at Re = 300 having spanwise variations, we employ two dif-
ferent convolutional neural networks based on an encoder–FCNN (CNN-F) or an encoder–decoder
(CNN-D) structure. Numerical simulations are carried out for both Reynolds numbers to obtain
instantaneous flow fields, from which the input and output datasets are generated for training these
neural networks. At the Reynolds numbers considered, the neural networks constructed accurately
predict the transverse velocity fields in the near-wake over the cylinder using the information of
instantaneous wall pressures as the input variables. In addition, at Re = 300, it is observed that
CNN-D shows a better prediction ability than CNN-F.

Keywords: flow over a circular cylinder; laminar flow; wake; neural network; instantaneous wall
pressure; transverse velocity

1. Introduction

The prediction of flow over a circular cylinder is a fundamental problem in fluid
mechanics, with various engineering applications [1]. The flow over a circular cylinder
becomes unstable at the Reynolds number of Re = u∞d/ν ≥ 49, and this flow can lead
to various complicated phenomena such as flow separation, shear layer, vortex shedding,
wake, and interactions among them [1]. Here, u∞, d, and ν denote the free-stream velocity,
diameter of a circular cylinder, and kinematic viscosity, respectively. These phenomena
have a significant impact on the performance of engineering systems such as wind turbines,
building structures, heat exchangers, and so on. Therefore, acquiring accurate flow field
data over a circular cylinder has been an important topic in fluid mechanics. Conventionally,
experiments in wind tunnels and numerical simulations have proven to be effective tools
for obtaining flow fields over a circular cylinder. Experimental approaches measure the flow
properties through techniques such as flow visualization and particle image velocimetry
(PIV) methods [2–4]. On the other hand, the numerical simulation has been widely adopted
as a crucial tool owing to the advancements of fast computing hardware and numerical
methodologies [5–10].

With recent advancements in machine learning technology, the use of machine learning
algorithms has emerged as a new alternative approach for the prediction of fluid flows. One
of the areas where active research is being conducted using machine learning techniques
is turbulence modeling. For these investigations, the Reynolds stress in the Reynolds-
averaged Navier–Stokes (RANS) equation and the subgrid-scale (SGS) stress for the large
eddy simulation (LES) are modeled with neural networks (NN) such as the fully connected
neural network (FCNN) [11–17]. The FCNN is a function that uses predetermined input
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variables to output variables with a series of fully connected layers. The adoption of
FCNN distinguishes these approaches from conventional turbulence modelings where
the target stresses are approximated with an algebraic equation using the resolved flow
quantities [9,10,18,19]. In turbulence modeling with machine learning techniques, various
input variables of the FCNN such as velocity, velocity gradient tensor, strain rate tensor,
rotation rate tensor, or their combinations have been investigated to determine the stress
terms of RANS and LES as the output variables of FCNN. For example, Park and Choi [14]
investigated the use of a fully connected neural network to develop an SGS model for
LES of turbulent channel flow at Reτ = 178. In an a priori test, this study found that the
NN-based SGS model with filtered strain rate or velocity gradient tensor at multiple points
as the input variables showed high correlation coefficients between predicted and true SGS
stresses but required special treatments for stable solutions. In contrast, the NN-based SGS
model with filtered strain rate tensor at a single point as the input variable demonstrated
an excellent prediction ability for mean velocity and Reynolds shear stress of turbulent
channel flow in an a posteriori test.

In turbulence models for RANS and LES with neural networks, the output variables of
a neural network are the Reynolds and SGS stresses (or their components) in the Reynolds-
averaged and filtered Navier–Stokes equations, respectively. On the other hand, without
relying on the framework of turbulence modeling, there is another machine-learning-based
approach that directly predicts or reconstructs fluid flow fields by setting the flow field
information of interest, such as velocity, as the output variable of a neural network [20–23].
For the prediction of laminar flow over a circular cylinder, Fukami et al. [21] adopted
convolutional neural networks (CNNs) and their modified version that reconstruct a high-
resolution velocity field in the wake with the input of a low-resolution velocity dataset. With
these neural networks developed, they demonstrated that the two-dimensional laminar
velocity field over a circular cylinder at Re = 100 could be successfully reconstructed.
Later, they extended this approach to predict temporal evolutions of flow field from grossly
under-resolved input data in both space and time and examined its performances in two-
dimensional decaying homogeneous isotropic turbulence and three-dimensional turbulent
channel flow. Lee and You [23] used generative adversarial networks (GANs) to generate
and predict flow fields for laminar and turbulent flows over a circular cylinder at various
Reynolds numbers. These studies utilize neural networks with inputs of past and present
velocity fields to predict or generate velocity fields for the present and future instances.

