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Abstract: At CRYPTO 2019, Gohr proposed the neural differential distinguisher using the residual
network structure in convolutional neural networks on round-reduced Speck32/64. In this paper,
we construct a 7-round differential neural distinguisher for Speck32/64, which results in better than
Gohr’s work. The details are as follows. Firstly, a new data format (C_r, C_r′, d_l, Cl , Cr, C′l , C′r) is
proposed for the input data of the differential neural distinguisher, which can help the distinguisher to
identify the features of the previous round of ciphertexts in the Speck algorithm. Secondly, this paper
modifies the convolution layer of the residual block in the residual network, inspired by the Inception
module in GoogLeNet. For Speck32/64, the experiments show that the accuracy of the 7-round
differential neural distinguisher is 97.13%, which is better than the accuracy of Gohr’s distinguisher
of 9.1% and also higher than the currently known accuracy of 89.63%. The experiments also show
that the data format and neural network in this paper can improve the accuracy of the distinguisher
by 2.38% and 2.1%, respectively. Finally, to demonstrate the effectiveness of the distinguisher in this
paper, a key recovery attack is performed on 8-rounds of Speck32/64. The results show that the
success rate of recovering the correct key is 92%, with no more than two incorrect bits. Finally, this
paper briefly discussed the effect of the number of ciphertext pairs in a sample on the training results
of the differential neural distinguisher. When the total number of ciphertext pairs is kept constant,
the accuracy of the distinguisher increases with s, but it also leads to the occurrence of overfitting.

Keywords: deep learning; differential cryptanalysis; Speck; key rcovery attack

1. Introduction

With the rapid development of computer networks [1,2] and Internet of Things [3] (IoT)
technology, IoT devices have been applied in many fields and have achieved constructive
results. However, in the production of IoT devices, storage and computing resources
are compressed to improve their productivity and convenience, which makes traditional
algorithms such as DES and AES ineffective in IoT devices and thus reduces the security of
the devices.

For this problem, the National Security Agency (NSA) [4] designed the lightweight
block cipher Speck, which offers better performance on both hardware and software
platforms compared with other existing ciphers. However, the designers of Speck neither
provided the design rationale nor gave any security evaluation or cryptanalysis results.

This has spurred further research on Speck in the cryptographic community to deepen
the understanding and refine it, such as an ultra-lightweight cryptographic Speck-R pro-
posed by Sleem and Couturier [5] based on Speck. Furthermore, among this cryptanalytic
research, differential cryptanalysis is the most promising attack.

Differential cryptanalysis was proposed by Biham and Shamir [6] in 1990 for break-
ing Data Encryption Standard [7] (DES) block ciphers, and today it is considered one
of the most robust techniques in cryptanalysis of symmetric key cryptographic primi-
tives. Abed et al. [8] introduced the first differential attack for almost all Speck variants.
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Biryukov et al. [9] searched for better differential features of Speck. In [10], Dinur improved
the key recovery attack for all variants of Speck and Biryukov [11] showed an automatic al-
gorithm for searching the best differential trajectory with improved MILP-based differential
features results.

The development of deep learning has brought some new minds to cryptanalysis.
In recent years, deep learning has spread across almost every field of science and technology
(medical [12], agriculture [13], etc.) and has made remarkable progress on many difficult
tasks. Several researchers have begun to apply deep learning to the study of cryptanalysis
of block ciphers.

At CRYPTO 2019, Gohr [14] successfully trained (5∼8)-round of differential neural
distinguisher by using the residual network (ResNet) [15] to create a precedent for neural-
aided cryptanalysis. It was used to capture the distribution of output pairs when the input
pairs of round-reduced Speck32/64 have specific differences.

