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Abstract: This paper presents an improved version of the firefly algorithm (FA) by which a maximum
power point (MPP) tracker was developed to track down the global maximum power point (GMPP)
of a partially shaded photovoltaic module array (PVMA). As the first step, our team developed a
high-voltage step-up converter where a coupled inductor was used to store the energy so that the
duty cycle can be reduced so as to raise the voltage gain. The single-peaked P-V output characteristic
curve of a PV array turns out to contain multiple peaks when the array is partially shaded. As a
consequence, conventional MPP trackers occasionally track down a local maximum power point
(LMPP), instead of the desired GMPP, and the output power of the array falls accordingly. Therefore,
an improved version of the FA is proposed as a way to ensure that the GMPP can be tracked down
in a more efficient way. Using the Matlab software, the MPP tracking performance of the proposed
tracker was finally simulated in five scenarios. As it turned out, the proposed converter provided a
high voltage gain at a relatively low duty cycle, and the improved version of the FA outperformed
the original in terms of tracking time.

Keywords: firefly algorithm; partially shaded; photovoltaic module array; maximum power point
tracker; high-voltage step-up converter; coupled inductor; local maximum power point; global
maximum power point

1. Introduction

Solar power has been acknowledged as one of the most promising renewable energy
sources, particularly in places with long hours of sunshine [1,2]. A maximum power point
tracker is employed to increase the power generation efficiency of a solar energy system.
The perturbation and observation (P&O) [3–8] algorithm and the incremental conductance
(INC) algorithm [9–11] are two of the commonest algorithms to track the MPP on a P-V
curve of a PV array. However, these two algorithms occasionally do not track down the
GMPP of a shaded PV array as expected. Instead, they get trapped in an LMPP.

Over the years, there has been a multitude of publications on tracking the MPP of a
shaded PV array in the literature. Here are a number of frequently used algorithms on this
issue: fuzzy logic control algorithms [12–14], neural networks (NN) [15–17], the grey wolf
optimization (GWO) algorithm [18–20], the differential evolution (DE) algorithm [21–23],
the artificial bee colony (ABC) algorithm [24–26], the firefly algorithm (FA) [27–30], the vari-
able step size perturbation and observation (P&O) [31] and the shuffled frog-leaping (SFL)
algorithm [32]. In the fuzzy control algorithms [12–14], input data are converted into fuzzy
data, a membership function is used to map the fuzzy data into member attributes. Then,
the attributes are expressed as a sequence of if–then rules for subsequent fuzzy operations.
Finally, the fuzzy data are converted back to the non-fuzzy data as output. Consequently,
fuzzy algorithms require a large amount of time to perform complex operations, that is, a
high time complexity. NNs such as those in [15–17] mimic the way that biological neurons
signal to one another and have been used to simplify information processing in compli-
cated nonlinear models and particularly well applied to artificial intelligence (AI) and deep
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learning recently. However, a pyrometer and an exact fill factor [33] are required when an
NN is applied to deal with the MPP tracking issue. As a consequence, the hardware cost
is raised, and the MPP tracking accuracy remains an issue as well. In [18–20], the GWO
algorithm mimics the social hierarchy and the hunting mechanism of grey wolves in nature.
In a pack of grey wolves, there are three hierarchies responsible for seeking, encircling and
finally attacking prey, respectively, in order to optimize the hunting performance. Although
the GWO algorithm is simple and requires a smaller number of parameters to run global op-
timization, its major disadvantages include poor tracking accuracy, slow convergence and
particularly the likelihood of getting stuck in a local solution. The DE algorithm in [21–23]
is essentially a heuristic model and works in a similar way to the genetic algorithm (GA).
It performs real number coding on a specific population. The global optimum is sought
by evaluating the variance and using the one-to-one competitive strategy for survival.
However, a major disadvantage is that it requires more operations and consequently takes
a longer period of time to perform a global search when there is a genetic mutation in an
individual. However, inappropriate parameter setting frequently leads to over-speedy
convergence. As a result, the DE algorithm gets trapped in a local maximum and fails to
reach the global maximum. The ABC algorithm [24–26] is a global optimization algorithm
that mimics the intelligent foraging behavior of honeybees in nature. Employed bees
search for food sources. As it turns out, the ABC algorithm provides high stability and
requires a smaller number of parameters, while suffering the disadvantage of over-speedy
convergence as the GA does. Proposed by Xin-She Yang in 2008, the FA [27–30] mimics
the flashing behavior of fireflies. In nature, fireflies are attracted to each other by blinking
signals. The more brightly a firefly glows, the more fireflies it attracts. Particularly, fireflies
are randomly attracted to different light sources with the same intensity. Consequently, the
brightest firefly is the optimal solution. The FA requires a smaller number of parameters
and provides a wide search scope, fast convergence and high stability, while being very
likely to get trapped in a local optimum solution, particularly in a multi-dimensional
problem. The variable step size P&O method [31] is considerably sensitive to the initial
parameter values, so the performance of its maximum power tracking controller is highly
dependent on the selection of initial parameters. Therefore, the parameters must be selected
and controlled carefully for this tracking technology, or there would be a significant impact
on the tracking performance of its algorithm. Moreover, it is necessary to pay attention to
the selection of the sample distribution and the adjustment of the parameters in order to
improve the performance of the algorithm and increase the convergence speed. As for the
shuffled frog-leaping (SFL) algorithm [32], a large amount of storage space and computing
resources are usually required, and the increase in the number of groups will slow down
the execution of the algorithm. Even more, insufficient computer memory capacity might
be a result. Moreover, more parameters need adjustment while different parameters might
need to be used in different application scenarios. Therefore, it becomes more difficult to
adjust the parameters of the algorithm.

