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Abstract: As one of the most important fields in computer vision, object detection has undergone
marked development in recent years. Generally, object detection requires many labeled samples for
training, but it is not easy to collect and label samples in many specialized fields. In the case of few
samples, general detectors typically exhibit overfitting and poor generalizability when recognizing
unknown objects, and many FSOD methods also cannot make good use of support information or
manage the potential problem of information relationships between the support branch and the
query branch. To address this issue, we propose in this paper a novel framework called Decoupled
Multi-scale Attention (DMA-Net), the core of which is the Decoupled Multi-scale Attention Module
(DMAM), which consists of three primary parts: a multi-scale feature extractor, a multi-scale attention
module, and a decoupled gradient module (DGM). DMAM performs multi-scale feature extraction
and layer-to-layer information fusion, which can use support information more efficiently, and
DGM can reduce the impact of potential optimization information exchange between two branches.
DMA-Net can implement incremental FSOD, which is suitable for practical applications. Extensive ex-
perimental results demonstrate that DMA-Net has comparable results on generic FSOD benchmarks,
particularly in the incremental FSOD setting, where it achieves a state-of-the-art performance.

Keywords: object detection; few-shot learning; incremental learning; meta learning

1. Introduction

With the continuous progress of deep neural networks [1–19], object detection, a
classic and challenging task in computer vision, has undergone many developments in
recent years. However, object detection tasks all need many labeled samples for training,
but in real life, sample collection and labeling in many fields are challenging, which pro-
motes research on few-shot object detection (FSOD). The methods of using weight-shared
backbones [20], calculating category prototype representations [21], judging similarity by
matching inputs [22], and concatenating feature maps [23] in few-shot classification (FSC)
have been widely used in previous FSOD research. However, simply transferring FSC
methods cannot completely solve the FSOD task because FSOD not only needs to classify,
but also localize, objects, and each image contains multiple objects of different classes.
Previous studies [24–28] in recent years used an N-way K-shot training strategy based on
meta learning. As shown in Figure 1, given a base class set with a large number of labeled
samples and a novel class set with few samples, the query branch inputs a query image
for detection and the corresponding support branch inputs N-way K-shot support images,
that is, N categories and K support images per category. They used a support branch to
help the network simulate the cases of a few samples, with the goal of transferring the
meta-knowledge (the ability to detect objects of one category through only a few support
samples of the same category) learned from the base classes to the novel classes in order
to implement the recognition of objects in novel classes. How to make better use of the
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information from the support branch is currently the most challenging task. Based on the
widely used object detector Faster R-CNN [3], support information is used in the detection
module in [25,26], but the region proposal network (RPN) is also an important part of
the network. The scarcity of samples affects the foreground and background classifica-
tion of the RPN, which in turn generates unsuitable proposals and affects the subsequent
detection of objects. Therefore, support information was added into the query branch
before RPN in [28], but was only a simple fusion of single-size features. Overall, these
methods only make superficial use of support information. When sample information is
scarce, it is necessary to fully utilize all aspects of support information and to consider
the location and form of fusion to make full use of support information. In addition, two
branch models may encounter issues of inconsistency between gradient and parameter
types during parameter updates. Specifically, the RPN only classifies the foreground and
background, as it is a class-agnostic module, while the RCNN must identify the category of
objects, as it is a class-specific module. The support branch is also class-specific; thus, there
may be a problem of unnecessary optimization information exchange between the support
branch and the query branch in the models that add support information before RPN. To
manage the relationship between the support branch and the query branch more effectively,
and to obtain more information from the support branch while reducing the interference
between the two branches, we propose the decoupled multi-scale attention (DMA-Net)
method. Many existing methods require a fine-tuning stage and cannot directly recognize
novel objects, while the proposed method can achieve good performance for both novel
and base classes without fine-tuning, making it suitable for practical applications. To the
best of our knowledge, the technique of decoupling gradients between the two branches
prior to RPN has not been employed in previous FSOD models. Therefore, this study
represents a pioneering effort to implement the decoupled multi-scale attention approach
in FSOD models. Our source code for this method is publicly available on GitHub at:
https://github.com/xijunxie/DMA-Net.
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Thus, the contributions of this study are as follows:

(1) We propose a novel framework for few-shot object detection (FSOD) called decoupled
multi-scale attention (DMA-Net) that can manage the relationship between support
and query branches effectively.

(2) We use multi-scale features for detection and overcome the problems it causes. We
perform multi-scale attention from the support branch to the query branch, and more
effective information and details from the support branch can be used for the query
branch.

(3) We analyze the contradiction difference between the proposed model and the original
Faster R-CNN [3], and perform decoupling between the support branch and the query
branch to extract support information more effectively and to reduce the mutual
interference between two branches.

(4) We evaluate the performance of the proposed network in two ways: with fine-tuning
and without fine-tuning. The proposed network performs well with and without
fine-tuning, but particularly without fine-tuning, achieving good performance.

The remainder of this paper is organized as follows. In Section 2, some related works
on FSOD are reviewed. In Section 3, we describe the proposed method in detail. The
experimental results are described in Section 4, and conclusions are given in Section 5.

2. Related Works
2.1. General Object Detection

With the rapid development of convolutional neural networks, the accuracy of object
detection methods is also improving. Object detection is a classical task in computer vision
that focuses on classifying and localizing objects. Object detectors based on deep learning
can be divided into two categories: one-stage detectors and two-stage detectors. YOLO
series [9–12] detectors and Centre Net series [4,5] detectors belong to the first category.
One-stage detectors only use a few convolutional layers for classification and bounding
box regression directly, which makes these detectors simpler networks with faster inference
speeds. In contrast, the R-CNN series [1–3] detectors belong to the second category. The
difference between two- and one-stage detectors is that the former typically have an
additional module, such as RPN, to generate and select proposals based on the foreground
and background in the first stage and then send the selected proposals to the detection
module for additional filtering and prediction. In this case, two-stage detectors typically
perform better than one-stage detectors, as they have the advantages of the additional
module. However, the methods described above require many labeled examples in the
visible domain and are difficult to extend to scenarios where labeled examples are scarce or
novel invisible domains. The proposed method is an improvement on a two-stage detector,
which is the mainstream framework in FSOD tasks.

2.2. Few-Shot Learning

Few-shot learning solves an important problem frequently encountered in many real-
world computer vision tasks. Many tasks have few (labeled) examples, and it is difficult
to label these unlabeled examples. Few-shot learning makes use of prior knowledge to be
quickly generalized to new tasks containing few labeled samples. Few-shot classification
(FSC) is a classical task in the field of few-shot learning, which employs many types of
methods to solve the few-shot problem. The most famous method is meta-learning, which
learns using prior knowledge and experience to guide the learning of new tasks, with the
condition that new tasks and training tasks must be in the same distribution. Methods
based on meta-learning can be divided into three categories: metric-based, optimization-
based, and model-based. The metric-based methods [20–23] are the most popular methods;
they map support information and query information to one feature-embedding space and
then judge the similarity of samples according to the score determined by similarity mea-
surement. The Siamese network [20] proposed twin networks in which support examples
and query examples are fed into each network. The twin networks share weights with
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each other concurrently, and the distance between support and query features is modeled
accurately by logistic regression. A prototypical network [21] embeds the support examples
into the same space, finds the mean as a prototype representation for each class, and then
classifies query examples using Euclidean distance to find the nearest class prototype. The
matching network [22] encodes examples from support and query sets, and determines the
cosine distance as a similarity score for judgment after applying the encoding information
of the support sets to each piece of encoding information of the query set. The relation
network [23] achieves relation scores after concatenating the features from support exam-
ples and each feature of the query examples. Optimization-based methods [29,30] allow
models to learn good initialization parameters, which enables models to quickly adapt
to new tasks using only a few support samples or after a few steps of gradient descent.
Model-based methods [31] use external memory modules to save information extracted
from support examples in order to help the model perform well in the case of few shots.
Few-shot learning tasks are successfully performed in the field of classification, but are in
their infancy in other areas of study, such as object detection. The rapid extension to object
detection benefits from the success of FSC, particularly metric learning-based approaches.