The approaches mentioned above used the velocity field information in a given
region as an input to predict the velocity field in the same region. Thus, they constructed
neural networks having the same input and output physical quantities. On the other hand,
Jin et al. [24] adopted different physical quantities for the input and output variables of
neural networks to predict flow over a circular cylinder. That is, in their study, pressures
at multiple points on the cylinder surface were adopted as the input variables of neural
networks to predict two-dimensional velocity field in laminar flow over a circular cylinder
as the output variables of neural networks. With this approach, they demonstrated that
the flow field over a cylinder could be accurately predicted even with different input and
output variables of neural networks. However, the approach by Jin et al. [24] assumed a
two-dimensional flow even for the Reynolds numbers, where the flow is expected to be
three-dimensional, having variations in the spanwise direction. Therefore, the present study
aims to predict the velocity field over a circular cylinder having spanwise variations with
the wall pressure input. Additionally, unlike the neural network by Jin et al. [24], which
utilized time series of wall pressure data as the input variables, we adopt instantaneous
wall pressure data as the input for the neural networks in order to construct a more compact
input dataset. To achieve these goals, we conduct numerical simulations of laminar flows
over a circular cylinder at the Reynolds number of Re = 60 (two-dimensional) and Re = 300
(three-dimensional) and predict the transverse velocity field near a circular cylinder using
neural networks constructed with instantaneous pressures on the cylinder wall as the
input variables.
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2. Numerical Details
2.1. Numerical Details for Simulation of Flow over a Circular Cylinder

In the present study, we perform numerical simulations of laminar flows over a circular
cylinder at Re = 60 and 300 to generate the input and output datasets for training neural
networks. The governing equations are the non-dimensional continuity and Navier–Stokes
equations for unsteady and incompressible flow, as shown in the following equations:

∂ui
∂xi
−q = 0, (1)

and
∂ui
∂t

+
∂uiuj

∂xj
= − ∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

+ fi, (2)

where t is the time, xi = (x, y, z) are the Cartesian coordinates, ui = (u, v, w) are the
corresponding velocity components, and p is the pressure. Here, x, y, and z denote the
streamwise, transverse, and spanwise directions, respectively (see Figure 1). To satisfy the
no-slip condition on the cylinder surface, we adopt an immersed boundary method by
Kim et al. [7]. Owing to the use of the immersed boundary method, Equations (1) and (2)
include the mass source/sink term q and the momentum forcing term fi, respectively.
We adopt the fully implicit fractional step method [5,25] to numerically decouple the
pressure and velocity in the Navier–Stokes equation using the Crank–Nicolson scheme.
The second-order central difference scheme is used for spatial discretizations in each
term of Equations (1) and (2). We note that the numerical details described above have
been implemented through our own in-house code, and its accuracy has been proven in
predicting various complex flow configurations [7,9,26,27].
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Figure 1. Computational domains for the numerical simulation of flow over a circular cylinder
together with learning dataset domains for machine learning: (a) Re = 60; (b) Re = 300. Blue area:
domains for wall pressures as the input variables of neural networks; red area: domains for the
transverse velocity prediction as the output variables of neural networks.

Figure 1a,b shows the computational domains for Re = 60 and 300, respectively.
The two-dimensional computational domain for Re = 60 is −40 ≤ x/d ≤ 50 and
−50 ≤ y/d ≤ 50 (see Figure 1a). The computational domain for Re = 300 is three-dimensi
onal with the same x–y domain as that for Re = 60, and its domain for the spanwise
direction is set to be 0 ≤ z/d ≤ 12 (see Figure 1b). The center axis of a circular cylinder
is located at (x, y) = (0, 0). The numbers of grid points used for numerical simulations
are 385(x)× 217(y) and 385(x)× 217(y)× 128(z) for Re = 60 and 300, respectively. At the
inflow boundary, a Dirichlet boundary condition (u = u∞ and v = w = 0) is employed. At
the top and bottom boundaries, ∂u/∂y = v = ∂w/∂y = 0 is given. At the outflow bound-
ary, a convective boundary condition is adopted as ∂ui/∂t + c∂ui/∂x = 0, where c is the
plane-averaged streamwise velocity on the outflow plane. A periodic boundary condition
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is applied in the spanwise direction for the three-dimensional computational domain of
Re = 300.

