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Abstract: Introduction: Accurately detecting cracks is crucial for assessing the health of materials.
Manual detection methods are time-consuming, leading to the development of automatic detection
techniques based on image processing and machine learning. These methods utilize morphological
image processing and material deformation analysis through Digital Image or Volume Correlation
techniques (DIC/DVC) to identify cracks. The strain field derived from DIC/DVC tends to be noisy.
Traditional denoising methods sacrifice spatial resolution, limiting their effectiveness in capturing
abrupt structural deformations such as fractures. Method: In this study, a novel DVC regularization
method is proposed to obtain a sharper and less noisy strain field. The method minimizes the total
variation of spatial strain field components based on the assumption of approximate strain constancy
within material phases. Results: The proposed methodology is validated using simulated data and
actual 4D µ-CT experimental data. Compared to classical denoising methods, the proposed DVC reg-
ularization method provides a more reliable crack detection with fewer false positives. Conclusions:
These results highlight the possibility of estimating a low-noise strain field without relying on the
spatial smoothness assumption, thereby improving accuracy and reliability in crack detection.

Keywords: crack detection; DVC; image registration; strain regularization; total variation; abrupt
deformations; CT

1. Introduction

Image-based crack detection is a significant subfield of image analysis that has gar-
nered considerable attention in recent years [1]. Typically, cracks in materials occur at the
microscopic level, and their early detection can prevent further damage. When identifying
cracks through images, it is crucial to employ methods that effectively preserve the spatial
resolution of the analyzed problem, ensuring, at the same time, minimal influence from
image noise. However, it is important to note that crack-detection methods based on Digital
Volume Correlation (DVC) techniques tend to be insufficient in addressing this aspect. This
limitation often presents users with a trade-off, forcing them to choose between a solution
that offers higher spatial resolution but lower signal-to-noise ratio (SNR), or vice versa.

Visual inspection remains a common method for detecting cracks, yet it is prone to
limitations such as subjectivity and reliance on the expertise of the specialist. Moreover, it
is time-consuming and exhibits low reproducibility, especially in the case of 3D analysis [2].
As a result, there is a growing need to develop alternative crack-detection methods that are
more accurate, efficient, and consistent.
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Over the years, image-based methods for crack detection have been developed to
address the limitations of manual annotation. These methods offer several advantages,
including automation, efficiency, and improved reliability. Image-based crack-detection
methods can be broadly classified into two categories: direct methods and indirect methods.
Direct methods are based on variations in gray scale or color pixel intensities [3], as shown
in Figure 1a. Indirect methods rely on the results of Digital Image and Volume Correlation
techniques (DIC/DVC), as shown in Figure 1b. Direct methods typically involve a pre-
processing step [1,4,5], such as smoothing, filtering, or contrast enhancement, followed by a
detection step, which may use morphological, statistical [6,7] (e.g., Gabor filter bank (GFB),
Grey Level Co-occurrence Matrix (GLCM), Local Binary Matrix Feature Extraction (LBFE)),
or machine learning methods [1,8,9]. Pixel-intensity-based crack detectors depend on the
lighting conditions and require a homogeneous appearance of the uncracked areas [10];
indeed one of the main limitations of the image-based techniques is that the surface noise
might be considered a crack [11]. In DIC, to mitigate this problem, often the cracks are
painted in white, but this is not possible for 3D problems. Moreover, pixel-intensity-
based methods can achieve a precision more than one order of magnitude below the
pixel’s size [10] and they are unable to detect the direction of the propagation of cracks
properly [11]. To overcome the limitations of direct image-based crack measurements, there
has been an increasing use of indirect techniques based on DIC and DVC [10,12]. However,
the main advantage of direct over indirect methods is that they do not require a pre-
deformed acquisition (reference frame) and an acquisition in the deformed configuration.

The proposed crack-detection method belongs to the category of indirect methods,
which rely on information provided by the displacement and/or strain field. In contrast
to direct methods, indirect methods identify cracks by detecting discontinuities in the
displacement field, which correspond to peaks in the strain field [10,13]. The displacement
and strain fields used in this study are computed from images using digital image and
volume correlation techniques [14]. From a mechanical perspective, the use of DVC to
compute the strain field can provide valuable insights into the deformation behavior of the
material and its response to external loading conditions.

The accurate computation and analysis of the strain field is critical in indirect image-
based crack-detection methods: modeling a sharp strain field that can describe abrupt
deformations is challenging. While some methods can compute sharp displacement fields
with discontinuities [15,16], the sharpness of the resulting strain field may not be preserved.
This is due to the spatial mathematical differentiation of the estimated displacement field to
compute the strain field, which amplifies small, high-frequency variations, noise, and errors
in the displacement field. To mitigate this issue, various solutions have been proposed,
including post-processing techniques such as smoothing the displacement field before
differentiation. Common approaches, summarized in Table 1, include using average,
median, and Gaussian mean filters [17–20]. Gaussian filters are applied by replacing
each pixel’s value with the average of the neighboring pixels, weighted using a Gaussian
kernel. However, Gaussian filters are not suitable for interface-related issues as they may
inadvertently average the pixel intensities from both sides of the interface. Average filters
substitute each value in the region of interest with the average (or weighted average) of
the values within the neighborhood specified by the filter mask. Average filters substitute
each value in the region of interest with the average (or weighted average) of the values
within the neighborhood specified by the filter mask. This approach results in information
loss at the edges and borders of the filtered data. Therefore, this method is also not suitable
for interface-related issues. Median filters are effective in smoothing strain fields while
preserving edges. This filtering technique involves replacing each pixel’s value with the
median value of its neighborhood. The size of the selected window dimension affects the
locality of the solution [10].

