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Abstract: Water plays an important role in various physiological activities of living trees. Measuring
trunk moisture content (MC) in real-time without damage has important guiding significance for
transpiration research in forest ecosystems. However, existing standing tree MC detection methods
are either too cumbersome to install or cause different degrees of damage. Here, we propose a novel
Internet of Things (IoT) monitoring system that includes wireless acoustic emission sensor nodes
(WASNs) and underground soil MC sensor nodes to efficiently detect and diagnose the MC level of
living tree trunks. After the characteristic parameters were collected by the two sensors, a feature
selection and multi-sensory global fusion method for MC diagnosis was designed and developed and
several statistical parameters were selected as the input variables to predict the heartwood MC level
with a support vector machine (SVM) model. Moreover, to achieve the highest prediction accuracy,
an improved sparrow search algorithm (ISSA) is applied to ensure the most suitable parameter
combinations in a two-objective optimization model. Extensive experiments result in a fusion of the
environment, and AE signals show that the proposed mechanism has better diagnostic performance
than state-of-the-art methods and is more adaptable to the fluctuation of working conditions.

Keywords: moisture content; wireless acoustic emission sensor; feature fusion; support vector
machine; improved sparrow search algorithm

1. Introduction

Forests are the largest ecosystem on Earth that human beings rely on for survival.
They are also the most important barrier to protecting and ameliorating the ecological
environment. In general, forests are made up of trees, shrubs, and herbs; the metabolism of
forest plants depends on the orderly movement of water in their body [1]. In order to main-
tain normal growth, plants require a certain amount of water to support the conservation
of energy in the ecosystem. However, for the interior water of plants, more is not always
better [2–4]. Hence, the design and research of an effective and efficient real-time moisture
content (MC) detection method for forest plants have drawn increasing attention recently,
such as γ-ray [5], the resistance method [6], magnetic resonance imaging (MRI) [7], time
domain reflectometry (TDR) [8], frequency domain capacitance (FD) [9], etc.

Among these existing methods, there are still some defects occurring unavoidably.
The ray method has potential security risks; the resistance of the trunk is not intensely
related to its moisture; MRI is an inconvenience in field application and is costly; TDR is a
destructive testing method and is likely to cause considerable errors; and FD tends to be
affected by the variation of trunk diameter [10]. Moreover, most of these achievements still
follow manual or semi-automatic approaches, which poses an open challenge that should
be tackled at full stretch to accomplish a fully autonomous forest monitoring system.

Meanwhile, the Internet of Things (IoT) is a very promising technology in the forestry
engineering field, especially for the environment and plant growth monitoring [11–13], as
shown in Figure 1. Among these, the wireless acoustic sensor network (WASN) has gained
some particular insights into the wildlife recognition field [14,15]. It was deployed to
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monitor animal behavior in a non-intrusive manner by detecting and identifying different
animal sounds. Additionally, the WASN has also been applied in wooden structural health
monitoring, such as in our previous works [16]. It could capture the acoustic signal when
wooden components suffer damage, and after data transmission, the sink would analyze
and diagnose the details of the damage status.
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Here, we intend to study a non-destructive WASN-based forest monitoring system
to accurately detect the tree trunk’s MC level with convenience. This method mainly
integrates the acoustic signal that is propagated along the tree bark, the soil humidity
data, the ambient air temperature, and humidity data together to improve the measuring
practicability and applicability. Additionally, an artificial intelligence technique is adopted
to process the collected data and identify the MC level. In fact, recently, there are some
references concerning the MC detection work on stones. Kai Tao et al. extracted six feature
parameters from the original AE signals when compression tests were carried out on
sandstone with different MC levels, and the identification of moisture was conducted
using an SVM classifier [17]. Wei Zheng et al. measured the effect of moisture on the AE
characteristics of rocks and established a musical-staff-inspired MC detection model [18].
In [19], an AE multi-parameter analysis for dry and saturated sandstone with cracks
under uniaxial compression was presented. Furthermore, soil physical characterization
has employed AE tools as well; M. NaderiBoldaji et al. developed a new soil multi-
sensor fusion by combining mechanical, dielectric, and acoustic responses in layered soils
for the estimation of soil water content, degree of compactness, and texture [20]. Tate
designed a vertical cone penetrometer with an acoustic sensor to correlate the acoustic
signal with soil moisture [21]. As for timber detection, the AE technique certainly has many
applications [22], whereas, for the MC measurement of woody plants, only a few studies
have been introduced. Linus De Roo et al. studied the use of AE for the detection of trees’
vulnerability to drought [23]. Bert Peeters et al. reviewed the status of cavitation-related
AE [24]. Kensuke Kageyama et al. found that the AE behaviors of Schefflera and Olive
trees were strongly influenced by drought stress [25].