2.2. Dataset

In this study, we aim to predict the near-wake transverse velocity in laminar flow
over a circular cylinder by using a neural network with instantaneous wall pressures
on the cylinder surface as the input variables. The transverse velocity in the wake of a
circular cylinder has been considered a good indicator for the state of Kármán vortex
shedding [27–31]. In this regard, one of the motivations for constructing neural networks
to predict the transverse velocity is to further integrate them, in future studies, with active
feedback control methods such as proportional–integral–derivative (PID) control [27,29],
whose control purpose is to mitigate the strength of the Kármán vortex shedding. Figure 1
shows learning dataset domains for neural networks at Re = 60 and 300. As shown in
Figure 1a for the two-dimensional flow at Re = 60, the wall pressures pwall at 44 points on
the cylinder surface, ranging from θ = −90◦ to 90◦, constitute the input variables for the
learning dataset. Here, θ represents an angle measured from the base ((x/d,y/d) = (0.5,0))
of the cylinder. The output variables for the learning dataset consist of the transverse
velocities v in the ranges of −0.8 ≤ x/d ≤ 2.7 and −0.8 ≤ y/d ≤ 0.8, encompassing a total
of 8192 data points. On the other hand, Figure 1b shows learning dataset domains for input
and output variables for the three-dimensional flow at Re = 300. As shown, the number of
input variables for pwall is 44(θ)× 128(z) on the θ–z plane of the cylinder surface. Here, the
locations for θ and z on the θ–z plane range from θ = −90◦ to 90◦ and from z/d = 0 to 12,
respectively. The number of output variables for the transverse velocity v is 44(x)× 128(z)
on the finite center plane (y = 0) of 0.5 ≤ x/d ≤ 1.6 and 0 ≤ z/d ≤ 12 in the wake of the
cylinder. For both Re = 60 and 300, we note that the wall pressures for the input variables
are instantaneous ones.

As described in Section 2.1, input and output datasets for training neural networks
are obtained from numerical simulations of flow over a circular cylinder at Re = 60 and
300. Consistent with the governing equations in Equations (1) and (2), we adopt dimen-
sionless input and output variables for neural networks, which are non-dimensionalized
with the freestream velocity and fluid density. From the numerical simulation of the two-
dimensional flow at Re = 60, we collect 3000 and 1000 instantaneous flow fields as training
and testing data, respectively. On the other hand, from the numerical simulation of the
three-dimensional flow at Re = 300, we collect 40,000 and 5000 instantaneous flow fields
as training and testing data, respectively. As flow structures become more complex with
increasing Reynolds numbers, we use a larger number of instantaneous flow fields for
constructing neural networks at Re = 300 compared to that at Re = 60.

2.3. Details of Neural Networks

Figure 2 shows schematic diagrams of the present neural networks adopted for
Re = 60 and Re = 300. As shown in Figure 2a, the fully connected neural network for
Re = 60 has one hidden layer with four hidden nodes, while the numbers of input (pwall)
and output (v) variables are 44 and 8192, respectively. In Figure 2b,c, for the case of Re = 300,
we employ two different neural networks of a CNN with an encoder–FCNN structure
(CNN-F) and a CNN with an encoder–decoder structure (CNN-D) [32]. In the latter struc-
ture, the encoder compresses the input data and encodes them into a latent space, capturing
essential features of the input data, while the decoder subsequently generates the output
data based on this information [32]. For both encoder–FCNN and encoder–decoder struc-
tures employed in CNN as shown in Figure 2b,c, the kernel size of all convolution layers
is 5 × 5, the stride is 1, the number of channels is 64, and the number of channels in the
last convolution layer is 1. For the activation function for hidden layers, a rectified linear
unit (ReLU) is applied [33]. The kernel size and stride of the max pooling and up-sampling
layers are 2× 2 and 2, respectively. The up-sampling layers in the neural network as shown
in Figure 2c are widely adopted in tasks such as noise reduction for images and image
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compression and generation [34]. In recent studies adopting CNN with the up-sampling
layers [21,22,35], it was found that high-resolution velocity fields in fluid flow could be
successfully reconstructed using neural networks with the input of the low-resolution
velocity field images. In the present study, we adopt a similar neural network structure
with up-sampling layers (Figure 2c) to reconstruct the transverse velocity field in the wake
of the cylinder but with the input variables consisting of instantaneous wall pressures
on the cylinder surface. For the optimization algorithm during neural network trainings,
we use the adaptive moment estimation (Adam) method [36]. Hyperparameters used for
trainings are a learning rate of 0.0005, β1 = 0.99, β2 = 0.999 for the Adam method, and
a mini-batch size of 800, which are comparable to those in the study by Jin et al. [24]. In
addition, we note that hyperparameters such as the number of channels in Figure 2c were
tuned in our preliminary study. The loss function, denoted as L, used in the neural network
training is defined as follows:

L =
1

2N

N

∑
n=1

(vn − v̂n)
2. (3)

Here, N is the number of training or testing data, and v and v̂ represent the transverse
velocity obtained from the numerical simulation of flow over a circular cylinder and that
predicted by the neural networks as in Figure 2, respectively. Training of neural networks
is performed using the open-source software TensorFlow [37].
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Figure 2. Schematic diagrams of the present neural networks: (a) fully connected neural networks
for Re = 60; (b) CNN with an encoder–FCNN structure (CNN-F) for Re = 300; (c) CNN with an
encoder–decoder structure (CNN-D) for Re = 300. Here, Conv, Pooling, UpSampling, Flatten, and
Dense denote convolutional, max pooling, upsampling, flatten, and dense layers, respectively. [·] is
the number of the input/output variables, and (·) is the number of hidden nodes/channels.

3. Results and Discussion
3.1. Simulations of Flows over a Circular Cylinder at Re = 60 and 300

To acquire training and testing data for constructing neural networks, we first perform
numerical simulations of flows over a circular cylinder at Re = 60 and 300. Table 1 shows
the flow statistics of laminar flows over a circular cylinder at Re = 60 and 300 obtained
from the present numerical simulations, together with those from previous studies. In this
table, the mean drag coefficient (CD), base pressure coefficient (−CPb ), and Strouhal number
(St) are shown. The base pressure coefficient −CPb is the pressure coefficient at the cylinder
base (x/d = 0.5). As shown, for both Reynolds numbers, it is evident that the flow statistics
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from the present simulations are in good agreements with those of the previous studies,
confirming the numerical accuracy of present simulations.

Table 1. Flow statistics for laminar flows over a circular cylinder at Re = 60 and 300 obtained from
the present numerical simulations together with those from previous studies.

References Re CD −CPb St

Present study 60 1.396 0.57 0.136
Park et al. [38] 60 1.39 0.59 0.136

Present study 300 1.291 1.00 0.203
Kravchenko et al. [39] 300 1.28 1.01 0.203
Jiang et al. [40] 300 1.296 1.05 0.204

3.2. Prediction of Near-Wake Velocity at Re = 60

In the present study, we use an FCNN with instantaneous wall pressures on the
cylinder surface as the input variables to predict the transverse velocity around a circular
cylinder at Re = 60. As illustrated in Figure 1a, 44 locations of wall pressures are used to
predict 8192 locations of transverse velocities around the cylinder. This FCNN is constructed
by training it with the input and output database of flow fields obtained from the numerical
simulation at Re = 60. The correlation coefficients R between the transverse velocity (v)
from the numerical simulation and that (v̂) predicted by the FCNN constructed are found
to be greater than 0.999 at all locations (Figure 1a) around the cylinder. Here, the correlation
coefficient R is defined as follows:

R =
∑M

i=1 (vi − 〈v〉)(v̂i − 〈v̂〉)√
∑M

i=1(vi − 〈v〉)2
√

∑M
i=1(v̂i − 〈v̂〉)2

, (4)

where M is the number of testing data and 〈·〉 denotes averaged quantities.
Figure 3 displays the time histories of the transverse velocity at a wake location

(x/d = 1.01 and y/d = 0) behind the cylinder predicted by the neural network together
with that from the numerical simulation at Re = 60. In the figure, temporal behaviors
of the transverse velocity, such as the peak amplitude and temporal periodicity, are well-
predicted by the present neural network constructed. Figure 4 shows the contours of
the instantaneous transverse velocity predicted by the present FCNN compared with
those from the numerical simulation at various temporal instances. As expected from the
correlation coefficient of 0.999, the transverse velocity contours agree very well with those
from the numerical simulation at all instances.