2.3. Few-Shot Object Detection

Due to the rapid development of FSC tasks, few-shot object detection has begun to
make continuous progress. Methods [20–23] based on metric learning in FSC are most
widely used in FSOD tasks. Recent methods of FSOD tasks can be divided into three
categories: meta-learning-based, parameter-based, and sample-processing-based methods.
Meta-learning-based methods are the most common. Following the N-way K-shot strat-
egy, which is widely used in FSC, these methods typically have two branches: a support
branch and a query branch. Support examples and query examples are fed into these two
respective branches, keeping the ratio as N×K:1 and learning meta-knowledge through
a task-based training strategy. The design of the networks causes query images to take
support images as the dynamic condition to use to adapt to new tasks quickly. FSRW [24]
was proposed based on YOLOv2, which extracts the important information regarding
support images as reweighted vectors for each class and achieves reweighted features,
using them to query images to obtain more representative features for prediction. Inspired
by [24], Meta R-CNN [25] was proposed based on Faster R-CNN [3], which adds weight
vectors as points of attention on each region of interest (RoI) feature; however, the weight
vectors are fixed during the fine-tuning stage. Zhang et al. [27] proposed ONCE based on a
center net and implemented incremental learning, which can detect novel classes directly
by means of novel support examples without fine-tuning. FSDeView [26] is a more suitable
fusion method based on Meta R-CNN [25], allowing the query branch to obtain more repre-
sentative information from support images. From the perspective of the two key modules
of Faster R-CNN [3], FSOD [32] proposed an attention RPN module, allowing the network
to consider important support information when filtering foregrounds and backgrounds.
Lee et al. [33] used two attention mechanisms based on multihead attention [34] which were
easy to plug and play. Inspired by FSOD [32], the studies on DAnA [35] and Meta Faster
R-CNN [36] proposed related solutions to the problem of spatial relationships between
support features and query features, and both achieved excellent performance. To generate
high-quality proposals and make them discriminative, Zhang et al. [37] used support
query mutual guidance and hybrid loss. In terms of enhancing the classifier and regressor,
Li et al. [38] added a correction network in the support branch to refine the classification
scores, and Huang et al. [39] proposed a dynamic classifier and semi-explicit regressor to
improve the generalizability. Most networks are based on Faster R-CNN [3]; specifically, the
methods in [40,41] were improved based on DETR [42] and VIT [43]. The parameter-based
methods have simple structures compared with other methods. TFA [44] and MetaDet [45]
divide the parameters of Faster R-CNN [3] into two parts (category-specific and category-
agnostic) with their respective strategies. DeFRCN [46] was proposed from the perspective
of solving the two key contradictions of Faster R-CNN [3]. The methods used in [47,48]
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based on sample augmentation provide the support branch with richer features in terms of
the scale and quantity of input, and those used in [49,50] process the potential relationship
within the data to enhance the information on novel classes. Jiang et al. [51] enhanced
the features for classification at the spatial, task, and regularization levels. Lu et al. [52]
incorporated text-modal descriptions for each category to alleviate confusion regarding
the classification of novel classes, and Chen et al. [53] employed category knowledge to
guide parameter calibration. The approaches mentioned above used a similar training
strategy, i.e., training on base classes to obtain a network with the ability to learn meta-
knowledge, and then allowing it to learn the knowledge of novel classes after fine-tuning
both novel and base classes. Previous research has explored various methods to use to
optimize the utilization of support information from multiple aspects, leading to significant
advancements in the development of a unified framework for few-shot object detection.
However, previous studies have often overlooked the potential issues arising between the
two branches. In contrast, our approach not only leveraged support information effectively
from aspect of scale, but also allowed us to conduct an in-depth analysis to resolve the
inherent contradictions between the two branches.

3. Proposed Methods
3.1. Problem Definition

We followed the primary settings of some existing networks [24–28] to perform the
FSOD tasks. The entire task had two primary stages: meta-training and meta-testing. The
primary function of the network was to obtain transferable class-specific and class-agnostic
parameters through training in base classes with rich labeled samples in the meta-training
stage and then to apply these parameters to the second stage, providing the network with
the ability to effectively complete the object detection task in the case of few shots.

We divide the dataset into two parts: Dbase and Dnovel , where Dbase ∩Dnovel = ∅. Cbase
contained base classes in Dbase with rich-labeled objects, and Cnovel contained novel classes
in Dnovel , which simulated the situation with only a few annotated samples per class. For
each sample (x, y) ∈ (X, Y), x indicates an image, and y = {(clsi, boxi)|i ∈ Objx} indicates
the class label and bounding box for the object in the image. In the meta-training stage,
we used a multiple-episodes strategy and selected the support set S = {Si}M

i=1 and the
query set Q = {Qi}M

i=1 from Dbase randomly. To follow the N-way K-shot strategy, for each
task Ti = {(S1, . . . , SN), Ii}, Si =

{
S1

i , . . . , SK
i
}

contained the support images for each class,
selected from support set S for this task. One group of support images were positive, and
the rest were negative in the support images. Typically, in [24–26], each support image
Sk

i = {(s, maski)|s ∈ S} contained an additional binary mask channel to determine which
object was used in the image. The mask can only be assigned one of two values; the
positions of the used bounding box were set to 1, and the remaining positions were set to 0.
In this study, we processed the support data in advance; in each training step, there was
only one object annotation for the corresponding class in a single image. In the meta-testing
stage, we randomly selected the support and query sets from Dnovel , which was similar to
the meta-training phase. To strictly adhere to the setting of the N-way K-shot and to show
the performance of the network with only N-labeled samples for each class, we selected
only K images for each novel class and then one bounding box of the corresponding class
in each image for fine-tuning.

Thus, the network used the training strategy of multiple episodes and N-way K-shot
to simulate a few-shots condition by means of rich labeled samples. Thus, by learning the
knowledge that could be generalized to the target domain with only a few labeled samples,
the network focused on the features of the query images, but also dynamically considered
the information from the support images to recognize novel objects.

3.2. Module Architecture

In this paper, we used Faster R-CNN [3], the most commonly used two-stage model,
as a basic detector. We proposed a novel architecture that fully considered the relationship
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between the support branch and query branch to learn generalizable knowledge. The entire
architecture of the proposed method is shown in Figure 2. Specifically, we proposed the
decoupled multi-scale attention (DMA-Net) method, which consists of two branches for
receiving support images, including positive and negative support categories, and query
images. The prototypes are computed from positive support images, which are the means
of the K images for each class. We sent the query images, prototypes, and all support images
into a weight-sharing backbone for feature extraction, and then sent the positive features
and query features into DMAM to incorporate the information on the support images
into the query image in a more detailed way. The positive and negative support features
were then reshaped into attention vectors and fused with each RoI proposal. These two
operations allowed the RPN to generate more accurate proposals and enabled the detector
to perform classification and regression more effectively. Based on these operations, we
constructed a novel network for the FSOD task. The details of each important module are
introduced in Sections 3.2.1 and 3.2.2.
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3.2.1. Decoupled Multi-Scale Attention Module

How to manage the relationship between the support and query branches is the key
point of FSOD networks based on a meta-learning strategy. In the previous methods,
such as those in [25,26], support information was only used as the object of attention after
RPN. Similarly, [51–53] utilized support information solely to enhance the classification
ability after RPN, without considering the use of multi-scale or single-scale features. Al-
though [47,52] extracted multi-scale features, they only added support information to the
detection module without applying multi-scale feature extraction to the support branch,
followed by multi-scale attention operation to fuse features from the two branches before
RPN. Moreover, [28,32] simply performed a single-size fusion operation prior to RPN.
They ignored the significance of the RPN module, which generates anchors and performs
preliminary proposal screening, directly impacting subsequent classification performance.
We also analyzed the contradiction difference between the proposed model and the original
Faster R-CNN [3], and identified a problem of inconsistent parameter properties between
the two branches. Therefore, we propose a novel module called the Decoupled Multi-scale
Attention Module (DMAM), which takes into account the location and mode of support
information fusion while ensuring the uniformity of the gradient and update parameters.
Figure 3 consists of three primary parts, each of which will be described in detail below.
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We fed the support image Is and query image Iq into ResNet50 to extract corresponding
preliminary features fs and fq. Subsequently, we applied a fusion operation to combine the
support information with the query features before the RPN, allowing the support features
to participate in proposal generation. Therefore, the RPN had a stronger ability to filter
anchors based on the foreground and background, which reduced the burden of passing
many irrelevant objects to the subsequent tasks of the detector and performed better when
using the detector with the help of support information. The processing of the features
which were input into the RPN consisted of two parts, feature extraction and feature fusion,
which will be introduced next.