In light of this, this paper presents an improved version of the FA to locate the GMPP
of a P-V curve with multiple peaks. The improved version is simple and straightforward;
the step size in particular is made adaptive to the slope of a P-V characteristic curve. In this
manner, it takes the improved version a shorter period of time to get away from a LMPP
than the original, and the GMPP can be tracked down more efficiently.

Due to advances in power electronics, converters have been widely applied to MPP
trackers so as to raise the power generation efficiency of a PV array. However, a major
disadvantage of conventional DC-DC converters is the low voltage ratio due to the typical
duty cycle [34–36]. For this sake, a great amount of effort has been put over the years into
developing converters with a high voltage ratio. For example, the voltage ratio was raised
as intended using coupled inductors with a high turn ratio [37–40]. Nonetheless, this move
increased the output ripple voltage of a converter. Based on the same configuration as
in [37–40], a converter is presented in this work as a solution to the above-referred problem.
Inductors were replaced with coupled inductors therein so as to raise the voltage ratio,
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and clamp capacitors were also used to suppress the output voltage ripples in an effort to
improve the performance of the converter. The presented converter was then simulated
using PSIM software [41] for performance validation.

The organization of this paper is arranged as follows. The working principle of the
adopted high boost ratio converter and its component design are described herein in
Section 2. Next, the P-V and I-V output characteristics of a PV module under shading
are described in Section 3. Subsequently, the working principle of the conventional FA is
described, followed by proposing an improved FA, in Section 4. Finally, some simulation
tests are performed in Section 5 to verify the effectiveness of the proposed improved FA
for MPPT.

2. High Voltage Boost Converter

The adopted high-voltage boost converter is illustrated in Figure 1 [42]. The rated
input and output voltages of the converter are 80 and 400 V, respectively.
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Figure 1. The presented high-voltage step-up converter.

For simplicity, the voltage drops across each forward-biased diode; the main switch S1
when remaining on and the inductor Lk1 are all neglected. The duty cycle D is defined as

D ,
ton

T
(1)

where ton represents the period of time that S1 remains on, and T is the operation period of
the converter.