Another alternative is to compute the strain from the noisy displacement field first
and then apply a filter to the strain field [17,21,22]. These techniques are applied in many
DIC/DVC open-source and commercial software, such as those offered by [18,19,22].
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Figure 1. Scheme of direct (a) and indirect (b) crack-detection methods. The proposed TV-reg method
falls under the indirect category.

In some cases, alternatives to filtering methods have been employed such as pla-
nar approximation (2D) [23], point-wise least-squares (PLS) algorithm, both in 2D and
3D [24,25] and Geers’ method in 3D [26]. These methods are implemented in MatchID [23],
Ncorr [27], and SPAM [22]. The PLS method involves the definition of a window around
the voxels where the strain needs to be computed, if the window is small enough the strain
can be approximated as linear. Geers’ method computes strains from the displacements in
a discrete set of points in the neighborhood. The local differences in the displacements have
been expanded in a Taylor series, which was truncated after the second-quadratic term [26].
Both these methods reduce the locality of the solution. A trade-off between noise and
spatial resolution exists in the computation of the strain field, which leads to a reduction in
the resolution despite having a sharp displacement field. Fractures are usually associated
with localized discontinuities in the displacement field and peaks in the strain [10].
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To overcome the challenge of obtaining a sharp and low noise strain field, we propose
a novel DVC regularization method. Our approach is based on minimizing the spatial
total variation of the strain field (TV-reg). By minimizing the total variation, our method
promotes a piecewise constant strain profile that allows for discontinuities in the strain
field. The constraint of piecewise constant strain field inside the distinct structures that
compose the material leads to a strain field with a higher signal-to-noise ratio.

Table 1. An overview of methods employed for reducing noise in strain field.

Technique Parameters Disadvantages

Gaussian filters [20] Window size, standard
deviation

Not suitable for
interface-related issue

Median filters [10] Window size
Challenges related to

identifying narrow gaps
between cracks

Average filter [17] Window size, weight Loss of information at the
edges and borders

PLS [23–25] Window size Trade-off between noise
reduction and window size

Geers’ method [22,26] Number of neighboring points
Trade-off between noise
reduction and locality of

the solution

2. Method

Image registration is the basis of DVC, and it consists of aligning features in the
moving image to the reference image by using a displacement field. The estimation of the
D-dimensional displacement field u : Ω→ RD, that maps the moving image Im : Ω→ R to
the reference image I f : Ω→ R, requires the minimization of a cost function

û = arg min
u

(Cs(u; I f , Im) + λCR(u)) (1)

where Ω is the image domain, CS is the image similarity metric, CR is the regularization
term, and λ > 0 is the weight of the regularization in the cost function. The image similarity
metric measures how well the moving image matches the reference image. The metric
should be chosen based on the images to be registered and the kind of misalignment, there
is no clear rule for which metric should be chosen.

The regularization term (CR) constitutes the second component of the cost function and
is essential due to the ill-posed nature of image registration. The available information from
the image data, represented by gray intensity scalar values, is insufficient to guarantee a
unique solution for the displacement field, which consists of a vector with three unknowns.
To address this, constraints must be imposed on the displacement field to establish a well-
posed problem. The introduction of constraints, known as regularization, restricts the
degrees of freedom in the solution, ensuring a mechanically admissible DVC solution. The
similarity metric together with the regularization term constitutes the objective function to
be optimized over the search space that comprises the parameters of the transformation.
The transformation serves as the spatial mapping of points from the moving image to the
fixed image. Various types of transformations are available for this purpose, which are
discussed in more detail in Section 2.3 of this paper. After obtaining the optimal values for
the transformation parameters, the interpolator is employed to determine the intensities of
the moving volume at positions where the parameters are not defined.

2.1. Proposed Method: Total Variation Strain Field Regularization (TV-Reg)

The proposed methodology is based on DVC technique with the incorporation of a
regularization step. The innovation lies in the introduction of a regularization term defined
by the Total Variation of the strain field. The objective is to minimize the TV of the strain
field, which enforces a piecewise constant strain profile while permitting discontinuities
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(jumps) in the strain field. The cost function to be optimized comprises an image-based
similarity metric and a strain field-based TV metric. The optimization of this function
requires balancing the trade-off between data fit, represented by the similarity metric, and
deformation discontinuity.

DVC has been performed by using a B-spline function as model to describe the
deformation. In this way, a parametrization of the displacement field was possible and that
allows the dimensionality of the registration optimization problem to be reduced.