(1) Feature Extractor

The FSOD task is still an object detection task in essence, and faces the problem of
recognizing small objects, which becomes more serious in the case of rare samples. Training
with multi-scale features is an important operation that can ameliorate the problem of
small objects and enrich available feature information as much as possible when the sample
information is sparse. We use a feature pyramid network (FPN) [19] to extract multi-scale
features. After a bottom-up pathway in Resnet50, we implemented the outputs of the
last residual blocks in each stage and denoted the outputs of conv2, conv3, conv4, and
conv5 as {C2, C3, C4, C5}. After the set of feature maps had been determined, a top-down
pathway was applied. As shown in Figure 4, we used a 1× 1 convolutional layer to perform
channel dimension alignment, and the feature dimension was set to d = 256 in this paper.
Subsequently, we applied nearest-neighbor upsampling to upscale the features of the upper
layers and merged these upsampled features with the channel dimension-aligned feature
maps in the corresponding layers using elementwise addition. In this iteration, we obtained
P5 after simply reducing the channel dimension, and P6 by performing a max-pooling on
P5. We also used a 3× 3 convolutional layer after each merged feature map to mitigate
the effect of upsampling. The final set of features {P2, P3, P4, P5, P6} was obtained by the
above operations. If we were to send this feature set into the RPN for proposal generation
directly, the RPN would lose contact with support information. It is critical to establish a
relationship with support information and to do so prior to the RPN. It is also convenient



Appl. Sci. 2023, 13, 6933 8 of 23

to use an attention operation. Constructing support features for use as weights and acting
on the query features gives the positions related to objects high weight, and effectively
transfers the attention of the RPN to a position related to the objects. In [28,36], single-scale
support features were used to transfer the attention, which is inappropriate in the case of
multi-scale query features, and many problems regarding feature size must be considered.
According to the above description, we applied an FPN after positive support features to
extract multi-scale support features {S2, S3, S4, S5, S6}. At all levels of the FPN, shallow
features were rich in space information and deep features were rich in semantic information;
thus, we used both shallow features and deep features of the support images. We also
considered spatial information and semantic information together, which can alleviate the
problems surrounding spatial information in FSOD tasks. After extracting the features of
the positive support images and query images, we performed an attention operation layer
to layer to achieve effective fusion and to maximize the use of support information.
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(2) Attention Module

In this paper, we used a simple attention module to construct the relation between
the query and support branch prior to the use of the RPN. We added FPN to both the
positive support branch and the query branch, and there were five layers of features with
different scales in each branch. Therefore, we were obligated to add attention layer by layer.
Constructing a relation scale to scale can also reduce the influence between different scale
features. There were five attention modules in five layers, which represented the same
feature fusion method but had different feature sizes. As shown in Figure 5, query features
and positive support features were fed into the attention module in each layer. We denoted
query features as Q ∈ tH×W×C and positive support features as S ∈ tM×M×C. We fused
them using a depth-wise convolution method, processed the positive support features as a
convolution kernel, and then used this kernel to perform sliding computing on the query
features. The final attention feature map was obtained after this operation. The depth-wise
convolution can be defined as:

Ah,w,c = ∑i,j Si,j,c·Qh+i−1,w+j−1.c, i, j ∈ {1, . . . , M}, (2)

where A is the final attention feature, S and Q represent features from the support branch
and the query branch respectively. In this study, we used global average pooling on positive
support features, which is defined as:

S′1,1,c =
1

M×M∑h,w Sh,w,c, h, w ∈ {1, . . . , M}, (3)



Appl. Sci. 2023, 13, 6933 9 of 23
Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 23 
 

 
Figure 5. Attention module. 

𝐴,௪, = ∑ 𝑆,, ∙ 𝑄ାିଵ,௪ାିଵ., , 𝑖, 𝑗 ∈ {1, … , 𝑀}, (2) 

where A is the final attention feature, S and Q represent features from the support branch 
and the query branch respectively. In this study, we used global average pooling on pos-
itive support features, which is defined as: 𝑆ଵ,ଵ,ᇱ = ଵெ×ெ ∑ 𝑆,௪,,௪ , ℎ, 𝑤 ∈ {1, … , 𝑀}, (3) 

Therefore, the kernel size generated by 𝑆 ∈ 𝑡ௌ×ௌ× was processed to 1 × 1 × 𝐶. Us-
ing 1 × 1 convolution can reduce the burden of the parameters, spatial clutter, and the 
consumption of query information itself. We used one 3 × 3 conv and two sibling 1 × 1 
convs on the final attention feature to generate proposals for each corresponding layer. 
For {A2, A3, A4, A5, A6} at each layer, we assigned the anchors with areas of {32ଶ, 64ଶ, 128ଶ, 256ଶ, 512ଶ}  pixels, and all used the multiple aspects ratios 
of {1: 2, 1: 1, 2: 1}, similarly to [19]. We also obtained 15 anchors in total. At the stage of 
filtering anchors, we reserved anchors as positive and negative proposals based on their 
intersection-over-union (IoU) ratios with a ground-truth bounding box. The strategy was 
similar to that used in [3]; we set the anchor with an IoU higher than 0.7 or with the highest 
IoU and the corresponding ground-truth bounding box as positive proposals and as-
signed the anchor with an IoU below 0.3 to all ground-truth bounding boxes to negative 
proposals. Based on the above operations, we were able to obtain an RPN with the capa-
bility to reserve more proposals related to the object than before. 
(3) Decoupled Gradient Module 

In this paper, we conducted an analysis of the discrepancies between the proposed 
model and the original Faster R-CNN [3], and proposed decoupling between the support 
branch and the query branch to establish consistency in the type of gradient and in the 
updated parameters, thereby reducing the mutual interference between the two branches. 

The main contradictions of Faster R-CNN [3] are as follows. It consists of three pri-
mary modules for high-quality object detection tasks: RPN, RCNN, and a backbone 
shared by RPN and RCNN. The RPN module generated anchors through the features ex-
tracted by the backbone and filtered out proposals sent to the RCNN module for detection. 
Concurrently, the RPN screened out anchors as positive samples as well as negative sam-
ples that were used to calculate the loss to optimize the RPN. This process was class-ag-
nostic, because the RPN filter proposals based on the foreground and background did not 
involve proposal categories. The RCNN module first mapped the proposals from the RPN 
to the features extracted by the backbone, and then produced a series of proposals of the 
same size for the detection module through the RoI alignment operation for further clas-
sification and bounding box regression of the objects. This process was class-specific, be-
cause the RCNN was obliged to perform classification for each proposal in order to find 
the categories corresponding to their class scores. According to the above details, the RPN 
and RoI alignment module used the features extracted by the backbone concurrently, but 
their operating process was different (class-agnostic and class-specific, respectively), as 
were their purposes: one told the network where to look, while the other told the network 

Figure 5. Attention module.

Therefore, the kernel size generated by S ∈ tS×S×C was processed to 1× 1× C. Using
1× 1 convolution can reduce the burden of the parameters, spatial clutter, and the consump-
tion of query information itself. We used one 3× 3 conv and two sibling 1× 1 convs on
the final attention feature to generate proposals for each corresponding layer. For {A2, A3,
A4, A5, A6} at each layer, we assigned the anchors with areas of

{
322, 642, 1282, 2562, 5122}

pixels, and all used the multiple aspects ratios of {1 : 2, 1 : 1, 2 : 1}, similarly to [19]. We
also obtained 15 anchors in total. At the stage of filtering anchors, we reserved anchors as
positive and negative proposals based on their intersection-over-union (IoU) ratios with a
ground-truth bounding box. The strategy was similar to that used in [3]; we set the anchor
with an IoU higher than 0.7 or with the highest IoU and the corresponding ground-truth
bounding box as positive proposals and assigned the anchor with an IoU below 0.3 to all
ground-truth bounding boxes to negative proposals. Based on the above operations, we
were able to obtain an RPN with the capability to reserve more proposals related to the
object than before.