(1) Mode 1 ( t0 ∼ t1)

The circuit conduction situation in this mode is indicated in Figure 2. S1 remains on,
and the input voltage Vin is directly applied to the primary side N1 of the coupled inductor.
Accordingly, the current through the secondary side N2 charges the capacitor C1, and the
diode D2 remains forward-biased until S1 is turned off at the end of this mode. The voltage
drops across components and the currents therethrough are governed by

∆iLm1(closed) =
Vin
Lm1

DT (2)

vN2 = vC1 = Vin
N2

N1
(3)
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(2) Mode 2 ( t1 ∼ t2)

The circuit conduction situation in this mode is indicated in Figure 3. S1 is switched
off, and D1 is forward-biased. The energy stored in N1 is released to C1, and the polarity of
N2 is reversed. As a consequence, the diode D3 is forward-biased, and the capacitor C2 is
charged until the energy stored in N1 is completely released. The governing equation is
expressed as

vN1 = vLm1 = vN2
N1

N2
= vC2

N1

N2
(4)
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(3) Mode 3 ( t2 ∼ t3)

The circuit conduction situation in this mode is indicated in Figure 4. S1 remains off.
The energy stored in C1, C2 and Lm1 is released to the load by way of the diode D4, and an
operation cycle is completed accordingly.
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The inductor volt-second balance theory states that, in the steady state, the net change
in the current flowing through an inductor is zero over a cycle. Therefore, applying the
principle to Equations (2) and (4) gives

VinDT =
N1

N2
vC2(1− D)T (5)

Rearranging Equation (5) gives

vC2 =
N2

N1
Vin

D
1− D

=
ND

1− D
Vin (6)

The output voltage is given by

Vo = Vin + vC1 + vC2 (7)

Substituting Equations (3) and (6) into Equation (7) gives the voltage ratio

Vo

Vin
=

N1 + N2

N1
+

N2

N1

D
1− D

=
1 + N − D

1− D
(8)

Assuming that all the components are lossless, the input power is equal to the output
power, i.e., Pin = Pout, and

Vin ILm1 =
Vo

2

R
(9)

Substituting Equations (8) and (9) into Equation (7) gives

ILm1 =
Vo

2

VinR
=

Vo
2

Vin
2

Vin
R

= (
1 + N − D

1− D
)

2 Vin
R

(10)

where ( 1+N−D
1−D ) is the voltage ratio of the converter.

Derived from Equation (2), the increment of iLm1, over the period of time DT that S1 is
on, is given by

∆iLm1(closed) =
Vin
Lm1

DT (11)
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Accordingly, the maximum and the minimum magnetizing current of the inductor,
ILm1(max) and ILm1(min), are respectively given by

ILm1(max) = ILm1 +
∆iLm1

2
= Vin

[
(

1 + N − D
1− D

)
2 1

R
+

D
2Lm1 f

]
(12)

ILm1(min) = ILm1 −
∆iLm1

2
= Vin

[
(

1 + N − D
1− D

)
2 1

R
− D

2Lm1 f

]
(13)

The inductor current is continuous on the condition that ILm1(min) ≥ 0, that is,

Lm1(min) ≥
D
2 f

(1− D)2R

(1 + N − D)2 (14)

The rated output power and the output voltage are specified as 300 W and 400 V,
respectively, in Table 1, and the load RO is evaluated as 533.33 Ω accordingly. It is requested
that the inductor Lm1 works anytime in the continuous conduction mode (CCM), that is,
ILm1(min) ≥ 0 anytime, regardless of any change in the solar irradiance. As illustrated in

Figure 5, the peak of the curve y = D(1−D)2

(1+2−D)2 occurs at D = 0.394. Substituting D = 0.394,

RO = 533.33 Ω, f = 25 kHz and the turn ratio N = 2 into Equation (14) gives Lm1 = 227 µH.
However, Lm1 is multiplied by a factor of 1.25, that is, Lm1 is raised from 227 to 284 µH, to
ensure that the converter works all the time in the CCM as expected. Since Vc1 is evaluated
as 160 V in Equation (3), a 2 µF/250 V film capacitor is used as C1. The maximum duty
cycle of S1 is specified as 0.75. Substituting D = 0.75 into Equation (6) gives Vc2 = 480 V, and
a 5 µF/630 V film capacitor is used as C2 accordingly.

Table 1. Specifications of the presented converter.