Most of the above pieces of literature show the sophisticated and specialized utilization
of the AE signal. One single type of sensor is limited in acquiring all the necessary signals
that reflect the MC level of plants due to the interference of complex operating conditions,
especially when considering the anisotropy of tree trunks [26]. Thus, multi-sensory fusion
is essential for a comprehensive and high-reliability measuring system. Therefore, in
this research, we propose a multi-sensor data fusion method for MC detection while
processing the AE, temperature, and humidity data from a WASN-based forestry IoT. We
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have deployed the WASN and wireless underground soil MC sensor nodes in a sample
forest, and different feature parameters have been collected to carry out the intensive study.
Our contributions can be summarized as follows:

(1) We analyzed the AE signals propagated along the surface of tree bark under differ-
ent MC levels. Signal processing is conducted to extract different AE features for
classification purposes.

(2) The Maximum Correlation and Minimum Redundancy (mRMR) algorithm is used
to screen out the optimal feature subset related to the MC condition of a standing
tree trunk, and then data fusion is performed based on a conditional information
entropy weight mechanism. After that, an SVM model is adopted to diagnose the
MC status, and a firefly disturbance strategy is used to improve its global searching
ability. So, the hyper-parameters have been optimized by this improved sparrow
search algorithm (ISSA).

(3) With data fusion of the multi-sensors, the degree of MC levels could be accurately
predicted with an error noticeably lower than the AE sensors alone.

(4) We perform comprehensive experiments to examine the feasibility and capability
of the proposed tree trunk MC detection system, and results show that it exhibits
excellent performance in field-testing and is superior to the traditional methods in
long-term measurement.

2. Materials and Methods
2.1. Wireless Acoustic Emission Sensor Network

Generally, the proposed WASN is an extension of the WSN equipped with AE sensors.
This specified wireless AE node is capable of managing up to two independent AE channels,
and each channel is provided with a low-noise high-speed amplifier OPA627 [27]. In
addition, the conditioned AE channels are connected to a 12-bit low-power analog-to-
digital converter AD7356 [28] with a fixed sampling frequency of 5 MHz. Then, an ARM
Cortex-M4 micro-controller STM32F405RG [29] under 168 MHz would take charge of the
whole data flow and finally, a LoRa® module SX1278 [30] would be adopted for the wireless
communication assignment. The composition structure of the AE node and its application
architecture are shown in Figure 2.
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The AE signal is generated by one mini vibration motor based on Arduino that has
been mounted closely on the trunk [31]. The stress wave generated during the test would
propagate through the tree trunk surface and be collected by the AE sensors attached to
the bark. In order to enhance the anti-interference ability of the AE system, two R15α
type probes are vertically placed around the diameter of the breast height (DBH) of trees
(1.3 m above the ground) with an interval of 10 cm, according to Kexiang Li’s research [32].
The AE signal source is placed vertically on the upper side of the two probes 10 cm away
from the near-end probe, all within a three-point line. This means that the differential term
of AE signals between the far-/near-end probes can be calculated to reduce the system
measuring error as much as possible. The WASN has been deployed at the sample woods of
an experimental forestry farm in Nanjing Forestry University, China. A remotely deployed
sink that aggregates all the nodes’ feature data would take charge of the next dataset’s
analyzing and processing procedure.

2.2. Environmental Parameter Monitoring IoT

The environmental monitoring IoT system has the capability to capture surrounding
forestry growth information by using an Arduino-compatible board along with a LoRa®

transmitter. The collected information includes light intensity, temperature and humidity at
DBH, and underground soil humidity data at two depths (10 cm and 20 cm). Reference [33]
indicated that the MC level of a single tree trunk is closely related to the soil humidity
value within 20 cm below the surface. Note that the temperature and humidity sensors only
consider snapshot data every 45 min due to their slow variation. The extra-large-volume
alkaline battery is installed and is able to supply power to each sensor node effectively
and efficiently. The practical prototypes of the WASN and wireless soil nodes are shown
in Figure 3.
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2.3. System Architecture

The proposed multi-sensory MC detection system follows a centralized architecture
where the diagnosis process takes place in the gateway. This allows us to implement
lightweight nodes for the distributed independent signal processing units. The simplifica-
tion in the nodes could reduce their costs and energy consumption drastically, which are
the main constraints for WASN deployment in the field.
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The whole system structure diagram is depicted in Figure 4. It contains three main
elements: (1) the wireless nodes, which are in charge of sensing the AE signals and en-
vironmental parameters, along with transmitting the featured data to the sink through
wireless communication; (2) the gateway, which has a strong computational ability and is
able to coordinate the whole wireless network and gather all the sensor nodes’ data; and
(3) the diagnostic program, which provides the intelligent learning functionality through
the fusion of the AE signal and environment parameters’ individual scores.
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2.4. Diagnosis Methodology

The proposed data processing and diagnosis mechanism aims to detect the heart-
wood MC level non-destructively at the point of measurement under the AE signal and
environment parameters. Thus, to design the diagnosis methodology, tests over different
types of tree trunks have been carried out by means of specific laboratory MC measuring
instruments. The objective is to characterize the relationship among the AE signal feature,
environmental temperature, and humidity data under different MC levels. The whole
detection operates in the following two processes:

(1) Training process: In this stage, we first build up a dataset containing both AE and
environment parameters, which are induced by the MC variations for 12 months.
Note that target trees are required to distribute a safe circumstance for obtaining
reliable features. Then, we select the optimal AE features and environmental data
under the greatest correlation with the MC level by utilizing a dimension reduction
algorithm as the next training input for ease of maximizing the expression from origi-
nal data information and improving the hardware calculation efficiency. Afterward, a
delicately designed machine-learning algorithm is adopted to fit the characteristics
of sampled data, which would continuously vary with time. Finally, this diagnostic
model should be carried out to detect the living tree heartwood’s MC level.