(3) Decoupled Gradient Module

In this paper, we conducted an analysis of the discrepancies between the proposed
model and the original Faster R-CNN [3], and proposed decoupling between the support
branch and the query branch to establish consistency in the type of gradient and in the
updated parameters, thereby reducing the mutual interference between the two branches.

The main contradictions of Faster R-CNN [3] are as follows. It consists of three primary
modules for high-quality object detection tasks: RPN, RCNN, and a backbone shared by
RPN and RCNN. The RPN module generated anchors through the features extracted by the
backbone and filtered out proposals sent to the RCNN module for detection. Concurrently,
the RPN screened out anchors as positive samples as well as negative samples that were
used to calculate the loss to optimize the RPN. This process was class-agnostic, because the
RPN filter proposals based on the foreground and background did not involve proposal
categories. The RCNN module first mapped the proposals from the RPN to the features
extracted by the backbone, and then produced a series of proposals of the same size for
the detection module through the RoI alignment operation for further classification and
bounding box regression of the objects. This process was class-specific, because the RCNN
was obliged to perform classification for each proposal in order to find the categories
corresponding to their class scores. According to the above details, the RPN and RoI
alignment module used the features extracted by the backbone concurrently, but their
operating process was different (class-agnostic and class-specific, respectively), as were
their purposes: one told the network where to look, while the other told the network what
to look at. However, Faster R-CNN [3] was an end-to end system that optimized all the
modules jointly through the following objective function:
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where η is a balanced hyperparameter for the rpn and rcnn tasks. Two detection tasks in the
RCNN have contradictions in the joint optimization process (i.e., task classification requires
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translation-invariant features, while task regression requires translation-covariant features).
Therefore, there may be potential optimization problems if these contradictions are used in
the scenarios of rare samples.

To solve the contradictions of RPN, [46] used the decoupling module to decouple the
RPN, RCNN, and backbone. An affine function was used during forward propagation
so that the RPN and RCNN would not directly share features from the backbone. In
the backward propagation stage, there was a decoupling coefficient multiplied by the
gradient, which weighted the gradients from the RPN and RCNN. Typically, the decoupling
coefficient of the RPN is set near 0, and the gradient of the RCNN is given a high weight so
that the gradient of the RCNN leads the update of backbone parameters, while the gradient
from the RPN loss is used to optimize the module itself. To resolve the contradictions
between the classification and regression tasks in the detection module, the two tasks were
separated to construct two branches, allowing the support branch to participate in the
classification task. Thus, the root cause of the two primary contradictions directly shared
the same features, leading to the potential optimization problem.

However, the proposed method avoided the aforementioned potential problems, as
the RPN and RCNN did not share the same features directly in our model. The features
for the RPN were extracted by the feature extractor and then passed through the attention
module, while the features for RoI were extracted by the original feature extractor. This
operation avoids the contradictions between the RPN and RCNN, but also prevents the
loss of information after the features pass through the attention module. We also did not
directly use the same features for the classification and regression tasks. For the regression
task, we directly used the features combined with positive support features, while the
proposed method for the classification task involved both positive and negative support
features. This will be described in Section 3.2.2. Therefore, no decoupling operations were
necessary for the forward propagation process.

Nevertheless, the support branch in our model intersected before the RPN and in
RCNN. The RPN is a class-agnostic module that primarily detects object locations, while
the RCNN is a class-specific module that performs object classification. The support branch
in our model was also class-specific. Therefore, there may have been a similar contradiction
of Faster R-CNN between our support and query branches if the type of the gradient
of RPN and that of the support branch were inconsistent. To prevent the contradictions,
we added a decoupled gradient module (DGM) between the support and query branches
before the RPN, and their gradients were decoupled to reduce the possibility of unnecessary
information exchange during the process of optimization, which may have caused the entire
network to fail to reach the optimal solution. As shown in Figure 6, during the forward
propagation process, the proposed module does not perform any operation because the
proposed features are not directly shared during forward propagation. During backward
propagation, we decoupled the gradient from the RPN. We set a decoupling coefficient λ,
and the module obtained the gradient, multiplied it by λ, and propagated it to the support
branch. The gradient descent step after applying DGM can be defined as:

θs ← θs − γ·
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We fed the support image 𝐼௦  and query image 𝐼  into ResNet50 to extract corre-
sponding preliminary features 𝑓௦ and 𝑓. Subsequently, we applied a fusion operation to 
combine the support information with the query features before the RPN, allowing the 
support features to participate in proposal generation. Therefore, the RPN had a stronger 
ability to filter anchors based on the foreground and background, which reduced the bur-
den of passing many irrelevant objects to the subsequent tasks of the detector and per-
formed better when using the detector with the help of support information. The pro-
cessing of the features which were input into the RPN consisted of two parts, feature ex-
traction and feature fusion, which will be introduced next. 
(1) Feature Extractor 

The FSOD task is still an object detection task in essence, and faces the problem of 
recognizing small objects, which becomes more serious in the case of rare samples. Train-
ing with multi-scale features is an important operation that can ameliorate the problem of 
small objects and enrich available feature information as much as possible when the sam-
ple information is sparse. We use a feature pyramid network (FPN) [19] to extract multi-
scale features. After a bottom-up pathway in Resnet50, we implemented the outputs of 
the last residual blocks in each stage and denoted the outputs of conv2, conv3, conv4, and 
conv5 as {C2, C3, C4, C5}. After the set of feature maps had been determined, a top-down 
pathway was applied. As shown in Figure 4, we used a 1 × 1 convolutional layer to per-
form channel dimension alignment, and the feature dimension was set to 𝑑 = 256 in this 
paper. Subsequently, we applied nearest-neighbor upsampling to upscale the features of 
the upper layers and merged these upsampled features with the channel dimension-
aligned feature maps in the corresponding layers using elementwise addition. In this iter-
ation, we obtained P5 after simply reducing the channel dimension, and P6 by performing 
a max-pooling on P5. We also used a 3 × 3 convolutional layer after each merged feature 
map to mitigate the effect of upsampling. The final set of features {P2, P3, P4, P5, P6} was 
obtained by the above operations. If we were to send this feature set into the RPN for 
proposal generation directly, the RPN would lose contact with support information. It is 
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rcnn are learnable parameters; γ is the learning rate; the two partial
derivatives indicate the gradients from the RPN and RCNN; and

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 23 
 

what to look at. However, Faster R-CNN [3] was an end-to end system that optimized all 
the modules jointly through the following objective function: ℒtotal = (ℒ௦ + ℒᇣᇧᇧᇧᇤᇧᇧᇧᇥ ௧௦ ) + 𝜂 ⋅ (ℒ௦ + ℒᇣᇧᇧᇧᇤᇧᇧᇧᇥ ௧௦ ), (4) 

where 𝜂 is a balanced hyperparameter for the rpn and rcnn tasks. Two detection tasks in 
the RCNN have contradictions in the joint optimization process (i.e., task classification 
requires translation-invariant features, while task regression requires translation-covari-
ant features). Therefore, there may be potential optimization problems if these contradic-
tions are used in the scenarios of rare samples. 

To solve the contradictions of RPN, [46] used the decoupling module to decouple the 
RPN, RCNN, and backbone. An affine function was used during forward propagation so 
that the RPN and RCNN would not directly share features from the backbone. In the back-
ward propagation stage, there was a decoupling coefficient multiplied by the gradient, 
which weighted the gradients from the RPN and RCNN. Typically, the decoupling coef-
ficient of the RPN is set near 0, and the gradient of the RCNN is given a high weight so 
that the gradient of the RCNN leads the update of backbone parameters, while the gradi-
ent from the RPN loss is used to optimize the module itself. To resolve the contradictions 
between the classification and regression tasks in the detection module, the two tasks were 
separated to construct two branches, allowing the support branch to participate in the 
classification task. Thus, the root cause of the two primary contradictions directly shared 
the same features, leading to the potential optimization problem. 