In Gohr’s work, a sample consists of only one ciphertext pair. To improve the predic-
tion accuracy of the differential neural differentiator, Chen and Yu [16] combine multiple
ciphertext pairs generated by encrypting multiple plaintext pairs with the same key into a
matrix as one sample of the neural network input. By using more output differences in the
matrix, the neural network is made to learn more features. As a result, they improved the
prediction accuracy of the (5∼7)-round differential neural distinguisher for Speck32/64
to some extent. Zhang et al. [17] modified the initial convolutional layer by borrowing
ideas from the Inception module of GoogLeNet, which was used to construct a new neural
network structure. Thus, they trained differential neural distinguishers for (5∼9)-round of
Speck32/64.

In this paper, we further improve the data format of the input data and the neural
network framework in the differential neural distinguisher, which helps the differential
distinguisher identify ciphertext pairs with specific differential features more correctly.

(1) By analyzing the features of Speck’s cipher and modifying the data format in the
input data of the differential neural distinguisher according to Speck’s round function.
The data format (C_r, C_r′, d_l, Cl , Cr, C′l , C′r) is proposed, which combines information
integrity and domain knowledge, and enables the neural network to recognize a large
amount of information contained in the previous round of the Speck cipher. This paper
also used multiple ciphertext pairs as input to the neural network. Experiments (see
Section 4.2) show that this data format can significantly improve the accuracy of the
differential neural distinguisher.

(2) This paper adopts the idea of GoogLeNet by replacing the convolutional layers in
the residual blocks with Inception modules, which consist of multiple parallel convolutional
layers, to capture more dimensional information in the ciphertext pairs and train a better
neural distinguisher. As a result, for the 6-round Speck and the 7-round Speck, the accuracy
of the neural distinguisher reached 99.97% and 97.13%, respectively, which is higher than
the accuracy of the above work. The results and comparisons of the differential neural
distinguisher for Speck32/64 are listed in Tables 1 and 2.

(3) To demonstrate the advantage of our distinguisher, this paper performs a key
recovery attack on the 8-round Speck32/64.

Table 1. Summary of distinguish accuracy on Speck32/64 using different number of instances.

Number of
Speck Rounds Ours Zhang [17] Gohr [14] Hou [18]

6 99.97% 99.92% 78.50% 97.67%
7 97.13% 89.63% 59.10% 70.74%



Appl. Sci. 2023, 13, 6994 3 of 15

Table 2. Experiment with different neural network model.

Round Accuracy Time Source

7

86.46% 1200 s Gohr [14]
67.73% 300 s Hou [18]
87.98% 3800 s Zhang [17]
90.08% 3600 s Ours

Training a neural network to distinguish 7-round Speck32/64 output for the input difference ∆ = (0x0040, 0)
from random data. Only the neural network model is different in these experiments while the other experimental
conditions are the same.

2. Preliminaries
2.1. Brief Description of Speck Cipher

The lightweight family of ARX block ciphers Speck designed by the NSA [4] to build
a cipher efficient in software implementations in Internet of Things (IoT) devices, which
adopts a very simple Fesitel structure combining bitwise XOR operation(⊕), modular
addition (�) and bit-wise rotation. In ref. [4], various versions of Speck are presented that
differ from the number of rounds (r), the block size (n), and the key size (m). Generally,
Speckn/m will denote Speck with n bits block size and m bits key size. This paper will
focus mainly on Speck32/64 and abbreviate it as Speck32.

Let (C_l, C_r) be the input of i-round of Speck32. Then the output of i-round is (Cl , Cr),
and (Cl , Cr) is computed as follows:

Cl := ((C_l≫ α)� C_r)⊕ K

Cr := (C_r≪ β)⊕ Cl

The round function of Speck is shown in Figure 1 where ki represents the subkey at
i-round and where α = 7, β = 2.

Figure 1. The round function of Speck.