(2) Detection process: In this stage, we estimate the MC level of field woods based on
the aforementioned achievement. Acquired parameters will be pre-processed and
normalized. Next, it is input into an adaptive dynamic weighting module to calculate
the individual influence of each feature on the MC level. Then, we combine the results
in a weight fusion algorithm and finally predict the testing trunk’s MC. The overview
of the diagnostic system is shown in Figure 5.
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2.5. Data Processing

By collecting the AE characteristic parameters on the bark, soil MC value around
standing trees’ roots, air humidity, and temperature information at DBH as a whole sample
dataset, the MC level of the living tree heartwood can be detected by an intelligent multi-
sensor data fusion algorithm. The main idea is to first adopt the mRMR algorithm for
an optimal feature dimension reduction. Next, the selected feature would be fused by
using the conditional entropy weight method. Then, the enhanced SVM model is used to
establish an offline diagnosis system, and the ISSA is employed to optimize the operational
parameters, which further improves the model’s generalization ability and overcomes the
overfitting issue. Finally, the devised model is applied to the online long-term multi-sensory
MC prediction adaptively and efficiently.

2.5.1. Maximum Correlation and Minimum Redundancy Algorithm

The mRMR algorithm is a feature selection method that maximizes the correlation
between feature variables and targets and minimizes the correlation between features.



Appl. Sci. 2023, 13, 6990 7 of 22

Mutual information is used as the standard to measure the correlation between features
and category variables:

I(x; y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (1)

where I(x;y) is the mutual information between the feature variables x and y, and their
probability densities and joint probability densities are p(x), p(y), and p(x,y), respectively.

In order to find the feature subset S which contains the optimal m features, the
maximum correlation principle takes I(xi;c) to search for the m features related to tar-
get category c in the appropriate order, which can be measured and calculated by the
following formula:

maxD(S, c); D =
1
|S|∑ xi∈S I(xi; c) (2)

However, the subset with m features may not necessarily be the perfect feature subset.
In particular, if there are two features that are interdependent, the minimum redundancy
criterion should be introduced to eliminate them by using Equation (3); then, the operator Φ
could be used to integrate the maximum correlation coefficient and minimum redundancy
by using Equation (4).

minR(S), R =
1

|S|2 ∑ xi ,xj∈S I(xi; xj) (3)

maxΦ(S, c); Φ = D− R (4)

Thus, the ranking of each feature variable in the sample set S can be calculated. In this
paper, the time domain parameters of near/far-end AE signals are chosen as the feature
vectors, as they have a relatively fast diagnostic speed and a fairly high detection accuracy.
After data normalization, mRMR could just be operated for feature dimension reduction.

2.5.2. Data Fusion Based on Conditional Information Entropy Weight Allocation

In the process of multi-sensor information fusion, different sensor data represent
different attributes, and the importance of different attributes should be considered before
fusion. To some extent, the weight of the data reflects the influence of attributes on the final
prediction results; the greater the weight, the greater the influence. The target at the weight
allocation of different sensor data and the change in information entropy, after taking
data into account when making decisions, was analyzed according to the information
entropy theory to realize an information-gain-based data weight allocation. In addition,
the following formula is used to calculate information entropy:

H = −
n

∑
i=1

Pi log2 Pi (5)

In this formula, Pi represents the corresponding decision probability of correspond-
ing attribute data. In the process of weight allocation, the decision probability without
considering attribute data is calculated first, and the original information entropy is ob-
tained. Next was the information entropy after adding attribute data, namely conditional
information entropy. According to the difference between original information entropy
and conditional information entropy, the higher the information entropy, the greater the
influence of attribute data on decision-making and the greater the fusion weight allocated.

Let the optimized feature parameter obtained by mRMR be x1, x2, and . . . , xn, and
let the decision variable be I. Then, the process of feature weighting should be calculated
as follows:
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(1) Calculation of the original information entropy H(I):

H(I) = − ∑
eI∈SS(I)

P(I = eI) log2 Pi(I = eI) (6)

SS(I) stands for the state space of decision variable I.