However, the proposed method avoided the aforementioned potential problems, as 
the RPN and RCNN did not share the same features directly in our model. The features 
for the RPN were extracted by the feature extractor and then passed through the attention 
module, while the features for RoI were extracted by the original feature extractor. This 
operation avoids the contradictions between the RPN and RCNN, but also prevents the 
loss of information after the features pass through the attention module. We also did not 
directly use the same features for the classification and regression tasks. For the regression 
task, we directly used the features combined with positive support features, while the 
proposed method for the classification task involved both positive and negative support 
features. This will be described in Section 3.2.2. Therefore, no decoupling operations were 
necessary for the forward propagation process. 

Nevertheless, the support branch in our model intersected before the RPN and in 
RCNN. The RPN is a class-agnostic module that primarily detects object locations, while 
the RCNN is a class-specific module that performs object classification. The support 
branch in our model was also class-specific. Therefore, there may have been a similar con-
tradiction of Faster R-CNN between our support and query branches if the type of the 
gradient of RPN and that of the support branch were inconsistent. To prevent the contra-
dictions, we added a decoupled gradient module (DGM) between the support and query 
branches before the RPN, and their gradients were decoupled to reduce the possibility of 
unnecessary information exchange during the process of optimization, which may have 
caused the entire network to fail to reach the optimal solution. As shown in Figure 6, dur-
ing the forward propagation process, the proposed module does not perform any opera-
tion because the proposed features are not directly shared during forward propagation. 
During backward propagation, we decoupled the gradient from the RPN. We set a decou-
pling coefficient 𝜆, and the module obtained the gradient, multiplied it by 𝜆, and propa-
gated it to the support branch. The gradient descent step after applying DGM can be de-
fined as: 𝜃௦ ← 𝜃௦ − 𝛾 ∙ 𝔽 ൬𝜆 ∙ డℒೝడఏೝೞ ൰ − 𝛾 ∙ ℝ ൬డℒೝడఏೝೞ ൰, (5) 

where 𝜃௦, 𝜃௦ , and 𝜃௦  are learnable parameters; 𝛾 is the learning rate; the two partial 
derivatives indicate the gradients from the RPN and RCNN; and 𝔽 and ℝ represent the 

and

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 23 
 

update parameters. Figure 3 consists of three primary parts, each of which will be de-
scribed in detail below. 

 
Figure 3. Decoupled Multi-scale Attention Module (DMAM). 

We used a weight-shared network to perform feature extraction on both the query 
image 𝐼 ∈ ℝு×ௐ×  and the support images 𝑆 = {𝑆ଵ, … , 𝑆}ୀଵே  . In particular, the sup-
port features fed into DMAM came from the prototype of K positive support images 𝑆 =൛𝑆ଵ, … , 𝑆ൟୀଵ . The prototype was simply the mean of 𝑆, which can be defined as: 𝐼௦ = ଵ ∑ 𝑆ୀଵ ,   𝑆 ∈ 𝑆, 𝐼௦ ∈ ℝுೞ×ௐೞ×, (1) 

We fed the support image 𝐼௦  and query image 𝐼  into ResNet50 to extract corre-
sponding preliminary features 𝑓௦ and 𝑓. Subsequently, we applied a fusion operation to 
combine the support information with the query features before the RPN, allowing the 
support features to participate in proposal generation. Therefore, the RPN had a stronger 
ability to filter anchors based on the foreground and background, which reduced the bur-
den of passing many irrelevant objects to the subsequent tasks of the detector and per-
formed better when using the detector with the help of support information. The pro-
cessing of the features which were input into the RPN consisted of two parts, feature ex-
traction and feature fusion, which will be introduced next. 
(1) Feature Extractor 

The FSOD task is still an object detection task in essence, and faces the problem of 
recognizing small objects, which becomes more serious in the case of rare samples. Train-
ing with multi-scale features is an important operation that can ameliorate the problem of 
small objects and enrich available feature information as much as possible when the sam-
ple information is sparse. We use a feature pyramid network (FPN) [19] to extract multi-
scale features. After a bottom-up pathway in Resnet50, we implemented the outputs of 
the last residual blocks in each stage and denoted the outputs of conv2, conv3, conv4, and 
conv5 as {C2, C3, C4, C5}. After the set of feature maps had been determined, a top-down 
pathway was applied. As shown in Figure 4, we used a 1 × 1 convolutional layer to per-
form channel dimension alignment, and the feature dimension was set to 𝑑 = 256 in this 
paper. Subsequently, we applied nearest-neighbor upsampling to upscale the features of 
the upper layers and merged these upsampled features with the channel dimension-
aligned feature maps in the corresponding layers using elementwise addition. In this iter-
ation, we obtained P5 after simply reducing the channel dimension, and P6 by performing 
a max-pooling on P5. We also used a 3 × 3 convolutional layer after each merged feature 
map to mitigate the effect of upsampling. The final set of features {P2, P3, P4, P5, P6} was 
obtained by the above operations. If we were to send this feature set into the RPN for 
proposal generation directly, the RPN would lose contact with support information. It is 

represent the
gradient propagation of the FPN and remodeling parts in the support branch, respec-
tively. During training, λ should be set to 0 to stop the gradient, and the gradient descent
step becomes:

θs ← θs − γ·
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When the parameters in the support branch are updated, the gradients are always
class-specific, which avoids the unnecessary exchange between class-specific and class-
agnostic information during the optimization process. We provide the pseudo code of
DGM in Algorithm 1.

Algorithm 1: Decoupled Gradient Module, PyTorch-like

# ctx: context manager
# x: input during forward propagation
# _lambda: gradient decoupling coefficient
class DecoupleGradientModule(Function):
# feature forward
def forward(ctx, x, _lambda):
ctx._lambda = _lambda
return x
# feature backward
def backward(ctx, grad_output):
grad_output = grad_output * ctx._lambda
return grad_output, None
def decouple_layer(x, _lambda):
return DecoupleGradientModule(x, _lambda)

3.2.2. Detection Module

In the detection module, we also added the support information for query features.
The details of the detection module are shown in Figure 7. The entire module had three
inputs: original features from the FPN, proposals from the RPN, and support attentions
from the support branch. We sent all support images to the backbone for feature extraction
and remodeled these features into attention. Specifically, we used Res1-3 blocks of ResNet50
for feature extraction and Res4 blocks for preliminary remodeling, we used global average
pooling on support features to obtain remodeled features
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. We sent the proposals into the RoI alignment module for feature mapping
and performed the RoI alignment operation to obtain a series of features of the same size,
which was convenient for the subsequent classification and regression tasks. Specifically, we
mapped the proposals to the original features generated by the FPN rather than the features
that were added with the support information that was sent to the RPN. This operation
reduced the loss of query information in the proposals. Because the subsequent detection
tasks had contradictions mentioned previously, we processed the proposals and sent them
into two parallel heads for box classification and box regression. For the box regression task,
we fused positive support attentions with proposals using channel-wise multiplication,
and then performed smooth L1 on them for regression loss. For box classification, we fused
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the proposals with positive support attentions and negative support attentions and used a
matching method [35] on them for classification, enabling the network to recognize objects
of the same class and distinguish objects of different classes simultaneously. The input of
the support branch was 2-way 3-shot in the proposed experiments; thus, we obtained a
query image Ic

q ; positive support images Ic
p, which have objects of the same class c; and

negative support images In
p , which have objects of different classes n. Positive proposals Pp

and negative proposals Pn were generated after attention fusion. For each task, we filtered
out 512 proposals from the RPN module, and the ratio of positive samples to negative
samples was 1 : 3. Pp was composed of P f g

p and Pbg
p , and Pn was composed of P f g

n and

Pbg
n . We set the label of foreground P f g =

{
P f g

p , P f g
n

}
to 1 and the rest to 0. We sorted

background proposals Pbg =
{

Pbg
p , Pbg

n

}
in descending order based on their class scores.

According to the ratio of P f g, Pbg
p , and Pbg

n of 1 : 2 : 1, proposals were selected to reconstruct
the positive samples and negative samples that were used to calculate class loss. The
negative samples contained the negative proposals wrongly divided into the foreground,
which can help the network to distinguish objects of different categories when matching
objects of the same class. The loss of each image is defined as L = Lmatching + Lbox, and the
total loss is defined as:

Ltotal = (Lcls + Lbox︸ ︷︷ ︸
Lrpn

) + η · (Lcls + Lbox︸ ︷︷ ︸
Lrcnn

), (7)

which is the same as that in [3], except that the Lcls in Lrcnn is Lmatching in this paper, the
matching loss is the cross-entropy, and η is a balancing parameter. The pseudo-code of the
proposed method is shown in Algorithm 2.