2.2. Brief Description of ResNet

Residual neural network (ResNet), which is one of the most well-represented convo-
lutional neural networks (CNN) currently, was proposed by He Kaiming et al. at CVPR
2016 [15]. ResNet can solve the problem of gradient disappearance when training convo-
lutional neural network models and train deeper CNN models to reach higher accuracy.
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The core concept is introducing a so-called “shortcuts(skip) connection” to a normal convo-
lutional neural network, that is, the data output from the previous layer is superimposed
directly on the input of the data layer that follows, skipping one or more convolutional
layers. It is composed of a set of residual blocks. A residual block can be expressed as:

H(x) = F(x) + x

where H(x) is the desired underlying mapping and x is the direct mapping, denoting that
the stacked nonlinear layers fit another mapping as F(x) := H(x)− x[15]. By rearranging
the linking order of the convolution layer(Conv), batch normalization(BN), and activation
functions of ReLU, many residual block variants can be designed. Figure 2 shows the
residual block.

Figure 2. The residual block.

The batch normalization layer in the figure is to transform the output data of the neural
network layer into a standard normal distribution with mean zero and variance one by
some methods of normalization, which can effectively prevent the gradient disappearance
problem and accelerate the network training speed. ReLU is a one-sided saturating activa-
tion function, which is defined as f (x) = max(0, x); the gradients of the ReLU activation
function become constant at positive values and no longer vanish [19]. This means that the
gradient vanishing problem can effectively be avoided by using ReLU.

2.3. Brief Description of Inception Module

The Inception module is the core module of GoogLeNet proposed by Christian
Szegedy [20], which takes into account the enlarged depth and width of the model. The
Inception module was an impressive milestone in the development of CNN classifiers.

As shown in Figure 3, an Inception module has multiple convolutional layers with
different convolutional kernel sizes, such as a 1 × 1 convolutional layer, a 2 × 2 convolutional
layer, and a 4 × 4 convolutional layer. The 1 × 1 convolutional layer is equivalent to a
fully connected layer, which is used to adjust the number of channels usually between
each network layer to achieve cross-channel interaction and information integration of
convolutional kernels.

Figure 3. The Inception Module.

3. Improved Neural Distinguishers Model for Speck32

This Section Attempts to Teach Neural Networks to Identify the Differential Features
of the Round-Reduced Speck as a Way to Construct a Differential Neural Distinguisher
for Speck.



Appl. Sci. 2023, 13, 6994 5 of 15

3.1. Data Format

As the number of Speck cipher rounds increases, the features of the Speck cipher
algorithm are not easily recognized by the neural network. Therefore, as the data format
contains more features from previous cipher rounds, it will help improve the accuracy of
the neural network.

Once the ciphertext pair of the i-round (Cl , Cr, C′l , C′r) is known, one can straightfor-
wardly compute (C_r, C_r′) without knowing the (i− 1)-round subkey (K) according to
the algorithmic structure of the Speck cipher. Expressed in the formula as:{

C_r = (Cl ⊕ Cr)≫ β

C_r′ = (C′l ⊕ C′r)≫ β
(1)

But one needs to know the (i − 1)-round subkey(K) to calculate (C_l, C_l′), which is
expressed in the formula: {

C_l = ((Cl ⊕ K)� C_r)≪ α

C_l′ = ((C′l ⊕ K)� C_r′)≪ α
(2)

where � is modular minus. The difference d_lreal of C_l and C_l′ is:

d_lreal = C_l ⊕ C_l′ = (((Cl ⊕ K)� C_r)⊕ ((C′l ⊕ K)� C_r′))≪ α (3)

Definition 1. Denote (Cl ⊕ K), C_r, (C′l ⊕ K), C_r′ by vectors, respectively:
Cl ⊕ K = (a1 ⊕ k1, a2 ⊕ k2, . . . , an ⊕ kn) ∈ {0, 1}n, n = 16
C_r = (b1, b2, . . . , bn) ∈ {0, 1}n, n = 16
C′l ⊕ K = (x1 ⊕ k1, x2 ⊕ k2, . . . , xn ⊕ kn) ∈ {0, 1}n, n = 16
C_r′ = (y1, y2, . . . , yn) ∈ {0, 1}n, n = 16

(4)

Definition 2. Denote d_l as the difference of C_l and C_l′ without the effect of the (i − 1)-round
subkey (K):

d_l = ((Cl � C_r)⊕ (C′l � C_r′))≪ α (5)

Proposition 1. Part of the bits of d_lreal that are not affected by (i − 1)-round subkey can be
captured by d_l.