tu
∞
/d

v
/u
∞

Figure 3. Time histories of the transverse velocity at x/d = 1.01 and y/d = 0 (Re = 60).●, v/u∞

from the numerical simulation; green line, v̂/u∞ predicted by FCNN.
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Figure 4. Contours of the instantaneous transverse velocity at Re = 60: (a) v/u∞ from the numerical
simulation; (b) v̂/u∞ predicted by FCNN. The three contour plots in (a,b) correspond to temporal
instances arbitrarily chosen from the unsteady numerical simulation at Re = 60.

In the study by Jin et al. [24], they showed that velocity fields in the two-dimensional
laminar flow over a circular cylinder could be successfully predicted with neural networks
having as their input the pressures on the cylinder surface. In their work, the input variables
of the neural network included the pressures at the time t = t1 together with the pressures
at multiple past instances at t < t1, and the velocity field at t = t1 was predicted using these
input pressures. On the other hand, our study only employs the instantaneous pressures at
the time t = t1 without past pressure information, resulting in a compact neural network
structure. Nevertheless, the prediction quality is comparable to that of Jin et al. [24] at the
Reynolds number considered.

3.3. Prediction of Near-Wake Velocity at Re = 300

In laminar flow over a circular cylinder at Re < 194, it is well-known that the
Kármán vortex shedding maintains its two-dimensionality without spanwise variations
in its vortical structure [1,41]. Thus, we considered two-dimensional flow at Re = 60 in
Section 3.2. However, the Kármán vortex shedding behind a circular cylinder becomes
three-dimensional for Re ≥ 194, where spanwise variations in vortical structures are ob-
served owing to the occurrences of vortex loops and streamwise vortices [1,41]. Therefore,
predictions of the wake flow field over a circular cylinder at Re = 300 would be a more
difficult task than those at Re = 60. In the present study, to predict the transverse velocity
on the centerplane in the near-wake behind the cylinder at Re = 300, we construct two dif-
ferent neural network structures (CNN-F and CNN-D) as described in Figure 2b,c. We note
that a neural network similar to CNN-F was used in the study of Jin et al. [24].

Figure 5 shows loss functions versus the number of epochs for the training of both
CNN-D and CNN-F structures at Re = 300. As shown, CNN-D exhibits lower values of loss
function than CNN-F as the number of epochs increases, suggesting that CNN-D has better
prediction accuracy for the hyperparameters and dataset considered in this study. Notably,
during the learning process of CNN-F, the value of loss function for testing data increases
after 100 epochs, which suggests that a mild overfitting occurs for CNN-F. We suspect that
this overfitting occurs because the number of instantaneous flow fields is insufficient for
the proper training of CNN-F. On the other hand, CNN-D does not exhibit an overfitting
behavior. We believe that this could be attributed to the fact that the decoder structure of
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CNN-D has fewer parameters in hidden layers than the FCNN structure of CNN-F, making
it less vulnerable to overfitting when dealing with a smaller dataset.

Epoch

ℒ

Figure 5. Loss functions versus the number of epochs for the training of neural networks at Re = 300:
black line, CNN-F; green line, CNN-D; solid line, training loss; dashed line, testing loss.

Figure 6 shows the correlation function R according to the streamwise location (x/d) at
Re = 300, where R is obtained by Equation (4). Here, owing to the statistical homogeneity
in the spanwise direction, we conduct an averaging of R in the spanwise direction. As
shown, the prediction performance of CNN-D is superior to that of CNN-F at all streamwise
locations. Compared to CNN-F with an average of R = 0.974, the prediction using CNN-D
yields an average of R = 0.996 with variations of 0.994 < R < 0.999 depending on x.
This superiority of CNN-D over CNN-F is also evident in the root mean square (rms)
of transverse velocity on the centerplane of the wake presented in Figure 7. The rms of
transverse velocity from CNN-D agrees very well with that from the numerical simulation,
while that from CNN-F shows a slight deviation. Figure 8 shows the scatter plots of v/u∞
from the numerical simulation and v̂/u∞ predicted by CNN-D at two different streamwise
locations (x/d = 0.71 and x/d = 1.01). For both locations, the transverse velocity predicted
by CNN-D shows a good prediction performance, supporting the results of Figures 5–7.