Algorithm 2: The pseudo-code of the proposed method.

Input: Base set Dbase, support images Is, query image Iq, initialized RPN parameters θrpn, RCNN
parameters θrcnn, and support branch parameters θsup.
Output: Updated RPN parameters θrpn, RCNN parameters θrcnn, and support branch parameters θsup.
1: for IqεDbase do
2: Calculate the prototypes Pps, Pns of positive support images Ips and negative support images Ins;
3: Extract and fuse the multi-scale features fq fps of query image Iq and positive prototypes Pps;
4: Extract the region of the interest features f̂qfq with the RPN and RoIAlignment;
5: Extract single-scale features fs of support prototypes Ps and remodel the support features as
attentions As;
6: Fuse the region of the interest features f̂q with attentions As;
7: Calculate loss Ltotal with a detector according to Equation (7);
8: Update θrpn to minimize the training loss Lrpn and update θrcnn and θsup to minimize the
training loss Lrcnn;
9: end for
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4. Experiments and Discussions
4.1. Implementation Details

In this paper, we used the ResNet50 as a preliminary feature extractor. Specifically, we
used Res1–3 blocks for feature extraction in the first support branch in Figure 2 and Res4
blocks for preliminary remodeling. The experiments were all implemented in PyTorch [54]
on a workstation with an NVIDIA 2080Ti. The shorter sides of the query images were
resized to 600 pixels, while the longer sides were cropped to 1000 pixels. The support
images were cropped around the target object, zero-padded, and then resized to obtain
square images with dimensions of 320× 320. We applied SGD to optimize the model
with a batch size of 4, a momentum of 0.9, and a weight decay of 0.00001. Subsequently,
we trained the network with a learning rate of 0.001 for 7 epochs, and then decreased
it to 0.0001 at epoch 8. The anchors were assigned scales of

{
322, 642, 1282, 2562, 5122},

and the three aspect ratios were {1 : 2, 1 : 1, 2 : 1}, while the decoupling coefficient λ was
0.01 in DMAM.

4.2. Experimental Settings
4.2.1. Datasets

In the proposed experiments, we used MSCOCO2017 for training and evaluation.
COCO is the most widely used and challenging dataset of the previous FSOD benchmarks,
and contains 80 categories in the object detection task, 11.8 K images in the training set,
and 5 K images in the validation set. We took the validation data as the testing data, as
in previous studies. We considered 20 categories that coincided with PASCAL VOC as
novel classes, and the remaining 60 categories that did not belong to PASCAL VOC as
base classes.

4.2.2. Training

Following the N-way K-shot training strategy, we set N = 2, K = 3 for each episode
in all experiments. For each episode, there was one query image and two-way support
sets: one way contained positive support images and the other way contained negative
support images; each way had three support images. During the fine-tuning process, we
preprocessed the support images such that each image in the input of the support branch
contained exactly one object of the corresponding class. Different from the processing
in [24–26], a binary mask was added as the fourth channel of the support images to indicate
the support object for the network during training. Our processing avoided the feature
extraction module needing two heads due to the inconsistency of the channels when
extracting features of support and query branches. The annotations of the query objects
and corresponding support objects that belonged to novel classes were all moved, and
there was no overlap between novel and base data.

4.2.3. Evaluation

Following the general few-shot paradigm in previous studies, we intended to prepare
K images of each novel class as support images during testing. However, previous studies
used different settings for fine-tuning and evaluation. During fine-tuning, the query image
may have several categories with many objects; thus, the definition of K-shot would be
different. In [24], the K-shot was defined as having K bounding boxes per class, while [55]
defined the K-shot as having K images. In the evaluation phase, [24–26] only used the query
image as the input and the fixed attention vectors obtained by the support branch in the
fine-tuning phase as support information. In [32,35], K novel support pools were used to
provide information for the query image; thus, there was more ambiguity in comparison. To
implement the N-way K-shot paradigm and to thoroughly evaluate the proposed network,
we followed the protocol outlined in [35] and compared the results with studies that used
the same evaluation settings. In addition, we conducted incremental experiments without
any samples of novel classes to fine-tune the proposed model, and we used the network
trained on base classes to evaluate the test data directly. Because the purpose of the FSOD
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task was to solve the problem of rare samples, we hoped that the proposed model would
be able to recognize novel classes using only K bounding boxes of novel classes, without
using additional samples and spending additional time fine-tuning. We also hoped that the
novel class would be detected at any time it was registered.

4.3. Generic FSOD Protocol

In Table 1, we report the results of the DMA-Net on novel classes of the COCO dataset.
We followed the evaluation method widely used in previous papers and compared the
proposed results with those reported in previous papers. As mentioned previously, we used
base classes to simulate the few-shot situation for episode training and then fine-tuned the
unseen novel classes. To test the generalizability of the proposed model, we only selected
10/30 bounding boxes for each novel class for fine-tuning in order to address the condition
that there were only K samples for us to use to help the model recognize the novel objects.
In this challenging setting, the proposed results of AP and AP75 in 10/30 shots were better
than those of many existing studies. The DMA-Net was only trained for 8 epochs, and this
performance could be achieved after fine-tuning for 4 epochs. The training took 2 days,
18 h, and 56 min, while DAnA [35] needed 4 days, 1 h, and 42 min; thus, it can be concluded
that the DMA-Net can save considerable training and fine-tuning time and still exhibit
a good performance. In Figure 8, we show the convergence curve of the loss function in
Equation (7).

Table 1. Fine-tuning results on novel classes of COCO. “-”: no reported results.

Method
10 Shot 30 Shot

AP AP75 AP AP75

Feature Reweighting [24] 5.6 4.6 9.1 7.6
Meta R-CNN [25] 8.7 6.6 12.4 10.8

MPSR [47] 9.8 9.7 14.1 14.2
TFA w/cos [44] 10.0 9.3 13.7 13.4

Attention RPN [32] 11.1 10.6 - -
Meta Faster R-CNN [36] 11.3 9.8 15.9 14.7

FSDetView [26] 12.5 9.8 14.7 12.2
FSDetView + PsP [33] 13.4 9.1 17.1 14.7

CME [56] 15.1 16.4 16.9 17.8
DMA-Net 17.2 15.3 18.6 17.2
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4.4. Incemental FSOD Protocol

In this section, we describe our evaluation of the DMA-Net in a more challenging
situation. We directly tested the proposed model on novel classes after the network was
trained on base classes without any novel samples for fine-tuning. Therefore, we only
needed to prepare K bounding boxes of each novel class as support data to recognize objects
of that class. In this setting, the network was able to recognize unseen novel classes at any
time, which is referred to as incremental FSOD. In Table 2, the studies that we compared,
including the proposed method, the data input, and result evaluation, showed the same
result, and there was no ambiguity in comparison. Table 2 shows that the DMA-Net
outperformed the SOTA method DAnA-FasterRCNN [35] by 0.5/0.8/0.1 mAP according
to the AP/AP50/AP75 metrics. An excellent FSOD network should also achieve good
performance with base classes. Table 2 shows a comparison between FSOD methods and
the original Faster R-CNN in terms of accuracy with base classes [3]. FGN [57] and attention
RPN had a large gap with Faster R-CNN [3], while the performance of the DMA-Net is
nearer to that of Faster R-CNN [3]. Therefore, the proposed network is able improve
accuracy with novel classes without losing accuracy with base classes, and DMA-Net can
achieve a good performance on AP/AP50/AP75 metrics of both novel and base categories.
In addition, DAnA [35] was trained for 16 epochs on COCO datasets, while the proposed
network had fewer parameters and only required half of the epochs to reach SOTA accuracy;
thus, DMA-Net also reduces additional costs compared with the methods used in previous
studies. DAnA [35] evaluated models with different numbers of support images under
2-way 3-shot training, including the case of 1 shot and 5 shots. In Table 3, we show the
incremental results for the novel and base classes of COCO with different numbers of
support images. The proposed model performed best in the case of 1 shot, as well as
the case of 3 shots, but performed less well in the case of 5 shots. The proposed model
improved markedly with a decrease in the number of support images, which demonstrates
that DMA-Net is more suitable for the few-shot case, but loses its generalizability as the
number of support images increases. This result likely occurs because we only chose the
average features of their prototypes when processing support images; therefore, how to
better extract the features of support images should be investigated in more detail.