Input voltage (Vin) 80 V
Output voltage (VO) 400 V
Output power (PO) 300 W

Switching frequency of power switch (f ) 25 kHz
Turn ratio of inductor (N = N2/N1) 2
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3. Shading Dependence of Output Characteristics of a PV Array

A single-peaked P-V characteristic curve of a PV array happens to contain multiple
peaks if the array is partially shaded in different series and parallel combinations. In
this work, SW20W PV modules, manufactured by MPPTSUN Co. Ltd., China, were used
to build a PV array under test. Specifications of an SWM20W PV module are listed in
Table 2. Using the Matlab software, a family of I-V and P-V characteristic curves of a 4
series-3 parallel (4S-3P) PV array, as shown in Figure 6, were simulated under Standard
Test Conditions (STCs), that is, with the solar irradiance = 1 kW/m2, T = 25 ◦C and air mass
(AM) = 1.5. As illustrated in Figure 7, the improved version of the firefly algorithm was
applied to track down the GMPP of a P-V array by controlling the gate of the main switch
in the converter.

Table 2. Specifications of an SWM20W PV module.

Parameter Specification

Maximum output power (Pmax) 20 W
Current of MPP (Impp) 1.10 A
Voltage of MPP (Vmpp) 18.18 V

Short current (Isc) 1.15 A
Open voltage (Voc) 22.32 V

Size of module 395 × 345 × 17 mm
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4. Firefly Algorithms

As referenced previously, the FA is actually a heuristic model proposed by Xin-She
Yang in 2008. Fireflies communicate to each other by blinking signals. In nature, fireflies
emitting flashes of light weakly are attracted to those emitting strongly, while moving
randomly between two light sources with the same intensity. The more a firefly glows,
the better a position it has. Accordingly, the firefly which glows most is the optimal solution.
Compared to other algorithms, the FA requires a smaller number of parameters, has a wide
search scope and provides high stability. However, with a poor starting point for a search or
a poor choice of a step size, the FA would fail to track down the global optimum, especially
in a multi-dimensional problem. Instead, it could get trapped in a local optimum.

4.1. The Conventional FA

The FA works under the following assumptions.

(1) Fireflies are attracted to each other despite their gender.
(2) Level of attraction is simply a function of the light intensity and the distance between

fireflies, and it decreases as the distance increases. Fireflies which glow with lower
brightness are attracted to those with higher brightness—which move randomly.

Here are the steps to find the optimum solution.

Step 1: Initialize the number of fireflies m, the maximum number of iterations Itmax and
the step size a.

Step 2: The relative brightness between a firefly and another is given by

β = β0e−αd2
ji (15)

where β0 represents the brightness emitted by the firefly, and α the absorption
coefficient of a medium. β0 decays as the distance increases, and α is usually
considered a constant.
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Step 3: In an n-dimensional space, the distance between fireflies i and j is expressed as

dji = ||xj − xi|| =
[

n

∑
k=1

(
xj,n − xi,n

)2
] 1

2

(16)

where xj,n represents the n coordinate of firefly j. In this work, the FA is applied to
track the MPP of a PV array, and the n-dimensional space is therefore simplified to
a plane. Hence, Equation (16) becomes

dji =
[(

xj − xi
)2

+
(
yj − yi

)2
] 1

2 (17)

Step 4: Level of attraction is given by

γ = γ0e−αd2
ji (18)

where γ0 represents the maximum of γ.
Step 5: Firefly i is attracted to firefly j, and the position of firefly i is updated using

xit+1
i = xit

i + γ0e−αd2
ji
(

xit
j − xit

i

)
+ arit

i (19)

where r is a random number between 0 and 1.
Step 6: Go back to Step 1 until the maximum number of iterations is reached, and then

output xi.

4.2. The Improved FA

Firstly, the upper and the lower bounds of a are specified, and a is updated using

a = (1− it
Itmax

)amax +
it

Itmax
× amin (20)

where amax and amin represent the upper and the lower bound of a, respectively, and it
represents the number of iterations. Subsequently, a is slightly tuned according to the
slope s of a P-V curve, as illustrated in Figure 8. Table 3 lists the correlation between s
and the slightly tuned a, and it must be stressed that a is tuned on the condition that ∆P
> 0. In this fashion, the GMPP can finally be tracked down. A flowchart combining the
conventional FA and the improved FA in Figure 9 is used to illustrate the working steps of
the conventional FA and the improved FA in this study.
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Table 3. Correlation between s and the slightly tuned a.