Proof. Without loss of generality, let ai ⊕ ki > bi(i 6= 2), a2 ⊕ k2 ≤ b2, n = 16.
Converting (Cl ⊕ K)� C_r to number field will obtain:

(Cl ⊕ K)� C_r = ((a1 ⊕ k1)2n−1 + (a2 ⊕ k2)2n−2 + (a3 ⊕ k3)2n−3

+ · · ·+ (an ⊕ kn)− b12n−1 − b22n−2 − · · · − bn)mod2n
(6)

We can obtain:

(Cl ⊕ K)� C_r = ((1 + a1 ⊕ k1 ⊕ b1 ⊕ a2 ⊕ k2 ⊕ b2)2n−2

+ (a3 ⊕ k3 ⊕ b3)2n−3 + · · ·+ (an ⊕ kn ⊕ bn))mod2n (7)

In the same way, we get:

(C′l ⊕ K)� C_r′ = ((1 + x1 ⊕ k1 ⊕ y1 ⊕ x2 ⊕ k2 ⊕ y2)2n−2

+ (x3 ⊕ k3 ⊕ y3)2n−3 + · · ·+ (xn ⊕ kn ⊕ yn))mod2n (8)

When the XOR operation is performed on ((Cl ⊕ K)� C_r) and ((C′l ⊕ K)� C_r′), it
is obtained that the other bits of K has no effect on the operation except for k1, k2. That
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is, the results of (Cl �C_r)⊕ (C′l �C_r′) and ((Cl ⊕ K)�C_r)⊕ ((C′l ⊕ K)�C_r′) are the
same for all bits except k1, k2.

The bit-wise rotation operation does not affect the number of captured bits in the vector.
Therefore d_l captures the rest of the bits in d_lreal that are not affected by (i− 1)-round
subkey (K).

Extending this proof, d_l can capture part of the bits of the d_lreal and the number
of bits captured is different in each sample. It is certain that the accuracy of the neural
network will improve as d_l captures more bits of d_lreal . The experiments in Section 4.2
show that the inclusion of d_l in the data format can improve the accuracy of the neural
network by 2.34% under the same conditions.

Integrating the above data formats, this paper proposes a new data format

(C_r, C_r′, d_l, Cl , Cr, C′l , C′r)

which contains a number of cryptographic features from the (i− 1)-round.

3.2. Data Structure

The data structure of multiple ciphertext pairs can achieve higher differentiation
accuracy than the data structure of a single ciphertext pair. The dataset required to construct
the differential distinguisher is shown in Figure 4.

Figure 4. The structure of dataset.

The training and validation data are obtained by using the Linux random number
generator (/dev/urandom) to get uniformly plaintext pairs P and distributed keys k with
the input difference ∆ = 0x0040/0000, followed by a vector of binary-valued real/random
labels Y, where s neighboring plaintext pairs are formed into one sample:

(Pl1, Pr1, Pl1
′, Pr1

′), (Pl2, Pr2, Pl2
′, Pr2

′), · · · , (Pl s, Prs, Pl s
′, Prs

′).

To generate training or validation data for i-round ciphertext pairs, the s plaintext pairs
P in a sample were then encrypted for i rounds if Y = 1 , otherwise the second plaintext of
the pair was replaced with a newly generated random plaintext and encrypted for i rounds

(Cl1, Cr1, Cl1
′, Cr1

′), (Cl2, Cr2, Cl2
′, Cr2

′), · · · , (Cl s, Crs, Cl s
′, Crs

′).

Then the generated s ciphertext pairs are linearly transformed into (C_r, C_r′, d_l, Cl ,
Cr, C′l , C′r) to obtain the samples needed for neural network training:

(C_r1, C_r1
′, d_l1, Cl1, Cr1, Cl1

′, Cr1
′),
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(C_r2, C_r2
′, d_l2, Cl2, Cr2, Cl2

′, Cr2
′),

...