Figure 9 presents the time histories of the transverse velocity at the point of x/d = 1.06
and z/d = 6 in the wake for Re = 300. The velocity from CNN-D accurately follows the
temporal behaviors of the numerical simulation, while that from CNN-F becomes less
accurate in the vicinity of the peak locations of the velocity. Figure 10 displays the contours
of the instantaneous transverse velocity on the x–z plane of y/d = 0 (centerplane) predicted
by CNN-D, together with those from the numerical simulation at four different temporal
instances. From Figure 10a, the transverse velocity from the numerical simulation displays
significant spanwise variations that change over time. These variations in Figure 10a
compare very well with those predicted by the present neural network of CNN-D, as
demonstrated in Figure 10b.
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x/d

R

Figure 6. Correlation function R on the centerplane of the wake at Re = 300. Black line, R from
CNN-F; green line, R from CNN-D.

x/d

rms
v

u
¥

Figure 7. Root mean square of transverse velocity on the centerplane of the wake at Re = 300.
●, vrms/u∞ from the numerical simulation; black line, v̂rms/u∞ predicted by CNN-F; green line,
v̂rms/u∞ predicted by CNN-D.
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Figure 8. Scatter plots of v/u∞ from the numerical simulation and v̂/u∞ predicted by CNN-D at
Re = 300. (a) x/d = 0.71 (R = 0.998); (b) x/d = 1.01 (R = 0.995).
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Figure 9. Time histories of the transverse velocity at the point of x/d = 1.06 and z/d = 6 in the
wake for Re = 300.●, v/u∞ from the numerical simulation; black line, v̂/u∞ predicted by CNN-F
(R = 0.959); green line, v̂/u∞ predicted by CNN-D (R = 0.995).
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Figure 10. Contours of the instantaneous transverse velocity on the centerplane (y/d = 0) at different
temporal instances for Re = 300: (a) v/u∞ from the numerical simulation; (b) v̂/u∞ predicted by
CNN-D. Here, the four contour plots in (a,b) correspond to temporal instances arbitrarily chosen
from the unsteady numerical simulation at Re = 300.

4. Conclusions

In the present study, to predict the transverse velocity field in the near-wake of laminar
flow over a circular cylinder at the Reynolds numbers of 60 and 300, we constructed neural
networks with instantaneous wall pressures on the cylinder surface as the input variables.
For the two-dimensional unsteady flow at Re = 60, a fully connected neural network was
considered. On the other hand, for the three-dimensional unsteady flow at Re = 300 having
spanwise variations, we employed two different convolutional neural networks of CNN-F
and CNN-D. Numerical simulations were carried out for both Reynolds numbers to obtain
instantaneous flow fields, from which the input and output datasets were generated for
training these neural networks. At the Reynolds numbers considered, the neural networks
constructed accurately predicted the transverse velocity fields in the near-wake over the
cylinder using the information of instantaneous wall pressures as the input variables. In
addition, at Re = 300, it was observed that CNN-D showed a better prediction ability
than CNN-F.

The neural networks in this study were trained at a specific Reynolds number. Conse-
quently, their performance at predicting other Reynolds numbers may not be as reliable. To
improve the prediction performance for a wider range of Reynolds numbers, one could
consider training the networks using flow fields from various Reynolds numbers. In addi-
tion, flow structures such as flow separation, shear layer, and wake are commonly observed
in the flow over a cylinder across different Reynolds numbers. Designing neural networks
to consider these features could therefore be a promising approach for future studies.

The transverse velocity in the near-wake of the cylinder is a useful information indi-
cating the status of the Kármán vortex shedding. Thus, various feedback controls applied
to flow over a circular cylinder measure the transverse velocity in the wake as sensors and
aim to reduce its amplitude to weaken the strength of the Kármán vortex shedding [27–31].
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However, it would not be practical to measure the transverse velocity in the wake in real
applications of these control methods. Therefore, we believe that incorporating the present
neural networks with feedback control methods would be an effective control strategy to
improve its practical applicability because this approach does not need to measure the
velocity and only measures the wall pressures as a sensor of feedback controller [27].
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Nomenclature

x Streamwise direction
y Transverse direction
z Spanwise direction
θ Angle from the cylinder base
t Time
u Streamwise velocity
v Transverse velocity
w Spanwise velocity
p Pressure
d Cylinder diameter
u∞ Free stream velocity
ν Kinematic viscosity
Re Reynolds number
CD Drag coefficient
CPb Pressure coefficient at the cylinder base
St Strouhal number
pwall Wall pressure on a circular cylinder
v̂ Transverse velocity predicted by neural network
L Loss function
q Mass source/sink
f Momentum forcing
N Number of training or testing data
R Correlation coefficient

References
1. Williamson, C. Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 1996, 28, 477–512. [CrossRef]
2. Westerweel, J.; Elsinga, G.E.; Adrian, R.J. Particle image velocimetry for complex and turbulent flows. Annu. Rev. Fluid Mech.