s ∆
=

P(it+1)−P(it)
V(it+1)−V(it)

Fine-Tuning a of Equation (20)(
∆P = P(it+1) − P(it)

∆P > 0

)
s > 2 a of Equation (20) + s × 0.01

2 ≥ s > 1.5 a of Equation (20) + s × 0.01
1.5 ≥ s > 1 a of Equation (20) − s × 0.01
1 ≥ s > 0.5 a of Equation (20) − s × 0.03
0.5 ≥ s > 0 a of Equation (20) − s × 0.04

s = 0 a
0 > s ≥ −0.5 a of Equation (20) + s × 0.04
−0.5 > s ≥ −1 a of Equation (20) + s × 0.03
−1 > s ≥ −1.5 a of Equation (20) + s × 0.01
−1.5 > s ≥ −2 a of Equation (20) − s × 0.01

s < −2 a of Equation (20) − s × 0.01Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 22 
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5. Simulation Results

The proposed high-voltage step-up converter was simulated using the PSIM software,
and MPPT was then simulated using the Matlab software.

5.1. Simulation Results of the Proposed Converter

Figure 10 gives waveforms of the simulated input voltage Vin, output voltage VO and
the duty cycle D signal at a full load of 300 W. An input voltage of 80 V was raised to an
output voltage of 400 V when D was 0.567.
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5.2. Simulation Results of the Improved FA

Tables 4 and 5 list the parameter settings used in the conventional and the improved
version of the firefly algorithm. Table 6 lists five scenarios, representing five different
shading conditions, in which shading effects on P-V characteristic curves of a 4 series-3
parallel (4S-3P) configuration were demonstrated. As will be seen below, multiple peaks
occurred in the P-V curves in Scenarios 2–5 where the GMPP lay near the left or right
endpoint of the P-V curves. The GMPP tracking performance was simulated in each
scenario and then compared to highlight the advantage of this work over others.

Table 4. Parameter settings in the original version of the FA.

Parameter Name Value

Number of fireflies (m) 4
Maximum number of iterations (Itmax) 30

Step size (a) 2
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Table 5. Parameter settings in the improved version of the FA.

Parameter Name Value

Number of fireflies (m) 4
Maximum number of iterations (Itmax) 30

Upper bound of a step size (amax) 2.5
Lower bound of a step size (amin) 1.5

Table 6. Shading description of Scenarios 1–5.

Scenario Module Connection and Shading Condition Number of P-V
Curve Peaks

1
(0% shading + 0% shading + 0% shading +0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//

(0% shading + 0% shading + 0% shading +0% shading)
Single

2
(0% shading + 0% shading + 0% shading + 50% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)

Double
(MPP was on the
rightmost peak)

3
(0% shading + 0% shading + 50% shading + 70%shading)//
(0% shading + 0% shading + 0% shading + 0% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)

Triple
(MPP was on the
rightmost peak)

4
(0% shading + 30% shading + 50% shading + 70% shading)//

(0% shading + 0% shading + 0% shading + 0% shading)//
(0% shading + 0% shading + 0% shading + 0% shading)

Triple
(MPP was on the
rightmost peak)

5
(0% shading + 70% shading + 80% shading + 90% shading)//
(0% shading + 70% shading + 80% shading + 90% shading)//

(0% shading + 70% shading + 80% shading + 90% shading)

Quadruple
(MPP was on the

leftmost peak)
Note: “+” represents series and “//” represents parallel.

(1) Scenario 1

In this scenario, the PV array was unshaded and provided a maximum output power
of 239.1 W, as illustrated in Figure 11. The tracking performance is compared in Figure 12.
It can be easily seen that this work outperformed the original FA and the traditional
P&O method.
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(2) Scenario 2

In this scenario, 50% of a module was shaded. As illustrated in Figure 13, there were
two peaks on the P-V curve, and the maximum power fell from 239.1 to 201.7 W. Similar to
Scenario 1, the GMPP lay near the right endpoint of the curve. As can be seen in Figure 14,
the GMPP can be tracked down well using any of the three approaches, and it is noted that
this work outperformed others again.
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mance is compared in Figure 16. As it appears, this work outperformed others again. After 
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(3) Scenario 3