(C_rs, C_rs
′, d_ls, Cl s, Crs, Cl s

′, Crs
′),

Finally attach a label Y = 1 to the sample with (P′l , P′r) = (Pl , Pr)⊕ ∆P and a label
Y = 0 to the sample with (P′l , P′r) = random.

3.3. Design the Network Structure

In this paper, the model of Gohr [14] is improved in order to smoothly converge the
residual neural network to an optimal solution. A network model with higher accuracy
is proposed, which significantly reduces the training time and makes it more efficient to
attack the Speck. The framework of the neural network is shown in Figure 5.

The neural network is divided into four parts: an input layer consisting of multiple
ciphertext pairs, an initial convolutional layer made of a one-layer convolutional neural
network, a residual tower consisting of three layers of convolutional neural network
optimized by the Inception module, and a prediction head consisting of multiple fully
connected layers (distinguished by the colors in Figure 5).

Figure 5. The framework of the neural network.

Initial convolution. After transforming the one-dimensional initial ciphertext data
from Section 4.2 into [s, w, 2L

w ] three-dimensional input data, the train data enters the initial
convolution layer, where L represents the block size of the target cipher, w is the size
of a basic unit, and s = 16, w = 16 for Speck32. The number of channels in the initial
convolutional layer is 3N f , where 3N f is the number of filters in the convolutional layer
and N f = 32. The convolutional layer is first convolved by a convolutional kernel of size
1, and then the convolved results are batch normalized. Finally, rectifier nonlinearity is
applied to the output of batch normalization, and the resulting [s, w, 3N f ] matrix is passed
to the residual block.

Residual block. The residual neural network model constructed in this paper contains
five residual blocks. Compared with the neural network model of Gohr [14], the residual
block in this paper contains three convolutional blocks of 3N f channels. The first convolu-
tional block is convolved by a convolutional kernel of size one and then the output data
is directly transferred to the second convolutional block. The second convolutional block
consists of a 2× 2 convolutional layer, a 4× 4 convolutional layer, and an 8× 8 convolu-
tional layer; each convolutional layer has N f channels. The three convolutional layers are
concatenated in the channel dimension, similar to the Inception module in GoogLeNet.
Batch normalization is applied to the output of the concatenated layers. The nonlinearity
of the rectifier is applied to the output of batch normalization. The output from the second
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convolution block is applied to the convolution of kernel size one, then a batch normaliza-
tion layer, and finally a rectifier layer. At the end of the convolution block, the output of the
last rectification layer in that block is added to the input of the convolution block, and the
result is transferred to the next block.

Prediction head. The prediction head consists of a GlobalAveragePooling layer, two
hidden layers, and one output cell. The three fully connected layers consist of 64, 64,
and 1 neural unit, followed by batch normalization and rectifier layers. Finally, in order to
constrain the final output neural unit between 0 and 1, the output neural unit is activated
using the Sigmoid activation function. The Sigmoid activation function is a logistic function
defined as f (x) = 1

1+e−x .
The overall structure of the neural network for training the differential-neural distin-

guisher is shown in Figure 6.

Figure 6. The overall structure of the neural network.

Basic training scheme. In this paper, the training is run for 20 epochs on the training
dataset with a SN = 106 sample size. The batch size for dataset processing is adjusted
according to parameter s to maximize GPU performance, where s is the number of cipher-
text pairs in a single sample, so the number of ciphertext pairs in the training dataset is
CN = SN× s. The SM = 105 samples will be used for validation, containing CM = SM× s
ciphertext pairs. Optimization was performed against mean square error (MSE) loss plus a
small penalty based on the L2 weights regularization parameter c = 10−5 using the Adam
algorithm. A cyclic learning rate schedule was adopted, setting the learning rate Li for
epoch i to

Li := α +
(n− i)mod(n + 1)

n
(β− α)

with α = 10−4, β = 2× 10−3 and n = 9. The best neural network model is saved by a
callback function triggering the ModelCheckPiont method.