2013, 45, 409–436. [CrossRef]
3. Soria, J. An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image

velocimetry technique. Exp. Therm. Fluid Sci. 1996, 12, 221–233. [CrossRef]
4. Wu, Z.; Choi, H. Modification of flow behind a circular cylinder by steady and time-periodic blowing. Phys. Fluids 2021, 33, 115126.

[CrossRef]
5. Kim, J.; Moin, P. Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 1985,

59, 308–323. [CrossRef]
6. Moin, P.; Mahesh, K. Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech. 1998, 30, 539–578.

[CrossRef]

http://doi.org/10.1146/annurev.fl.28.010196.002401
http://dx.doi.org/10.1146/annurev-fluid-120710-101204
http://dx.doi.org/10.1016/0894-1777(95)00086-0
http://dx.doi.org/10.1063/5.0067706
http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://dx.doi.org/10.1146/annurev.fluid.30.1.539


Appl. Sci. 2023, 13, 6891 13 of 14

7. Kim, J.; Kim, D.; Choi, H. An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput.
Phys. 2001, 171, 132–150. [CrossRef]

8. Vreman, A. An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 2004,
16, 3670–3681. [CrossRef]

9. Park, N.; Lee, S.; Lee, J.; Choi, H. A dynamic subgrid-scale eddy viscosity model with a global model coefficient. Phys. Fluids
2006, 18, 125109. [CrossRef]

10. Lee, J.; Choi, H.; Park, N. Dynamic global model for large eddy simulation of transient flow. Phys. Fluids 2010, 22, 075106.
[CrossRef]

11. Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded
invariance. J. Fluid Mech. 2016, 807, 155–166. [CrossRef]

12. Maulik, R.; San, O. A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech. 2017, 831, 151–181.
[CrossRef]

13. Stolz, S.; Adams, N.A. An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 1999, 11, 1699–1701.
[CrossRef]

14. Park, J.; Choi, H. Toward neural-network-based large eddy simulation: Application to turbulent channel flow. J. Fluid Mech. 2021,
914, A16. [CrossRef]

15. Gamahara, M.; Hattori, Y. Searching for turbulence models by artificial neural network. Phys. Rev. Fluids 2017, 2, 054604.
[CrossRef]

16. Wang, Z.; Luo, K.; Li, D.; Tan, J.; Fan, J. Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation.
Phys. Fluids 2018, 30, 125101. [CrossRef]

17. Sarghini, F.; De Felice, G.; Santini, S. Neural networks based subgrid scale modeling in large eddy simulations. Comput. Fluids
2003, 32, 97–108. [CrossRef]

18. Germano, M.; Piomelli, U.; Moin, P.; Cabot, W.H. A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A Fluid Dyn. 1991,
3, 1760–1765. [CrossRef]

19. Lilly, D.K. A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A Fluid Dyn. 1992, 4, 633–635.
[CrossRef]

20. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508.
[CrossRef]

21. Fukami, K.; Fukagata, K.; Taira, K. Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 2019,
870, 106–120. [CrossRef]

22. Fukami, K.; Fukagata, K.; Taira, K. Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows.
J. Fluid Mech. 2021, 909, A9. [CrossRef]

23. Lee, S.; You, D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning. J. Fluid Mech. 2019,
879, 217–254. [CrossRef]

24. Jin, X.; Cheng, P.; Chen, W.L.; Li, H. Prediction model of velocity field around circular cylinder over various Reynolds numbers
by fusion convolutional neural networks based on pressure on the cylinder. Phys. Fluids 2018, 30, 047105. [CrossRef]

25. Kim, K.; Baek, S.J.; Sung, H.J. An implicit velocity decoupling procedure for the incompressible Navier–Stokes equations. Int. J.
Numer. Methods Fluids 2002, 38, 125–138. [CrossRef]

26. Kim, W.; Lee, J.; Choi, H. Flow around a helically twisted elliptic cylinder. Phys. Fluids 2016, 28, 053602. [CrossRef]
27. Yun, J.; Lee, J. Active proportional feedback control of turbulent flow over a circular cylinder with averaged velocity sensor. Phys.