In this scenario, 50% of a PV module and 70% of another were shaded, and three peaks
occurred on the P-V curve, as illustrated in Figure 15. The maximum power was further
reduced to 184.7 W, and there was one more peak on the P-V curve than in Scenario 2.
The GMPP lay near the right endpoint of the curve again. The tracking performance is
compared in Figure 16. As it appears, this work outperformed others again. After getting
trapped in a LMPP, it took the improved version of the FA a shorter period of time to get
away from the trap than the original version. Here, it must be stressed that the conventional
P&O method failed to track down the GMPP even after 30 iterations.
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(4) Scenario 4

In this scenario, 70% of a module was shaded in addition to the two shaded modules
in Scenario 3. As illustrated in Figure 17, the maximum output power was further reduced
to 184.7 W, and there was one more peak on the P-V curve than in Scenario 3. The GMPP lay
near the right endpoint of the curve again. As can be seen in Figure 18, both the improved
and the original version of the FA succeeded in tracking down the GMPP as expected,
while the P&O method failed again. As before, this work outperformed the original version
of the FA.
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in Scenario 3. As illustrated in Figure 17, the maximum output power was further reduced 
to 184.7 W, and there was one more peak on the P-V curve than in Scenario 3. The GMPP 
lay near the right endpoint of the curve again. As can be seen in Figure 18, both the im-
proved and the original version of the FA succeeded in tracking down the GMPP as ex-
pected, while the P&O method failed again. As before, this work outperformed the origi-
nal version of the FA. 
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method got trapped in a LMPP more easily than others, even though all the three algo-
rithms finally succeeded in tracking down the GMPP. Above all, this work outperformed 
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(5) Scenario 5

As listed in Table 6, nine modules were shaded in this scenario, that is, 70% of the first
third, 80% of the second third and 90% of the last third modules were shaded. As illustrated
in Figure 19, there were 4 peaks on the P-V curve, and the global maximum output power
was as low as 55.8 W. Unlike in Scenarios 1–4, the GMPP instead lay near the left endpoint
of the P-V curve this time. In Figure 20, it is observed that the P&O method got trapped in
a LMPP more easily than others, even though all the three algorithms finally succeeded in
tracking down the GMPP. Above all, this work outperformed others again.
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5.3. Discussion of the Simulation Results

For readers’ convenience, a tracking performance comparison in Scenarios 1–5 is listed
in Table 7. The tracking performance was measured as the average number of iterations
and the average tracking time required to track down the GMPP in 10 trials. Obviously, this
work outperformed its counterparts, which highlights the robustness of this work against
various shading conditions.

Table 7. A comparison of the average number of iterations and tracking time required to track down
the GMPP in 10 trials.

Scenario
No. of Peaks on
Respective P-V

Curve

Average Number of Iterations/Average Tracking Time

Conventional
P&O

Conventional
FA Improved FA

1 Single 10.4/5.2 s 5.6/2.8 s 3.4/0.7 s

2
Double

(MPP was on the
right peak)

19.5/7.6 s 8.4/3.4 s 5.7/0.9 s

3
Triple

(MPP was on the
rightmost peak)

not available 14.1/4.0 s 12.7/1.3 s

4
Quadruple

(MPP was on the
rightmost peak)

not available 14.3/4.2 s 12.8/1.6 s

5
Quadruple

(MPP was on the
leftmost peak)

22.8/5.8 s 17.2/4.7 s 14.1/2.0 s

At present, four test cases have been selected to conduct tracking performance tests for
the number of peaks and the different locations of the peaks in different P-V characteristic
curves generated under different shading conditions; they are compared with the conven-
tional perturbation and observation (P&O) [3], the conventional grey wolf optimization
(GWO) [18] and the conventional artificial bee colony (ABC) [24] algorithms, respectively,
for tracking performance, the test results of which are summarized in Table 8.
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Table 8. Comparison of simulation test results for four scenarios with different MPPT methods.