Table 2. Incremental results for novel and base classes of COCO. Faster R-CNN [3] is trained and
evaluated under generic object detection protocol, so the results on novel categories are not applicable.

Method
Novel Categories Base Categories

Parameters
AP AP50 AP75 AP AP50 AP75

Faster R-CNN [3] N/A N/A N/A 34.3 58.3 35.6 4.76 × 107

Meta R-CNN [25] 11.1 25.3 8.5 28.6 52.5 28.4 4.76 × 107

FGN [57] 10.5 22.5 8.8 25.5 46.4 25.5 1.48 × 108

Attention RPN [32] 10.1 23.0 8.3 22.4 40.8 22.2 1.03 × 108

DAnA-FasterRCNN [35] 14.0 28.9 13.0 29.4 50.6 30.3 1.42 × 108

DMA-Net 14.5 29.7 13.1 30.1 53.0 31.2 6.59 × 107

Table 3. Incremental results for novel and base classes of COCO with different numbers of support images.

Method
Novel Categories Base Categories

AP AP50 AP75 AP AP50 AP75

Given Supports 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

Meta R-CNN [25] 8.7 11.2 19.9 25.9 6.8 8.6 27.3 28.5 50.4 52.3 27.3 28.2
FGN [57] 8.0 10.9 17.3 24.0 6.9 9.0 24.7 26.9 44.3 47.6 25.0 27.4

Attention RPN [32] 8.7 10.6 19.8 24.4 7.0 8.3 20.6 23.0 37.2 42.0 20.5 22.4
DAnA-FasterRCNN

[35] 11.9 14.4 25.6 30.4 10.4 13.0 27.8 32.0 46.3 54.1 27.7 32.9

DMA-Net 12.7 14.0 26.6 29.4 11.3 12.5 28.0 30.2 49.8 53.3 29.3 31.1
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4.5. Ablations

We conducted an ablation study in a situation without fine-tuning and analyzed the
effect of each module.

4.5.1. Effectiveness of Layer-to-Layer Attention

The few shots of the novel class make the information of this class valuable; therefore,
we hope to make the best use of the information about these novel objects when recognizing
objects. Using the features of the query image with different scales can improve the use
of query information. We followed DAnA [35] to evaluate the proposed model on the
COCO benchmark, in which there are many small objects. It is also a critical point for
FSOD models to improve their ability to detect small objects; thus, we applied a feature
pyramid in the query branch for multi-scale feature extraction. Ablation (a,b) in Table 4
shows that multi-scale feature extraction is more effective than single-feature extraction. In
Figure 9, the visualization of the multi-scale features before RPN is shown. As the level
of feature layers increased, attention was shifted from small objects to large objects, and
we obtained the common effect of these layers concurrently using multi-scale features.
Therefore, when we discovered large, easy-to-detect objects, we were also able to consider
detecting small objects that were more difficult to detect. As shown in Figure 10, the model
using multi-scale features for detection had a stronger recognition ability for small objects.

Table 4. Effectiveness of each module.

Multi-Scale
Feature

Scale-to-Scale
Attention

Decoupled
Gradient AP AP50 AP75

a 11.1 24.6 8.5
b
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feature pyramid operation in the support branch to obtain features with scales corre-
sponding to the query features and reduced the loss of information caused by direct scal-
ing of the features. This facilitated the subsequent scale-to-scale feature fusion for features 
of the two branches. Second, the introduction of a feature pyramid increases the complex-
ity of the model. Due to the rarity of novel classes, the complex fusion operations lead to 
overfitting of the model. In addition, the model is trained on base classes and evaluated 
on novel classes directly without fine-tuning, which causes the model to fit the base classes 
well and lose its generalizability for novel classes. We used the fusion operation described 
in Section 3.2.1-(1) layer to layer. Ablation, shown in (a,c) of Table 4, confirmed the effec-
tiveness of this module. As shown in Table 5, we performed an ablation study of the fea-
ture fusion operation of two branches before RPN and determined what fusion operation 
would be used and where (Line e in Table 5 is the proposed final model result). First, the 
ablation result (a,e) in Table 5 shows that the fusion operation involved in the upsampling 
(in Figure 4) of query feature extraction allows the model to obtain better results. Second, 
we compared a simple fusion operation (Section 3.2.1-(2)) and a complex fusion operation 
(Channel attention module [58]), as shown in Table 5 (b,e). The complex fusion operation 
did not cause the model to perform better, and the result c in Table 4 and b in Table 5 show 
that complex operations can even reduce the ability of the model to fit novel classes. To 
understand the effect of the proposed module in more detail, in Figure 11, we visualize 
the features for detection. We chose feature P5 of the proposed multi-scale features to 
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Figure 10. Incremental results regarding novel classes of COCO with 3 support images. The first
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Adding support information into query features is a key point in FSOD models. The
models in [24,25] did not fuse support information with query features before RPN, and
the models in [35,36] utilized complex fusion methods before RPN. In this study, we would
have created two problems if we had added a fusion operation before RPN. First, the
features of the query image are at different scales, while the features of support images are
single-scale, and there is a scale problem when fusing features. We, thus, used the feature
pyramid operation in the support branch to obtain features with scales corresponding to the
query features and reduced the loss of information caused by direct scaling of the features.
This facilitated the subsequent scale-to-scale feature fusion for features of the two branches.
Second, the introduction of a feature pyramid increases the complexity of the model. Due
to the rarity of novel classes, the complex fusion operations lead to overfitting of the
model. In addition, the model is trained on base classes and evaluated on novel classes
directly without fine-tuning, which causes the model to fit the base classes well and lose its
generalizability for novel classes. We used the fusion operation described in Section 3.2.1-(1)
layer to layer. Ablation, shown in (a,c) of Table 4, confirmed the effectiveness of this module.
As shown in Table 5, we performed an ablation study of the feature fusion operation of two
branches before RPN and determined what fusion operation would be used and where
(Line e in Table 5 is the proposed final model result). First, the ablation result (a,e) in
Table 5 shows that the fusion operation involved in the upsampling (in Figure 4) of query
feature extraction allows the model to obtain better results. Second, we compared a simple
fusion operation (Section 3.2.1-(2)) and a complex fusion operation (Channel attention
module [58]), as shown in Table 5 (b,e). The complex fusion operation did not cause the
model to perform better, and the result c in Table 4 and b in Table 5 show that complex
operations can even reduce the ability of the model to fit novel classes. To understand
the effect of the proposed module in more detail, in Figure 11, we visualize the features
for detection. We chose feature P5 of the proposed multi-scale features to compare with
the single feature in the model without DMAM. With the proposed DMAM, the model
paid more attention to the objects belonging to the novel class, and the attention was
more focused.



Appl. Sci. 2023, 13, 6933 18 of 23

Table 5. Ablation study of the primary modules.