2.2. Spatial Total Variation Strain Field Regularization

The TV strain field regularization is defined as the l1− norm of the strain field gradients

CTV
R =

D

∑
m,n=1

‖∆εmn(u(x))‖1 = ∑
x∈Ω

√√√√ D

∑
j,m,n=1

(∆jεmn(u(x)))2 (2)

where ∆ is the finite differences operator, ε is the 3D Lagrangian strain computed in each
point x of the image domain Ω (see Appendix A), and D is the spatial dimension. The term
CTV

R promotes non-smooth piecewise constant strain field. The regularization term must be
weighed properly in order to penalize the small variations of the strain field (due to noise)
and to preserve important details of the images such as discontinuities. The relative weight
is introduced by the multiplicative factor λTV . The choice of the optimal λTV depends
on the type of motion and the image noise level. This dependency has been discussed
in Section 5.

The final cost function to be minimized, in addition to the total variation regularization
term, contains the similarity metric. In this research, the selected similarity metric is the
sum of squared differences (SSD). The SSD metric is based on the voxel intensity differences
between two images, and it aims to minimize the average squared intensity differences
between them. Mathematically, the cost function can be defined as:

∑
x∈Ω

(I f (x)− Im(x + u(x)))2

︸ ︷︷ ︸
CS

+λTV ∑
x∈Ω

√√√√ D

∑
j,m,n=1

(∆jεmn(u(x)))2

︸ ︷︷ ︸
CTV

R

(3)

2.3. Parametric Transformations

Different models to describe the deformation have been used in literature. It is possible
to make a macro distinction between “non-parametric” and “parametric” models. Among
“non-parametric” models may be cited: diffeomorphic image registration methods [28],
image registration using Fourier transformation [24], and image registration based on
physical models [29]. Among “parametric” models the B-spline model [30–32] and the thin
plate splines model [33,34] are the most commonly used.

The parametrization of the displacement field allows the dimensionality of the op-
timization problem to be reduced and the size of the parameter search space to be con-
strained to allow realistic displacement fields. The parametrization is imposed on a mesh
nx × ny × nz of control points Φi,j,k equally spaced defined in the image domain. The
displacement field u is computed via interpolation of the displacement z of each single
control point. In this study the deformation has been modelled by using B-spline func-
tions [32] and the regularization has been imposed on the control grid points instead of
on the strain field itself. Such an approximation is only possible if 1st-order B-Splines
are used for interpolation. Indeed, trilinear interpolation ensures that the values of the
displacement field at the interpolated control points are equal to the coefficients at the same
points [35,36].



Appl. Sci. 2023, 13, 6980 6 of 20

According to the parametrization of the displacement field, the regularization term,
Equation (3), becomes

|Φ|

∑
φ=1

(I f (x)− Im(x + i[z(φ)]))2

︸ ︷︷ ︸
CS

+λTV

|Φ|

∑
φ=1

√√√√ D

∑
j,m,n=1

(∆jεmn(z(φ)))2

︸ ︷︷ ︸
CTV

R

(4)

where φ are the control points on which the parametrization is imposed and i is the
interpolation operator, used to interpolate the displacement field.

2.4. Optimization of the Cost Function

The defined cost function is composed by two convex terms CS and CTV
R , CTV

R is
not always differentiable. To optimize the cost function, the sub-gradient method has
been used. The sub-gradient method belongs to the class of algorithms for minimizing
non-differentiable convex functions. They are based on the principle that the directional
derivative always exists, because of the convexity of the function. It is possible, therefore,
to find the steepest descending direction for the non differentiable function [37]. For the
implementation of such an optimization algorithm, a pre-existing MATLAB package (i.e.,
L1General) has been used [38,39]. The sub-gradient method iterates:

z(k+1) = z(k) − αd(k) (5)

where d(k) is the search direction and α is the step length initialized to 1. The search
direction is computed based on the sub-gradient g of the function. The sub-gradient
of the cost function is given by the sum of the gradient of CS and the sub-gradient of
CTV

R (l1− norm) which is the signum function. According to [39] at the first step (k = 0),
d← −min{1, 1/||g||1}, if k > 0 then d← −H−1g. Where the Hessian matrix H is built by

using the quasi-Newton approximation [40,41]. It takes the form of Iσk, where σk ≈ (yk)Tyk

(yk)Tsk ,

sk = z(k+1) − zk, yk = g(k+1) − gk and I is the identity matrix. For more details about the
implemented algorithm see Appendix B.

2.5. Implementation Details

The proposed DVC method takes as input the reference and the moving volume and
the initial approximation of the displacement field (u). The initial displacement field, for the
applications covered in this paper, is set to zero. In this work, a multi-resolution approach
(i.e., pyramid approach) has been used. Such a method performs the registration at multiple
resolution levels, in a coarse-to-fine sequence. Each level is defined by a different image
resolution. The successive application of smoothing and subsampling operations helps to
eliminate unnecessary details and mitigate aperture problems to disambiguate the motion’s
direction. Besides the operation of smoothing and subsampling there is a reduction of
the B-spline nodes spacing resolution. The number of pyramid levels and the relative
grid spacing can be chosen based on the complexity of the motion to be described and
on the structure’s size inside the material [42]. The grid spacing is usually not defined
below 4 × 4 × 4 voxels, otherwise it is possible to incur in the folding effect, because the
transformation has too much freedom.