(2) Calculation of correspondingly conditional information entropy H(I|x1), H(I|x2), . . . ,
and H(I|xn) after taking different attribute data into account, when xi = exi ::


H(I/xi = exi) = − ∑

eI∈SS(I)
P(I = eI/xi = exi) log2 Pi(I = eI/xI = exi)

H(I/xi) = − ∑
exi∈SS(xi)

P(xi = exi)× H(I/xi = exi)
(7)

(3) Calculation of the difference value between the conditional and original information
entropy ∆(I, x1), ∆(I, x2), . . . , ∆(I, xn) with the following formula:

∆(I, xi) = H(I/xi)− H(I) (8)

(4) Calculation of different attribute data’s weight vectors according to the difference
value of information entropy:

Wi =
∆(I, xi)

n
∑

i=1
∆(I, xi)

(9)

2.5.3. Support Vector Machine Method

The SVM is a machine learning method based on statistics theory, which has an
excellent performance in dealing with nonlinear problems with small samples and high
dimensions. The purpose of the SVM is to find an optimal hyperplane to maximize the
distance between the nearest interface of different data and the hyperplane to solve the
following problems:

min
ω,b,ε

1
2 ωωT + C

l
∑

j=1
εj

s.t.
{

yi[(ω
Txi) + b] ≥ 1− εj

εj ≥ 0; i = 1, 2, · · · , l

(10)

In Equation (10), ω is the hyperplane normal vector, xi is the training sample, yi is the
category of the sample, b is the threshold determined according to the training samples, C
is the penalty factor, and εj is the relaxation variable introduced when linearly indivisible.
If the Lagrange multiplier αi is introduced, the Lagrange function of the problem can be
written as:

L(ω, b, α) =
‖ω‖2

2
+

m

∑
i=1

αi[1− yi(ω
Txi + b)] (11)

Then, take the partial derivatives ofω and b in the above equation to be zero, and the
dual form can be obtained as:

max(
n
∑

i=1
αi − 1

2

n
∑

i,j=1
yiyjαiαjxT

i xj)

s.t., 0 ≤ αi ≤ C; i = 1, 2, · · · , n;
n
∑

i=1
αiyi = 0

(12)

In the nonlinear case, kernel function mapping is introduced:

K(xi, xj) = [ϕ(xi), ϕ(xj)] (13)
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From the above derivation, the decision function can be obtained as:

f (x) = sgn[
n

∑
i=1

αiyiK(xi, xj) + b] (14)

where yj is the corresponding expected output, xj is the input vector, n is the number of
training samples, ϕ(·) is the mapping function, and K(xi, yi) is the kernel function. Generally,
the radial basis kernel function (RBF) is used, and γ is the kernel parameter:

K(xi, xj) = exp(−γ
∣∣xi, xj

∣∣2) (15)

According to Equations (10)–(15), the SVM’s performance is mainly affected by the
penalty factor C and RBF kernel parameter γ after selecting the appropriate kernel function.
Therefore, if an efficient optimization algorithm is adopted to adjust the above parameters,
the effectiveness of the SVM can be greatly improved.

2.6. Data Acquisition and Preprocessing
2.6.1. Soil MC Acquisition

The soil MC nodes were placed about one meter away around the tree root [34], and
they were buried in the soil with flags on the ground. In this paper, three underground
nodes with 10 cm and 20 cm depths were used for demonstration, respectively, and were
parted in a circle by 120 degrees around the center of the root.

2.6.2. AE Data Acquisition

Figure 6a shows the field installation scene of soil MC nodes, while Figures 6b and 7
display the AE nodes’ on-site diagram and data acquisition exhibition interface. As can be
seen, AE feature parameters such as amplitude, rise time, duration, ring count, and signal
energy can all be precisely measured and calculated.
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First, refer to the international standard ISO 13061-1:2014 [35]; the beech samples
with MC levels of 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% (error ± 2%) were
prepared correspondingly. The WASN nodes, as shown in Figure 3, were used to collect
the AE parameters. Note that the wood samples and AE sensors were coupled by Vaseline
to enhance the signal transmission capability. The AE nodes were sampled 100 times for
each of the 9 specimens, and every set of data contained the following outputs of the
near/far-end AE signals: amplitude, rise time, duration, ring count, and energy, along
with the difference value between the near/far-ends signal, which was 15 parameters in all.
Some of the results are presented below in Figure 8.
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Afterward, the original AE dataset should be normalized to values between [0, 1]:

xi
∗ =

xi − xmin

xmax − xmin
; i = 1, 2, · · · (16)

where xmin, xmax, are the minimum and maximum values of input feature data, and xi* and
xi are the normalized data and original data.

2.6.3. Feature Analysis

Based on the above data collection steps, the dataset matrix of soil and AE feature
parameters (900 × 18) has been efficiently constructed, which should be used as the input
of the mRMR selection module. Meanwhile, the corresponding MC level tags constituted
the individual category vector accordingly. Here, if assuming that the number of optimal
feature subset is 18, then the ranking order of all soil and AE features are lined up in
Table 1 below.

Table 1. Feature selection result of the mRMR.

Selection Algorithm Ranking Order of the Features

mRMR

1 Near/far-end energy difference; 2 near/far-end amplitude difference;

3 soil moisture content; 4 near-end amplitude; 5 near-end energy;

6 near-end ring count number; 7 near/far-end duration difference;

8 air humidity; 9 near-end duration; 10 near-end rise time; 11 far-end

rise time; 12 near/far-end ring count number difference; 13 near/far-end

rise time difference; 14 far-end ring count number; 15 far-end amplitude;

16 air temperature; 17 far-end duration; 18 far-end energy.