Fusion after
Upsampling

Fusion before
Upsampling

Complex
Fusion

Simple
Fusion

Category
Agnostic
Fusion

DGM before
RPN

DGM after
RPN AP AP50 AP75

a
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did not cause the model to perform better, and the result c in Table 4 and b in Table 5 show 
that complex operations can even reduce the ability of the model to fit novel classes. To 
understand the effect of the proposed module in more detail, in Figure 11, we visualize 
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are single-scale, and there is a scale problem when fusing features. We, thus, used the 
feature pyramid operation in the support branch to obtain features with scales corre-
sponding to the query features and reduced the loss of information caused by direct scal-
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overfitting of the model. In addition, the model is trained on base classes and evaluated 
on novel classes directly without fine-tuning, which causes the model to fit the base classes 
well and lose its generalizability for novel classes. We used the fusion operation described 
in Section 3.2.1-(1) layer to layer. Ablation, shown in (a,c) of Table 4, confirmed the effec-
tiveness of this module. As shown in Table 5, we performed an ablation study of the fea-
ture fusion operation of two branches before RPN and determined what fusion operation 
would be used and where (Line e in Table 5 is the proposed final model result). First, the 
ablation result (a,e) in Table 5 shows that the fusion operation involved in the upsampling 
(in Figure 4) of query feature extraction allows the model to obtain better results. Second, 
we compared a simple fusion operation (Section 3.2.1-(2)) and a complex fusion operation 
(Channel attention module [58]), as shown in Table 5 (b,e). The complex fusion operation 
did not cause the model to perform better, and the result c in Table 4 and b in Table 5 show 
that complex operations can even reduce the ability of the model to fit novel classes. To 
understand the effect of the proposed module in more detail, in Figure 11, we visualize 
the features for detection. We chose feature P5 of the proposed multi-scale features to 
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in Section 3.2.1-(1) layer to layer. Ablation, shown in (a,c) of Table 4, confirmed the effec-
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we compared a simple fusion operation (Section 3.2.1-(2)) and a complex fusion operation 
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well and lose its generalizability for novel classes. We used the fusion operation described 
in Section 3.2.1-(1) layer to layer. Ablation, shown in (a,c) of Table 4, confirmed the effec-
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ity of the model. Due to the rarity of novel classes, the complex fusion operations lead to 
overfitting of the model. In addition, the model is trained on base classes and evaluated 
on novel classes directly without fine-tuning, which causes the model to fit the base classes 
well and lose its generalizability for novel classes. We used the fusion operation described 
in Section 3.2.1-(1) layer to layer. Ablation, shown in (a,c) of Table 4, confirmed the effec-
tiveness of this module. As shown in Table 5, we performed an ablation study of the fea-
ture fusion operation of two branches before RPN and determined what fusion operation 
would be used and where (Line e in Table 5 is the proposed final model result). First, the 
ablation result (a,e) in Table 5 shows that the fusion operation involved in the upsampling 
(in Figure 4) of query feature extraction allows the model to obtain better results. Second, 
we compared a simple fusion operation (Section 3.2.1-(2)) and a complex fusion operation 
(Channel attention module [58]), as shown in Table 5 (b,e). The complex fusion operation 
did not cause the model to perform better, and the result c in Table 4 and b in Table 5 show 
that complex operations can even reduce the ability of the model to fit novel classes. To 
understand the effect of the proposed module in more detail, in Figure 11, we visualize 
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results using single-scale features. 
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the features of the query image are at different scales, while the features of support images 
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of the two branches. Second, the introduction of a feature pyramid increases the complex-
ity of the model. Due to the rarity of novel classes, the complex fusion operations lead to 
overfitting of the model. In addition, the model is trained on base classes and evaluated 
on novel classes directly without fine-tuning, which causes the model to fit the base classes 
well and lose its generalizability for novel classes. We used the fusion operation described 
in Section 3.2.1-(1) layer to layer. Ablation, shown in (a,c) of Table 4, confirmed the effec-
tiveness of this module. As shown in Table 5, we performed an ablation study of the fea-
ture fusion operation of two branches before RPN and determined what fusion operation 
would be used and where (Line e in Table 5 is the proposed final model result). First, the 
ablation result (a,e) in Table 5 shows that the fusion operation involved in the upsampling 
(in Figure 4) of query feature extraction allows the model to obtain better results. Second, 
we compared a simple fusion operation (Section 3.2.1-(2)) and a complex fusion operation 
(Channel attention module [58]), as shown in Table 5 (b,e). The complex fusion operation 
did not cause the model to perform better, and the result c in Table 4 and b in Table 5 show 
that complex operations can even reduce the ability of the model to fit novel classes. To 
understand the effect of the proposed module in more detail, in Figure 11, we visualize 
the features for detection. We chose feature P5 of the proposed multi-scale features to 
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Figure 10. Incremental results regarding novel classes of COCO with 3 support images. The first 
row shows the detection results using multi-scale features, and the second row shows the detection 
results using single-scale features. 
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on novel classes directly without fine-tuning, which causes the model to fit the base classes 
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port samples; both belong to the base classes during training and to the novel classes dur-
ing evaluation. Prior to RPN, we incorporated both positive and negative support features 
as attention mechanisms to query features, so that class-agnostic model RPN would be 
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Figure 11. Visualization of the features for detection. The deeper the color is, the more the model
responded. The first row shows the features of the model with DMAM, and the second row shows
the features of the model without DMAM. For a fair comparison between the multi-scale features, we
selected feature P5, with the same size as the model without DMAM.

The input of the support branch includes positive support samples and negative
support samples; both belong to the base classes during training and to the novel classes
during evaluation. Prior to RPN, we incorporated both positive and negative support
features as attention mechanisms to query features, so that class-agnostic model RPN
would be able to obtain more class-agnostic information. However, the ablation result
(c,e) in Table 5 demonstrates that only fusing positive support information prior to RPN
yielded better performance. How to fuse the category-agnostic information effectively is
also worthy of further study.

4.5.2. Effectiveness of Decoupled Gradient

As described in Section 3.2.1-(3), there are contradictions in Faster R-CNN [3], although
these contradictions are not relevant. However, the proposed model has one more support
branch than Faster R-CNN [3], and there is a significant amount of information exchanged
between the two branches. To reduce the unnecessary exchange of optimization information
between the support and query branches, we used a DGM after the attention operation in
the support branch and before the RPN in the query branch to decouple the gradient, which
allowed the class-specific gradient of the network to update the class-specific parameters
of the support branch. Ablation (c,d), as in Table 4, shows the effectiveness of the DGM. We
also compared the addition of DGM to the detection module, and the ablation result (d,e) in
Table 5 shows that the proposed model did not require additional decoupling operations.
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4.6. Discussion

Based on the experimental results, the proposed network achieved comparable results
for the base and novel classes in the COCO dataset with widely used baselines. Table 2
shows that the proposed network achieved a good performance on both the novel and base
classes without fine-tuning. We provide many visualizations of the detection results of
novel classes in the COCO dataset in Figure 12. We also used a multi-scale feature extractor
in the query branch and integrated support information into the features before the RPN so
that the RPN would be able to more clearly distinguish the foreground and background
when rare samples are being evaluated. We proposed a layer-to-layer attention operation
based on different scales to fuse the information between the support and query branch,
which overcame the scale mismatch problem and avoided the overfitting caused by the
increase in complexity. Gradient decoupling was performed between the two branches so
that the property of the gradient and the parameters it updated could be unified. Regarding
previous studies, only the support information was fused into the detection module in [25];
the support information was fused before the RPN with a single size in [28,36]; and the
gradient between the backbone, RPN, and RCNN was decoupled in [46]; on the other
hand, our method effectively utilized the support information from the aspect of scale
and determined the specific location and mode of fusion operation. In addition, we
analyzed the contradicting difference between the proposed model and original Faster
R-CNN [3] in Section 3.2.1-(3). We were obliged to decouple only the gradient between the
support branch and the RPN, and the experimental results demonstrate the effectiveness
of the proposed methods; thus, we did not require additional decoupling operations.
Our model not only achieved strong performance on novel classes, but also maintained
a comparable level of detection accuracy to the original Faster R-CNN on base classes.
Compared with the SOTA model DAnA [35] in the same setting, DMA-Net was able to
achieve a better performance with fewer parameters and less training time without fine-
tuning. However, in terms of detection efficiency, DMA-Net and DAnA [35] achieved
FPS values of 7.28 and 9.45, respectively, in the same hardware environment. Although
the gap was small, our model faced a disadvantage due to the utilization of multi-scale
features during the extraction of information from two branches, leading to a significant
increase in computational requirements. Therefore, reducing the computational burden
of the proposed model should be a focus of future investigations. In addition, we have
not yet solved the problem of how to use the proposed network to fuse category-agnostic
information effectively by improving the extraction operation of the support features and
the fusion operation between two branches. We will attempt to improve the proposed
method in this regard in future work.
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5. Conclusions

In this paper, we proposed a novel framework called Decoupled Multi-scale Attention
(DMA-Net) to integrate support information into the features before the RPN, which
consists of three parts: a multi-scale feature extractor, a multi-scale attention module, and a
decoupled gradient module (DGM). With the cooperation of these modules, the proposed
network achieved good results on the COCO dataset, particularly without fine-tuning, and
DMA-Net achieved SOTA results on both the novel and base classes.
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