For the applications reported in this paper, we used a Gaussian pyramid approach; at
each level the image is smoothed (Gaussian blur) and subsampled by a factor of 2 in every
direction. A schematic overview of the implemented DVC method is provided in Figure 2.
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Figure 2. Digital Volume Correlation flow chart.

3. Datasets

As highlighted in Section 1, accurately characterizing cracks and interfaces in materi-
als often necessitates modelling a high-resolution strain field with minimal noise [10,20].
Hence, the proposed method was employed to measure the strain near the cracks, and
the obtained results were compared against those achieved through conventional smooth-
ing techniques.

Specifically, two datasets were utilized in this study: one simulated and one experimental.
By utilizing a simulated dataset, our intention was to recreate the experimental config-

uration of cracks proposed in [10], which consists of a crack with two closely positioned
branches, Figure 3.

The experimental dataset was obtained through the compaction of an aggregate quartz
grain sample, resulting in the presence of numerous cracks within the quartz grains due to
the applied compression, Figure 4.

Further details regarding both datasets will be provided in the following subsections.
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Figure 3. (a) central slice of the 3D-simulated volume with the applied displacement field; (b) central
slice of the 3D-simulated volume after deformation; (c) central slice of pixel-based difference between
the deformed and and reference volumes. (d) central slice of the 3D-simulated equivalent strain field.

Figure 4. Overview of the evolution of the aggregate quartz grain sample during uni-axial compaction
experiment at different loads. In the detail images on the bottom of the figure, the crack formation
is shown.

3.1. Simulated Data

The simulation involved generating a crack with two close branches induced by
two forces pulling the two short lateral faces of the sample (Figure 3). The displacement
field of a material that breaks is characterized by abrupt variations in magnitude and
direction in the region around the crack [43]. Thus, we did not consider the material’s
mechanical properties but instead simulated a displacement field that is compatible with
crack formation, characterized by abrupt changes in the displacement field and resulting in
peaks within the strain field (see Figure 3c).

The simulated dataset has a dimension of 230× 100× 50 voxels, and the strain field
contains very localized discontinuities associated with peaks. To perform the DVC process,
we used a multi-resolution approach with four levels of a Gaussian pyramid, with the
top-level B-spline node spacing equal to 8 voxels (×2 at each higher pyramid level). We set
the value of the regularization parameter λTV to 0.1.
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3.2. Experimental Data: Aggregate Grain Sample

We utilized a 4D quartz sand dynamic dataset acquired during a uni-axial compaction
experiment [44] (Figure 4). The dataset is available through the Yoda portal of Utrecht
University [45] and was acquired using the Environmental Micro CT scanner (EM-CT) [46].
During the µ-CT scans, 800 projections were taken over 360° at 120 KV acceleration voltage
and 8 W output power. The voxel size was set to 53 µm, and volume reconstruction was
performed using the Octupus software [47]. The sample had a diameter of 2 mm, with
initial length varying between 1.4–2.5 mm. A compression was performed at different
loads between 1.5 MPa and 50 MPa, resulting in ten scans. The first measured quartz grain
breakage occurred at 20 MPa.

4. Results

In the results section, we aim to assess two key aspects of the proposed method: the
increased accuracy of the computed strain field in the areas with cracks, compared to the
classical techniques, and the algorithm’s performance as a crack detector.

Since the experiment with the quartz dataset is a real and non-destructive one, we
lack a ground truth to directly compare the strain field with. Unlike the simulated dataset,
where we have access to a reference measurement, this comparison is not possible in the
case of the quartz dataset. The accuracy analysis for the simulated dataset has been carried
out by calculating the mean absolute strain error (MAE). The numerical results can be
found in the Section 4.2.

In the case of the real experiment, our only prior knowledge about the strain field is
that areas with cracks exhibit high strain. Therefore, the only quantitative evaluation we
can perform is to assess the strain within the crack areas. To accomplish this, we compare
the number of voxels belonging to the cracks with the number of voxels corresponding to
the high-strain area in the strain field.

The evaluation of a crack detector’s effectiveness typically involves comparing its
output to the actual crack pattern obtained through manual or automatic segmentation of the
cracks [10]. This allows for the estimation of true positive, true negative, false positive, and
false negative detections, which in turn provides an assessment of the algorithm’s sensitivity.

4.1. Crack-Detection Methodology

The crack points are identified by detecting peaks in the strain field. Provided that the
signal-to-noise ratio is sufficiently high, cracks can be detected by setting a strain threshold
(Tε) above the maximum elastic strain characteristic of the material. Additionally, the strain
threshold must be higher than the strain noise level to ensure accurate crack detection [10].
However, it should be noted that the computed strain values are not equivalent to actual
physical strain, which is zero in the crack area. Instead, the strain values are relative to
the displacement of the crack lips, which can be used to identify cracks by applying a
strain threshold.