Furthermore, when the number of optimal features gradually increased from the mini-
mum to the maximum, an SVM training and testing configured with default parameters,
and the corresponding recognition accuracy would be obtained, as shown in Figure 9. The
analysis indicates that when the top nine features are used to construct the feature subsets,
the recognition accuracy reaches an optimum value of 92.3%, and after that, the accuracy
declines rapidly. Therefore, the first nine features obtained by the mRMR selection module
are adopted to participate in the MC diagnosis procedure afterward.
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2.6.4. The FA-ISSA-SVM Diagnosis Algorithm

The sparrow search algorithm (SSA) proposed by reference [36] is an efficient swarm
intelligence optimization mechanism. Compared with other methods, the SSA has the
advantage of high searching accuracy, good stability, and strong robustness, but it also
has the shortcoming of slow convergence speed. Based on this, the SSA algorithm was
applied to the parameter optimization of the SVM, and a firefly perturbation strategy [37]
was added to update the sparrow’s positions to further enhance the working efficiency.
Taking the highest recognition accuracy of the SVM as the optimization object, the optimum
regularization factor and kernel parameters were selected to establish the FA-ISSA-SVM
diagnostic model.

The SSA mainly simulates the process of sparrow’s foraging, and it divides the popu-
lation into three groups: discoverer, follower, and scouter. Discoverers have high fitness,
a wide search range, and guide the sparrows to search and forage; followers forage with
the discoverers to gain greater fitness; and the scouter will sound an alarm when it sees
danger, and then the entire population makes an anti-predation behavior. Among the three
groups, discoverers and followers could exchange roles with each other, whereas their pro-
portion in the population remains constant, i.e., discoverers usually take up 10~20% of the
entire colony.

Suppose there are N sparrows in a D-dimensional search space, the position of the
K sparrow is Xk = [xk1, . . . , xkd, . . . , xkD], where xkd represents the position of the K-th
sparrow in the d dimension. The discoverer should update its position as follow:

xkd
t+1 =

{
xkd

t· exp( −k
a·itermax

) R2 < ST
xkd

t + Q·L R2 ≥ ST
(17)

Here, t represents the current iteration number, itermax is the maximum number of
iterations, xt+1

kd represents the fitness of the k sparrow in the t + 1 generation, a is a random
number ∈ (0, 1], R2 represents the warning value, ST represents the safety threshold,
Q is a random number subject to the standard normal distribution, and L is a one-row,
multidimensional, all-for-one matrix. When R2 < ST, no predators or other dangers are
found for the sparrows, and the search environment is safe. The discoverer can search
extensively to guide the population to obtain higher fitness. When R2 ≥ ST, the scouters
find the predator and release the danger signal immediately, and the population performs
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an anti-predation act, adjusts the searching strategy, and moves to the safe area quickly.
The position of followers is updated as follows:

xt+1
kd =

 Q· exp( xt
worst−xt

kd
k2 ), k > n

2

xt+1
best +

∣∣∣xt
kd − xt+1

best

∣∣∣A+·L, otherwise
(18)

In Equation (18), xt
worst represents the worst position in the t-th iteration of the popula-

tion, xt+1
best represents the optimal position in the t + 1 iteration of the population, A is 1 × d

matrix with only 1 or −1 elements, and A+ = AT(AAT)−1. Scouter positions are updated
as follows:

xt+1
kd =

{
xt

best + β(xt
kd − xt

best), fk 6= fg

xt
kd + K( xt

kd−xt
worst

| fk− fw |+e ), fk = fg
(19)

β is the step size control parameter, K is a random number belonging to [−1, 1], fk
represents the fitness value of the K-th sparrow, and fg and fw are the best and worst current
fitness, respectively.

Nevertheless, since the SSA may fall into the local optimum during the optimization
process and thus reduce accuracy, the Firefly Algorithm (FA) is adopted to optimize the
SSA for improving the optimization accuracy. The firefly perturbation strategy is applied to
the sparrow population, and each individual searches for the most attractive individual in
the population, that is, the individual with the best fitness value, based on the movement
pattern of the relative brightness of the fireflies.

The relative fluorescence brightness of firefly I should be:

I = I0· exp(−ςrij) (20)

I0 is the maximum fluorescence brightness, which is proportional to the fitness value,
and ς is the absorption coefficient of light intensity. rij is the relative distance between firefly
individuals i and j.

Next, the firefly mutual attraction µ is:

µ = µ0· exp(−ςr2
ij) (21)

In Equation (21), µ0 is the maximum attraction.
Then, the firefly disturbance position updating is shown:

x′i = xi + µ·(xi − xj) + σ·[rand(∗)− 1/2] (22)

In Equation (22), xi and xj are the spatial positions of sparrow i and j; σ is the step
control parameter; and rand(∗) ε [0, 1] is a random factor subject to a uniform distribution.