Scenario No. Peak(s) of
the P-V Curve

Method
Proposed in

[3]

Method
Proposed in

[18]

Method
Proposed in

[24]

Proposed in
this Study

Average
Tracking

Time

Average
Tracking

Time

Average
Tracking

Time

Average
Tracking

Time

1 Single-peak 10.4 s 8.6 s 8.58 s 3.4 s
2 Double-peak 19.5 s 12.5 s 20.01 s 5.7 s
3 Triple-peak None * 15.4 s 31.3 s 12.7 s
4 Quadruple-peak None * 20.8 s 24.21 s 12.8 s

Note: The symbol “None *” indicates that this reference does not provide the test results of this scenario.

Take Scenario 2 from the simulation results of the maximum power tracking conducted
by the conventional P&O algorithm, the conventional FA and the improved FA in Figure 21
as an example; if the area of the region (such as the interval with black dotted lines) from
the start point of tracking to the global maximum power point tracked by all methods acts
as the optimal output energy of the PVMA in the tracking process, and the area of the
region between the tracking curve for various methods to the tracked global maximum
power point acts as its actual output energy, followed by calculating its tracking efficiency
from the ratio of both areas, then the tracking efficiencies of five scenarios using different
methods can be listed in Table 9 for comparison. It can be seen from Table 9 that, in
different scenarios, the tracking efficiencies of the improved firefly optimization algorithm
are the most optimal compared to the other methods, and all of them are above 89.76%.
Whereas, in Scenarios 3 and 4, the conventional P&O achieves tracking efficiencies of as
low as 67.88–42.48% within 30 iterations because the global maximum power point cannot
be tracked.
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Figure 21. MPPT efficiency diagram of Scenario 2 obtained using the conventional P&O algorithm, 
conventional FA and improved FA. 

  

Figure 21. MPPT efficiency diagram of Scenario 2 obtained using the conventional P&O algorithm,
conventional FA and improved FA.

Table 6 shows five test cases of the PVMA in 4 series-3 parallel form used under
different shading conditions herein, in which all P-V characteristic curves of the PVMA are
obtained from the simulation under standard test conditions (STC). Although the changes
in both temperature and sunshine would affect its maximum power output, the impact on
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the MPPT tracking process is not significant because of its little variation in the shape of
the P-V characteristic curve.

Table 9. A tracking efficiency comparison of the five scenarios.

Scenario No. of Peaks on
Respective P-V Curve

Tracking Efficiency (%)

Conventional
P&O

Conventional
FA Improved FA

1 Single 78.83% 98.32% 99.29%

2
Double

(MPP was on the
right peak)

79.25% 98.73% 99.09%

3
Triple

(MPP was on the
rightmost peak)

67.88% 93.23% 98.01%

4
Quadruple

(MPP was on the
rightmost peak)

42.48% 82.96% 96.74%

5
Quadruple

(MPP was on the
leftmost peak)

77.99% 76.1% 89.76%

In this paper, the maximum power tracking test has been conducted under five
different shading conditions for the PVMA, and each of the shading conditions is equivalent
to the change in the temperature and sunshine parameter so that it is identical to the
robustness test of maximum power tracking (MPPT) under the consideration of parameter
uncertainty in [43,44]. Moreover, from the test results in Tables 7–9, the proposed improved
FA MPPT method has better performance in tracking speed and efficiency than other
methods for the location of the global maximum power point (GMPP) in different cases, so
that it is evident that the proposed MPPT method is indeed robust.

6. Conclusions

This work presents an improved version of the FA which happened to outperform the
original version in terms of the GMPP tracking performance. Moreover, a high-voltage
step-up converter was designed to raise an input voltage of 80 V to an output voltage of
400 V. This was done simply because the converter worked at a relatively low duty cycle,
and the conversion efficiency was raised accordingly. Unlike in the original version of
the FA, the step size was made adaptive to the slope of a P-V curve and the number of
iterations. As a consequence, once having gotten trapped in a LMPP, the presented MPP
tracker can easily escape from the trap and then succeed in tracking down the GMPP
expeditiously as intended. The performance of the proposed MPP tracker was tested in
five scenarios, and it has, accordingly, been validated as robust against various shading
conditions. Subsequently, the TMS320F2809 digital signal processor (DSP) produced by
Texas Instruments will be used as the control core for implementation in the future to
ensure the effectiveness and robustness of the proposed method.
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