In the crack-detection experiments (simulated dataset and aggregate grain sample),
the equivalent von Mises strain was computed from the strain field obtained as by-product
of the DVC algorithm. The equivalent strain takes into account all the strain components
and simplifies the strain to a single scalar value

εMises =
2
3
[ε2

xx + ε2
yy + ε2

zz − ε2
xxε2

yy − ε2
xxε2

zz − ε2
zzε2

yy+

+
3
4
((εxy + εyx)

2 + (εxz + εzx)
2 + (εzy + εyz)

2)]
1
2

(6)

4.2. Numerical Experiment Results

As an initial outcome, we will present a comparison between the accuracy of the
strain field computed using our method and the median filter method. To the best of
our knowledge, the utilization of median filters is a widely employed technique for noise
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removal in strain fields involving cracks, both in commercial and open-source software.
This method is preferred due to its ability to preserve edges, unlike many other approaches.
Additionally, since we aimed to replicate the crack configuration achieved by [10] and
they specifically utilized the median filter technique, outlining its limitations, we sought to
conduct a direct comparison between the two methods.

In order to examine the impact of the median filter window size, three distinct window
sizes were investigated (w = 7, 15, 31). The computed strain fields were compared with
the simulated ground truth through both qualitative assessment using images and profile
inspection (Figure 5), as well as quantitative evaluation using the mean absolute strain error
(MAE) calculation. It has been found that the error obtained by applying TV-reg is much
lower than the error obtained by using any other analyzed method. Based on the MAE
values, the strain field that exhibits the highest deviation from the simulated one is the one
obtaining after filtering the displacement field using a median filter with a window size of
31. The improvement in MAE obtained with TV-reg is 75.5% compared to the DVC without
regularization and 51.2%, 55.45%, and 83.10% compared respectively to smooth-reg with
window size equal to 7, 15, and 31.

When evaluating crack detection, the presence of noise poses a challenge in determin-
ing an optimal threshold that can accurately identify cracks while excluding noise. This
difficulty becomes evident when working with the raw strain field without any regular-
ization or filtering. In Figure 5b, the effect of three different threshold levels is reported.
T1ε = 10−3 is evidently under the level of the noise; T2ε = 2.2× 10−3, instead, highlights
clearly the cracks location, but residual noise, that might lead to a misinterpreted crack
detection, is still visible; T3ε = 4× 10−3, instead, is likely to be too high to properly detect
the crack location.

If we examine the strain field obtained after applying the median filter, we can observe
that imposing a threshold value of T1 for window sizes of 7 and 15 leads to the detection
of noise as an additional branch of the crack (see Figure 5c). On the other hand, when
using a window size of 31, the two branches of the crack are not detected as separate
branches. Applying a threshold of T3, only one of the two branches is detected in all cases
(w = 7, 15, 31). The only solution to accurately detect the cracks is by setting the threshold
value to T2.

In the case of the strain field computed using TV regularization, the accuracy of crack
detection is independent of the chosen threshold.

Figure 5. Cont.
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Figure 5. (a) Simulated strain field. (b) Noisy strain field in the proximity of the crack, computed
without any filtering steps or regularization. The strain field is shown at three different levels of
threshold (T1ε = 10−3, T2ε = 2.2× 10−3, T3ε = 4× 10−3). (c) Strain field obtained by applying
a median filter with different windows sizes applying T2ε. (d) Strain field in the proximity of the
crack, computed using TV-reg (λTV = 0.1). The strain field is shown at three different levels of
threshold. (a–d) the bottom row contains the strain field overlaid with the correspondent slice of
the cracked volume. (e) Crack profile and noisy strain field profile, the three threshold levels are
reported. (f) Effect of the variation of the window filter size on the strain profile. (g) Crack profile and
TV-reg strain profile, the three threshold levels are reported. (h) Mean absolute strain error computed
between the simulated strain field and the computed strain field by using TV-reg, smooth-reg and no
regularization (no-reg.)

4.3. Aggregate Grain Compaction Experiment Results

TV-regularization has been used to detect cracks in µ-CT images of an aggregate
grain sample, formed as result of a compaction experiment. Moreover, in this case, the
results have been compared to the performances of DVC without regularization and
filtering operation and with smooth filtering. In order to detect cracks from the strain
field a threshold value has been set (Tε = 2%): the peaks of the strain field above Tε are
considered to be caused by a crack in the grain. In Figure 6, one slice of the strain field
computed without regularization (a), one with smooth regularization (b) and one with TV
regularization (c) are shown.
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Figure 6. The figure shows one slice of the volume with cracks (d) and the same slice of the strain
field (a–c) computed using three different methods: DVC without TV-reg regularization (a), with
smooth-reg (b), with TV- regularization (c). (e) shows the strain profile in the proximity of the crack
number 1. (f) Details of the cracks. (g) Receiver operating characteristic (ROC) to show the FPR and
the TPR at different values of thresholds for the three methods: DVC with TV regularization; DVC
with smooth filtering; DVC without regularization.
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In this application, the presence of noise in the strain field leads to numerous false
positive detections. The noise peaks not only have similar amplitude to the actual strain,
but they also exhibit similar crack openings (5–12 voxels). For instance, the crack la-
beled as number 1 has an opening of nine voxels, as indicated by the dashed rectangle in
Figure 6e. That makes it impossible to distinguish a real crack from the noise. To enhance
the sensitivity of the detection, we also evaluated a commonly employed median filtering
technique [48,49] called smooth-reg. For this specific application, a window size of five
voxels was chosen for the filter. However, it is important to note that this window size
is still insufficient to completely eliminate all noise-induced peaks, and simultaneously
compromises the spatial resolution, as it is visible from the strain profile (Figure 6e). The
strain field computed using TV regularization demonstrates reduced variations around
zero in the crack-free area compared to the strain field computed using the median filtering
technique. In Figure 6c, four distinct peaks of high strain are visible, corresponding to the
presence of four cracks.