Figure 10 shows the working process of the FA-ISSA-SVM, especially the optimization
procedure for parameters C and γ. After the above procedures, the population size,
maximum number of iterations, and SVM parameters of the FA and SSA can be initialized.
Next, the fitness of individual sparrows is calculated to update the positions of discoverers,
followers, and scouters. Then, we compare the advantages and disadvantages of the new
position after firefly perturbation with the previous generation’s optimal value until the
termination condition is met. Finally, the optimal SVM parameters are output to establish
the FA-ISSA-SVM-based MC diagnosis model for practical measurement.
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3. Results and Discussion

The offline training shown in Figure 5 has been carried out in the gateway server,
and the online identification should be implemented on different species of trees through
the WASN sensor and soil MC nodes. The main process is as follows. Firstly, the sample
dataset collected by sensors is preprocessed and normalized to be dimensionless. Next, the
most representative nine characteristic parameters are screened from the sample dataset
by the mRMR algorithm. Then, the feature fusion procedure is executed by weighing
these selected features, and the optimal MC diagnosis model is trained by the FA-ISSA-
SVM mechanism. Finally, real-time AE signals, root-soil moisture, air temperature, and
air humidity data are input into the model to diagnose the MC level in the heart of the
standing trees.

3.1. Algorithm Validation and Comparison

The WASN and soil moisture sensors were used to collect the corresponding parame-
ters of phytophysiology and root-soil. A total of 900 groups were randomly divided into
training groups and test groups at a ratio of 7:3, of which 630 were training groups and
270 were test groups. In order to verify the effectiveness of the feature selection algorithm
and the superiority of the FA-ISSA-SVM MC diagnosis model, the following two categories
of tests were executed. (1) In part one, the MC detection results of the features selected
by the Pearson correlation coefficient method [38] and the features selected by the mRMR
method were analyzed and compared, while the subsequent identification adopted the
SVM with default configurations in common. (2) In part two, the detection results of the
SVM, the genetic algorithm optimized SVM (GA-SVM) [39], the grid search algorithm
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optimized SVM (GS-SVM) [40], and the improved sparrow algorithm optimized SVM
(FA-ISSA-SVM) [41] were analyzed. The feature vectors used for training are uniformly
based on the selected results of the mRMR.

In both tests, recognition accuracy and the Kappa coefficient were used as the eval-
uation indexes. The accuracy rate refers to the proportion of correctly classified samples
to the total test samples. The Kappa coefficient represents the proportion of classification
error reduction in the classification result of the algorithm compared with the completely
random classification result, and its value is between −1 and 1. The larger the value is, the
better the ranking effect will be.

3.2. Feature Selection Performance Analysis

The Pearson correlation coefficient can reflect the degree of correlation between two
characteristic variables and is defined as the quotient of covariance between variables and
their standard deviation product. The closer the absolute value of the coefficient is to 1,
the stronger the correlation between the two variables is. The closer the absolute value of
the coefficient is to 0, the weaker the correlation is. Here, in order to verify the superiority
of the mRMR selection method, the Pearson correlation coefficient has been employed
for comparison.

r =
Cov(X, Y)√

D(X)·
√

D(Y)
(23)

X and Y in (23) are two individual characteristic parameters,
√

D(·) is the standard
deviation, and Cov(X, Y) is the corresponding covariance. The correlation between each two
of the first eighteen characteristic parameters in this paper can be obtained by calculation
according to (23), and its correlation analysis heat map is shown in Figure 11.
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Obviously, there existed considerable correlations in some parameters, including he
near-end amplitude and the amplitude difference, the near-end energy and the energy
difference, the far-end duration, and the far-end energy, et al. So, we also increased the
optimal selected features from the minimum to maximum and recorded the subsequent
identification accuracy, as shown in Table 2.

Table 2. The SVM results of Pearson and mRMR feature selection.

Feature Selection Method Feature Dimension Accuracy (%) Kappa

Pearson 11 83.3 0.7435
mRMR 9 92.3 0.8624
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The results in Table 2 show that the 11-dimensional features selected by Pearson’s
correlation coefficient method obtained the best identification effect, although its accuracy
rate is only 83.3% and the Kappa coefficient is 0.7435. By using the features of the mRMR
choosing procedure, the accuracy was improved to 92.3%, and the Kappa coefficient was
improved to 0.8624. Compared with Pearson’s method, the feature dimension of the mRMR
algorithm is lower and the recognition accuracy is higher, which proves its efficiency and
effectiveness in the feature selection part of the designed system.

3.3. Data Fusion Performance

The above section shows that the feature subset selected by the mRMR has achieved
an efficient effect. Here, we further study the issue of whether the feature data fusion with
entropy weight improves the dataset quality.