Fluids 2022, 34, 095133. [CrossRef]
28. Park, D.; Ladd, D.; Hendricks, E. Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds

numbers. Phys. Fluids 1994, 6, 2390–2405. [CrossRef]
29. Son, D.; Jeon, S.; Choi, H. A proportional–integral–differential control of flow over a circular cylinder. Philos. Trans. R. Soc. A 2011,

369, 1540–1555. [CrossRef]
30. Son, D.; Choi, H. Iterative feedback tuning of the proportional-integral-differential control of flow over a circular cylinder. IEEE

Trans. Control. Syst. Technol. 2018, 27, 1385–1396. [CrossRef]
31. Jiang, H.; Cheng, L. Transition to the secondary vortex street in the wake of a circular cylinder. J. Fluid Mech. 2019, 867, 691–722.

[CrossRef]
32. Baldi, P. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of the ICML Workshop on Unsupervised

and Transfer Learning, Bellevue, WA, USA, 2 July 2011; pp. 37–49.
33. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
34. Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2020, arXiv:2003.05991.
35. Liu, B.; Tang, J.; Huang, H.; Lu, X.Y. Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids

2020, 32, 025105. [CrossRef]
36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
37. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467.

http://dx.doi.org/10.1006/jcph.2001.6778
http://dx.doi.org/10.1063/1.1785131
http://dx.doi.org/10.1063/1.2401626
http://dx.doi.org/10.1063/1.3459156
http://dx.doi.org/10.1017/jfm.2016.615
http://dx.doi.org/10.1017/jfm.2017.637
http://dx.doi.org/10.1063/1.869867
http://dx.doi.org/10.1017/jfm.2020.931
http://dx.doi.org/10.1103/PhysRevFluids.2.054604
http://dx.doi.org/10.1063/1.5054835
http://dx.doi.org/10.1016/S0045-7930(01)00098-6
http://dx.doi.org/10.1063/1.857955
http://dx.doi.org/10.1063/1.858280
http://dx.doi.org/10.1146/annurev-fluid-010719-060214
http://dx.doi.org/10.1017/jfm.2019.238
http://dx.doi.org/10.1017/jfm.2020.948
http://dx.doi.org/10.1017/jfm.2019.700
http://dx.doi.org/10.1063/1.5024595
http://dx.doi.org/10.1002/fld.205
http://dx.doi.org/10.1063/1.4948247
http://dx.doi.org/10.1063/5.0107561
http://dx.doi.org/10.1063/1.868188
http://dx.doi.org/10.1098/rsta.2010.0357
http://dx.doi.org/10.1109/TCST.2018.2828381
http://dx.doi.org/10.1017/jfm.2019.167
http://dx.doi.org/10.1063/1.5140772


Appl. Sci. 2023, 13, 6891 14 of 14

38. Park, J.; Kwon, K.; Choi, H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int. J.
1998, 12, 1200–1205. [CrossRef]

39. Kravchenko, A.G.; Moin, P.; Shariff, K. B-spline method and zonal grids for simulations of complex turbulent flows. J. Comput.
Phys. 1999, 151, 757–789. [CrossRef]

40. Jiang, H.; Cheng, L.; Draper, S.; An, H.; Tong, F. Three-dimensional direct numerical simulation of wake transitions of a circular
cylinder. J. Fluid Mech. 2016, 801, 353–391. [CrossRef]

41. Williamson, C. The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 1988,
31, 3165–3168. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF02942594
http://dx.doi.org/10.1006/jcph.1999.6217
http://dx.doi.org/10.1017/jfm.2016.446
http://dx.doi.org/10.1063/1.866925

	Introduction
	Numerical Details
	Numerical Details for Simulation of Flow over a Circular Cylinder
	Dataset
	Details of Neural Networks

	Results and Discussion
	Simulations of Flows over a Circular Cylinder at Re = 60 and 300
	Prediction of Near-Wake Velocity at Re = 60
	Prediction of Near-Wake Velocity at Re = 300

	Conclusions
	References