Table 2 displays a comparative analysis of the number of voxels representing cracks
segmented from the images and the corresponding number of voxels representing high
strain areas in the strain field, as computed using the two methods.

Table 2. The range of the number of voxels attributed to the 28 cracks within the aggregate quartz
grain sample.

Segmented TV-Reg Smooth-Reg
336–11 550 420–15 129 660–23 250

TV-Reg Sensitivity Analysis

The impact of the threshold on the sensitivity of TV-reg for crack detection has been
evaluated, Figure 6g. Such an analysis has been carried out based on a limited amount of
annotated data. The ground truth has been created by manually annotating the grains with
cracks. The labelling process has been performed by using the Image Labeler MATLAB
app; we counted 73 quartz grains and 28 of them with cracks. The performances in terms of
accuracy and sensitivity of TV-reg method have been compared with the results obtained
by using smooth filtering and no strain field regularization and filtering. Eight levels of Tε

have been analyzed, starting from 1.040 (left side of the graph in Figure 6g) to 1.005 (right
side of the graph in Figure 6g) with an interval of 0.005. The noise in the solution without
regularization plays an important role at every Tε, resulting in the false positive rate (FPR)
values that are for each Tε worse that in the smooth-reg and TV-reg. The sensitivity of TV-
reg and smooth-reg is comparable at high levels of threshold (initial part of the curve). The
smoothing process indeed reduces the noise level and thus limits false positive detections.
However, in such a range the true positive rate (TPR) for smooth-reg and TV-reg is still too
low for automatic crack detection. For higher values of TPR, the TV-reg is able to maintain
a lower FPR compared to smooth-reg. The false positive detections with TV-reg are due to
regions with high nominal strain, such as in a region where two grains are moving apart
very quickly.

5. Discussion

In the previous section, a comparison was made between the results obtained using
the proposed method and those obtained using the median filtering technique to reduce
noise in the displacement field and, consequently, in the computed strain field. For the
simulated dataset, which provided a strain field ground truth, a more comprehensive
analysis was conducted. This analysis focused on a typical scenario where the requirements
of high strain field resolution and low noise are crucial, particularly in the detection of
cracks with multiple branches [10]. Specifically, the investigation encompassed various
aspects, including the accuracy of the obtained strain field with and without additional
noise in the input images, the data-fit accuracy at different values of lambda (λ), and the
accuracy of crack detection.
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• strain field and crack detection accuracy: The accuracy of the strain field and the
effectiveness of the algorithm as a crack detector are interconnected.
As anticipated, the strain field computed without regularization and without filtering
exhibits high levels of noise. In this case, the noise amplitude is comparable to the
strain associated with actual cracks, posing a challenge in determining an appropriate
threshold level. The objective is to retain the high strain signal resulting from cracks
while excluding high strain values caused by noise. It is noteworthy from the results
obtained using the TV-reg method that the impact of noise on crack detection is limited,
irrespective of the threshold level employed, Figure 5d,g. Using the median filter,
accurate crack detection was achieved only with T2. A similar crack configuration
was analyzed by [10], where the authors emphasized the impact of median filter
window size on the detection of small crack spacings. Smaller filter sizes lead to a
greater ability to detect smaller gaps between cracks. In our experiment, the reduction
in detectable crack spacing becomes evident when using a small filter size (w = 7),
particularly in the upper section of the image where the distance between the two
branches is approximately six voxels, as shown in Figures 3 and 5c. The filtered output
with w = 7 produces unrealistic results, including the appearance of additional false
branches caused by noise. Decreasing w from 7 to 5, which is smaller than the distance
between the two branches, would prevent the two branches from connecting at the
top. However, the increased noise would result in even less accuracy compared to
w = 7.
Additionally, the application of filtering operations alters the magnitude of the strain
field, leading to a loss of valuable information regarding the real strain magnitude.
Two factors contribute to the degradation of the MAE (Table 3) when median filter-
ing is employed instead of the TV-reg method. Firstly, the presence of noise in the
background. Secondly, the actual cracks area appears blurred. This implies that the
median filter tends to include some voxels from the background in the crack area.
The influence of these two factors varies based on the chosen window size. When the
window size is smaller, the noise has a greater impact on the degradation of the MAE.
Conversely, with a larger window size, the influence of the noise diminishes, while
the impact of blurring becomes more significant (Figure 5, as shown in Table 3).

Table 3. MAE of the strain values computed with TV-reg and smooth-reg (median filtering [10]).

TV-Reg Smooth-Reg (w = 7) Smooth-Reg (w = 15) Smooth-Reg (w = 31)
0.002 0.011 0.011 0.029

• data-fit: The optimization of the cost function, which consists of a similarity metric
and the TV regularization term, involves finding a balance between data fit (measured
by the similarity metric) and strain discontinuity. This balance is controlled by the
parameter λ. The significant improvement in MAE (Figure 5h) justifies the choice
of using TV regularization with lambda set to 0.1 instead of no regularization. Al-
though the NCC metric, used to assess registration quality, shows a slightly higher
value (0.15%) in this case, Figure 7a. When λ exceeds 0.1, the NCC (Normalized
Cross-Correlation) value decreases significantly and becomes unreliable, making it
unsuitable for consideration.