The proposed method with an entropy weight fusion mechanism and the other
contrasting method without fusion are adopted for testing and comparing, respectively.
They both use the original 630 group data as the input, while the mRMR step is carried
out subsequently. Afterward, the two processes are executed and tested on each of the
270 groups. The corresponding results are displayed in Figure 12.
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In this part, the average validation indicator root-mean-square error (RMSE) and
confidence interval are used for observation. We notice that in the two figures, the RMSE of
the four SVMs after entropy weight data fusion decreased by about 25% compared with
the unfused data. More obviously, the fluctuation of all RMSEs decrease, especially the
confidence interval of the FA-ISSA-SVM, which approaches zero, which could be almost
ignored. The reason is that the advantage of the entropy weight data fusion adopted in
this paper lies in the dynamic allocation of the fusion weights according to the difference
between the original information entropy and the conditional information entropy, which
can achieve the optimal effect of minimum error fluctuation in the global data fusion.

3.4. Algorithm Comparison

The four algorithms all use the corresponding sample dataset after entropy weight
feature fusion as the training input, and the experimental results are shown in Table 3. As
can be seen, the recognition accuracy values of the optimized SVM algorithms are higher
than the conventional SVM algorithm. The result of the traditional SVM is 89.16%, and
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after optimization by GS and GA, the accuracy rates are roughly improved to 93.32% and
93.25%. Finally, the FA-ISSA-SVM algorithm adopted performs the best, with an accuracy
of 96.21%. The corresponding penalty factor C is 46.25, and the kernel parameter γ is 8.19.

Table 3. Improvement strategies of the GWO.

Algorithm C γ Accuracy (%) Kappa Iteration/s Roc-Auc Macro-F1 Micro-F1

SVM 2 1 89.16 0.865 3.56 0.732 ± 0.009 76.25 79.76
GS-SVM 21.46 18.46 93.32 0.905 15.96 0.909 ± 0.012 71.17 77.32
GA-SVM 54.28 4.56 93.25 0.908 18.47 0.914 ± 0.010 77.48 82.03

FA-ISSA-SVM 46.25 8.19 96.21 0.936 8.23 0.973 ± 0.004 90.31 92.45

In terms of working efficiency, the shortest iteration time of the SVM is 3.56 s. For
the optimized SVM mechanisms, the shortest duration is 8.23 s for the FA-ISSA-SVM and
is nearly half of the time of the GA-SVM and GS-SVM. So, the proposed method could
effectively gain the highest recognition accuracy with a satisfying time cost.

3.5. Long-Term Field Evaluation

Afterward, to verify the reliability of the proposed multi-sensory information fusion
system for the living trees, commercial equipment is adopted to calibrate the true val-
ues of MC level, the KT-80, a dual-function wood moisture measuring instrument from
KLORTNER Technology, Italy [42]. We have carried out a measurement campaign on four
typical tree species in Nanjing Forestry University (metasequoia, lodgepole pine, hove-
nia acerba, and a cherry–apple tree) in a monthly cycle from October 2021 to November
2022. The collected data includes the AE parameters, the root MC value, air humidity,
and temperature. Because of the numerical fluctuation caused by seasonal variation, the
FA-ISSA-SVM and the other six models (GA-SVM, GS-SVM, SVM, RF, KNN, Bayes) were
used to analyze the feature parameters and compare identification performance. The final
recognition accuracies were 96.4%, 96.7%, 96.3%, and 95.5%, respectively. Figure 13 shows
the diagnostic process of the metasequoia with an accuracy of 96.4% as a demonstration,
where the solid line represents the average MC of seven algorithms for metasequoia at
the very month, the shaded part is the error band area, and the dotted line represents the
average of the MC for the quarter. So, we can see and compare both MC variations during
the months and quarters.
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Figure 13. Prediction results of the MC in different seasons by seven algorithms with selected
characteristic parameters.

According to the practical testing data and predicted value, the average MC reached a
maximum of 42.3% in summer, while the average MC in spring and autumn decreased to
39.7% and 38.2%, respectively. Of course, the lowest value was 36.2% in winter. Due to the
influence of long-term light conditions, high temperature, CO2, and other environmental
factors in summertime, the effective photosynthesis and transpiration rate of living trees
have increased to a certain extent; thus, the MC level of living tree trunks also increases.

Compared with other recognition models, the final results of the FA-ISSA-SVM in
one year are closer to the calibrating data. In addition, the FA-ISSA-SVM has an excellent
performance in terms of error band interval, and its error band area is far smaller compared
to other algorithms, which also means that the data obtained by the FA-ISSA-SVM fluctuates
within a credible range.