In the second experiment, due to the unavailability of a ground truth strain field,
our main objective was to investigate the accuracy of crack detection. This was achieved
by comparing the volumes of detected cracks using the two methods and assessing the
sensitivity of crack detection. However, both the measurements of cracks volume and crack
detection sensitivity serve as indicators of the accuracy of the computed displacement
field. The observed shift towards higher values in the volume range of the smooth-reg
method (Table 2) indicates the blurring effect and the resulting loss of information caused
by classical smoothing techniques.
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TV-reg has also been tested with noisy simulated input images. Indeed, together with
the correlation errors, the causes of the noise in the displacement field is the quality of
the input images [17]. Therefore, a degradation of the input images was simulated by
adding Gaussian white noise with standard deviation (SD) ranging from 0.01 to 0.03. With
an increase in the noise the performance of DVC decreases (Figure 7a) with and without
regularization. In the case of the strain field computed with TV-reg, there is a substantial
improvement in MAE, as shown in Figure 7b. When the strain field is derived from input
images corrupted by Gaussian white noise with standard deviations of 0.01, 0.02, and 0.03,
the improvements in MAE are 71.46%, 74.60%, and 56.11%, respectively. These values are
calculated by taking the average of five measurements. The noise on the input images
has less impact if the strain field is computed using TV-reg instead of smooth-reg. This is
because, with increased noise in the input images, more aggressive filters are required to
mitigate the noise in the strain field. However, employing such filters comes at the expense
of reduced spatial resolution, ultimately resulting in information loss.

Figure 7. (a) Sensitivity of NCC to regularization parameter λ at different noise levels. (b) Mean
absolute strain error was computed using TV regularization method with λ = 0.1, with median
filtering (using a window size of 7 voxels) applied to the displacement field, and without any filtering
or regularization. The error was calculated after registering images with additional Gaussian white
noise with different standard deviation (SD).

6. Conclusions

In this study, we propose a novel regularization technique for DVC that utilizes the
total variation of the strain field to estimate a sharp strain field capable of accurately
describing abrupt deformations. Unlike classical denoising techniques that impose unre-
alistic assumptions on the dynamic behavior of materials, such as spatial smoothness in
proximity to fractures, our proposed method does not require the use of post-processing
noise-reduction techniques. The high signal-to-noise ratio of the computed strain field
using our approach represents a significant advancement in crack detection. We demon-
strate that the proposed TV-reg method is highly robust, as it reduces the risk of false crack
detections, regardless of the chosen threshold. Furthermore, our method enhances the
accuracy of the computed strain field, even in the presence of noisy input data, as depicted
in Figure 7. These results were obtained following only a comparison with the widely
recognized median filter technique, which, unlike other methods mentioned in Section 1, is
available in open-source DVC software.

Although the proposed method was demonstrated to be highly robust, it is important
to note that the method, due to its inherent design, is not universally applicable to all
DVC problems. Its primary purpose is to measure the strain field in scenarios involving
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abrupt deformations. The key characteristic of this method lies in its definition of a
piecewise constant strain and its utilization of trilinear B-spline transformation. However,
the restricted degree of the B-spline function limits its suitability for applications requiring
the estimation of smooth displacement and strain fields. Therefore, prior knowledge about
the nature of the deformation is essential before applying this method. Furthermore, the
proposed regularization technique for DVC is based on the assumption that the strain
remains constant within the different structures of the material under a constant external
stress. While this approximation is well-suited for the applications described in this paper,
it may not always hold true in other scenarios. Thus, our method is most effective when the
geometry of the material under stress is regular or can be approximated as such. To address
this limitation, future developments of the algorithm could incorporate the geometric
properties of objects to enhance its applicability in a wider range of scenarios.
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Appendix A. Strain Field Computation Problem

The displacement of a body can be described by the combination of two major com-
ponents: the rigid displacement (global) and the non-rigid displacement (local), i.e., the
deformation. Rigid displacement refers to a motion that involves translation and rota-
tion but does not involve any changes in shape or size. Conversely, deformation entails
changes in both shape and size due to alterations in the relative positions of image features.
The strain is a measure that characterizes the deformation of the material. In continuum
mechanics, the local strain is computed as the local variation of the displacement field
(i.e., displacement gradient) computed by using DVC.

The strain field is defined by the 3D Lagrangian strain tensor. The 3D Lagrangian
strain tensor is defined by [50]

ε(u) =
1
2
[B− I] (A1)

where B = FTF is the left Cauchy–Green deformation tensor, F is the deformation gradient,
and it is defined as F = I +∇u, ∇u is the displacement gradient tensor and it is defined as
the partial derivative of the displacement vector, and I is the identity matrix. The matrix
∇u is defined as

∇u =


∂u1
∂X1

∂u1
∂X2

∂u1
∂X3

∂u2
∂X1

∂u2
∂X2

∂u2
∂X3

∂u3
∂X1

∂u3
∂X2

∂u3
∂X3

 (A2)

 https://public.yoda.uu.nl/geo/UU01/DHYKQ1.html
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If there is no deformation, B−1 = I and ε = 0. X is the position vector of a material point in
the initial configuration.