Next, to further verify the prediction performance of these models, multiple indicators
of the RMSE, mean absolute error (MAE), mean absolute percentage error (MAPE), and
goodness-of-fit (R2) were employed for the evaluation. Compared with Bayes, RF, KNN,
SVM, GS-SVM, GA-SVM, and the FA-ISSA-SVM model show optimal diagnostic accuracy
with high stability; specific data are shown in Figure 14.
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3.6. Short-Term Field Evaluation

The annual MC of living wood trunks is worthy of attention, as MC statuses change
throughout the day. August is a relatively important stage for the growth and development
of trees, and the physiology of trees is very active. Therefore, we selected two consecutive
days (21 August 2022 to 22 August 2022) when the meteorological environment (including
rainfall, wind speed, wind direction, air pressure, etc.) has little change and conducted
continuous monitoring for 48 h. The diagnostic system was set up on four different tree
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species. We envisagd that the FA-ISSA-SVM can maintain the best generalization ability
and robustness even in the most active stage of the physiological activity of trees, which
means that the FA-ISSA-SVM has good applicability under different working conditions.
The MC predicted by different models and the calibrated real MC value of the four tree
species are shown in Figure 15.
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records of lodgepole pine; (c) MC records of hovenia acerba; (d) MC records of cherry–apple.

Results show that the highest MC of the four trees mostly occurs around noon, when
the temperature is the highest, the sun’s effective radiation is the strongest, and the tree’s
transpiration rate is the highest. The MC of the cherry–apple tree appears at two peaks in
one day, which may be affected by the intercellular CO2 and stomatal restrictions. When
the trunk’s water content has saturated to a certain extent, the phenomenon of “midday
depression of photosynthetic” appears.

3.7. The Superiority of the Multi-sensory Data Fusion System

The proposed multi-sensory data fusion system for non-destructive MC detection
compares favorably with previous methods for the monitoring of field standing trees.

Firstly, all the characteristic parameters required for the detection are collected in a
non-destructive way, without causing irreversible damage to the standing trees.

Secondly, the structural differences between the surface and interior of the standing
trees result in significant noise when the AE signal propagates inside the trunk with its
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inhomogeneous, porous, and anisotropic nature. Here, we used Vaseline to couple the
acquisition sensor and live tree trunk during installation. On the one hand, the acquisition
system is highly sensitive, the distance between the AE probes and the sound source is very
close (10 cm/20 cm), and the three sensing devices are mounted in one straight line, which
reduces the interference noise at the physical level and fully retains the effective AE signal.
On the other hand, when the AE signal propagates along the tree bark, the interference for
the original signal is further averted and reaches the optimal propagation path. At this
point, the impact of AE signal noise can be weakened as much as possible. This is also the
reason why AE signals on the bark of the trunk were collected.

Thirdly, the power consumption of the proposed WASN in this paper mainly includes
three parts: AE signal source (i.e., the vibrating motor), AE signal acquisition, and LoRa
wireless communication. The rated operating voltage and current of the micro-vibration
motor are 3.3 V and 85 mA, respectively, which means its power consumption is about
280.5 mW. The LoRa module SX1278 has a maximum transmitting power of 100 mW.
The power consumption of the analog-to-digital converter AD7356 and the preamplifier
OPA627 chip is about 111 mW. Hence, the energy consumption of the whole WASN system
in a working state is about 492 mW. Moreover, the WSAN nodes have two modes: working
and sleeping. Their duty cycle is usually set at about 3%, and considering that the node
only needs to collect data every 6 h, it can be calculated that the power consumption is
about 2000 mW per day. When using a 3.7 V 30 Ah lithium battery pack, one WASN node
can operate normally for 55.5 days. Therefore, the designed WASN basically meets the
application requirements for forestry field monitoring.

Meanwhile, the soil sensor node adopts a 5 V rechargeable lithium battery, and it
also has two modes of work and sleep. After data collection, the node will enter sleeping
mode immediately. The soil node can work normally for 15 h under full voltage through
lab testing, and the working time is about 8 min per day; thus, the soil node can last
for 112 days after installation, which fully shows its reliability and stability in the forest
IoT scenario.

4. Conclusions

In this paper, a non-destructive diagnosis strategy for the standing tree MC level based
on a multi-sensory information fusion system was studied. The mRMR was used to select
optimal features from the root-soil and AE signal parameters. Feature fusion was carried out
based on the weight of conditional information entropy, and the FA-ISSA-SVM deduction
model was constructed. The system optimized the SVM operation parameters based on
the fusion feature subset and achieved an accurate identification rate. By comparison and
evaluation of the long-term measurement, the following conclusions can be drawn:

(1) The mRMR algorithm was highly efficient for the hybrid features’ optimal selection
procedure. When the first nine features were input into the recognition model, the
accuracy of the SVM for the collected data was more than 92%.

(2) After the conditional entropy weight information fusion, the diagnostic model dy-
namically adjusts the data fusion weighting coefficient of the corresponding sensor
characteristic parameters according to the variance changes of the measured values of
each sensor, and finally obtains a minimum root-mean-square error of 2.23% and a
maximum goodness-of-fit of 97.64%.

(3) The proposed system performed an excellent steady-state precision and generalization
performance for the online MC diagnosis of living trees’ heartwood. When applied on
the metasequoia, lodgepole pine, hovenia acerba, and cherry–apple trees, respectively,
the diagnosis accuracy reached 96.4%, 96.7%, 96.3%, and 95.5%.

(4) By comparison with the commercial MC measuring instrument, the proposed sys-
tem can effectively represent the average MC level of the trunk and has stronger
applicability to the living trees in the field with a high MC value.
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