As mentioned above, because of its derivatives, the strain field tends to be noisy.
To avoid a high noise level, the displacement field is typically smoothed before being
differentiated. Many smoothing techniques exist in the literature: finite-elements-based
methods [22,48], Geers’ method [26], and local filters [18]. Such techniques have the
downside of reducing the locality of the solution to favor the noise reduction. The reduction
of the spatial resolution, besides not being realistic, might also involve a loss of information,
(see Section 4.2).

The proposed method aims to reduce the noise of the strain field without affecting the
locality of the solution.

Appendix B. Optimization of the Parametric Cost Function

The cost function is defined by two terms. CS is convex and differentiable and CTV
R is

convex but not differentiable at the origin. Since the derivative of CTV
R is not defined at the

origin, gradient-descent-based optimizers might give poor-quality results.
The sub-gradient method is one of the techniques for non-differentiable function

optimization [51]. The sub-gradient, or sub-derivative, approximates the derivative of
convex functions in the points where the derivative is not defined. The sub-gradient of the
l1− norm is the sign function.

According to the underlying principle of the sub-gradient method, the directional
derivative always exists for a convex function [37].

Therefore, for the optimization of the cost function (4) we used the sub-gradient
techniques implemented by L1General which is a pre-existing MATLAB package [38,39].
The sub-gradient method iterates:

z(Φ)(k+1) = z(Φ)(k) − αd(k) (A3)

where d(k) is the search direction and α is the step length. Since the line search has no
procedure to set variables to zero, ref. [37] defined a projection to set zk+1(Φ) to zero if its
sign differs from the sign of zk(Φ). The projection is defined as follows:

PO(z(Φ) + d)i ,

{
0 if zi(φ)(zi(φ) + di) < 0
zi(φ) + di otherwise

(A4)

this projection also ensures that the line search does not cross the non-differentibility point.
To force d to be a descent direction and, therefore, to agree with the steepest descent
direction ∇̃ f (zk(Φ)), ref. [37] defined the following projection:

PS(d)i ,

{
di if di(∇̃i) > 0
0 otherwise

(A5)

For k = 0, d ← −min{1, 1/||g||1}, for k > 0 then d ← −H−1g, where the Hessian

matrix H is defined by using the quasi-Newton approximation Iσk, where σk ≈ (yk)Tyk

(yk)Tsk ,

sk = z(k+1)(Φ)− zk(Φ), yk = g(k+1) − gk and I is the identity matrix. g is the sub-gradient
of the cost function defined, in this case, by the sum of the gradient of CS and the sub-
gradient of CTV

R that is the sign function. With respect to a variable i,

δi f (z(Φ)) = ∇iCS(z(Φ)) + λ sign(ε(zi(φ))) (A6)

For more details about the optimization algorithm refer to Algorithm A1:
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Algorithm A1 Image registration pseudocode

1: Input: Cost function, regularization parameter λ, initial parameter vector z0(φ), opti-
mality tolerance t = 1 e−6, number of corrections m = 100, sufficient decrease parameter
η = 1 e−4, line search safeguard parameters ξ1 and ξ2

2: k← 0;
3: S← []; // initialize collection on of quasi-Newton vectors.
4: Y ← [];
5: fk ← CS(z0(φ)) + ||λi · ε(z0(φ))||1; //evaluate initial parameter vector
6: gk ← ∇̃ f (z0(φ)); // compute pseudo-gradient, Equation (A6)

7: while ||gk||∞ > t do
8: if k = 0 then //compute descent direction
9: d← −min{1, 1/||g||1}g

10: else if k > 0 then
11: d← −H1g // apply L-BFGS algorithm
12: d← PS(d) //sign projection, Equation (A5)
13: end if

14: α← 1
15: zk+1(φ)← PO(zk(φ) + αk) //initial trial value, definition (A4)

16: fk+1 ← CS(zk+1(φ)) + ||λi · ε(zk+1(φ))||1; //evaluate new parameter vector
17: gk+1 ← ∇̃ f (zk+1(φ)) // compute pseudo-gradient

18: while fk+1 > fk + ηgT
k (zk+1(φ)− zk(φ)) do

19: Select α ∈ (ξ1α, ξ2α) //safeguarded cubic interpolation, where 0 < ξ1 ≤
ξ2 < 1

20: zk+1(φ)← PO(zk(φ) + αk) //initial trial value, definition (A4)

21: fk+1 ← CS(zk+1(φ)) + ||λi · ε(zk+1(φ))||1; //evaluate new parameter vector
22: gk+1 ← ∇̃ f (zk+1(φ)) // compute pseudo-gradient, Equation (A6)
23: end while

24: sk ← zk+1(φ)− zk(φ) //compute quasi-Newton differences
25: yk ← gk+1 − gk
26: if k > m then
27: Remove oldest vector from S and Y
28: end if

29: S← [Ssk] //update quasi-Newton difference matrices
30: Y ← [Yyk]
31: σ← (yT

k yk)/(yT
k sk) //update diagonal Hessian scaling

32: k← k + 1
33: end while
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