3.4. Design the Differential Neural Distinguisher

In this section, a neural differential distinguisher is designed for the round-reduced
Speck. The distinguisher uses the data structures generated in Sections 3.1 and 3.2 as input
data and the neural network structure of Section 3.3 as the structure of the distinguisher.
The training algorithm for the differential neural distinguisher is shown in Algorithm 1.
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Algorithm 1 The training algorithm for the differential neural distinguisher.

Require: Speck cipher Oracle, Number of randomly selected plaintext pairs n, Linear
transformation Trans f orm.

Ensure: Differential neural distinguisher N
1: TD ← ∅
2: Y ← n random sample labels, assigned to 0 or 1
3: (Pl , Pr, Pl

′, Pr
′)← s random plaintext pairs with a difference of ∆ = 0x0040/0000 ;

4: for i = 0 to n− 1 do
5: if Yi = 0 then
6: (Pl

′, Pr
′)← s random plaintexts

7: end if
8: (Cl , Cr, Cl

′, Cr
′)← Oracle(Pl , Pr, Pl

′, Pr
′)

9: (C_r, C_r′, d_l, Cl , Cr, C′l , C′r)← Trans f orm(Cl , Cr, Cl
′, Cr

′)
10: end for
11: TD ← (X(C_r, C_r′, d_l, Cl , Cr, C′l , C′r), Y)
12: N ← trainNetwork(TD)
13: return N

4. Results

In this paper, the experiments were conducted with Python 3.8 on Ubuntu 20.04 OS.
The model we use is implemented by Tensorflow 2.9.0. For our experiments, we used a
server with an Intel(R) Xeon(R) Platinum 8255C CPU at 2.50 GHz, 80 GB of RAM, and an
RTX 3080 10 GB.

4.1. Experiments on Speck32

In this paper, we choose ∆ = (0x0040, 0x0000) as the difference of the distinguisher
when training the neural network, which transitions deterministically after one round to a
difference with low Hamming weights [14], helping the neural network distinguisher to
obtain the difference with the highest probability [21]. The parameter s is set to 32, and
the batch size is set to 500. Then the plaintext pairs are encrypted by the Speck algorithm,
and finally, the input data of the neural network is obtained after format conversion.
Figure 7 gives the accuracy and loss rate of the training and validation sets in 6- and
7-rounds of Speck32 with 20 rounds.

It is worth noting that accuracy is used as a measure of distinguisher effectiveness
in this paper because it is related to the distinguishing advantage of classical password
distinguishers, and when the accuracy rate is higher, it means that the distinguisher is
more effective.

(a) Expermential results on 6-round Speck32 (b) Expermential results on 7-round Speck32

Figure 7. Training neural networks to distinguish 6-, 7-round Speck32 output for the input difference
0x0040/0000 from random data.
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In Figure 7, the horizontal axes represent the number of rounds, and the vertical axes
represent the accuracy and loss rate of the dataset results. The collapsed line shows the
accuracy and loss rate of the data set during the training process of the differential neural
distinguisher. From Figure 7a, the validation set accuracy of the 6-round distinguisher
using the Speck algorithm trained by the neural network is 99.97% with a loss rate of 0.04%,
while from Figure 7b, the 7-round distinguisher validation set accuracy is 97.13% with a
loss rate of 2.67%, which is the highest known accuracy rate.

Since the data format and neural network structure proposed in this paper were not
the same as in Zhang [17], Gohr [14], and Hou [18]. In their papers, differential neural
distinguishers were obtained by changing the number of ciphertext pairs in a single sample
(s) and the number of samples (SN).

In this section, the distinguisher with the highest accuracy in each paper is selected for
comparison with the distinguisher proposed in this paper.

From Table 1, it can be seen that by improving the data format and neural network
structure, the differential neural distinguisher can identify ciphertext pairs with specific
differences more effectively. As a result, the accuracy of the differential neural distinguisher
in this paper is higher than the above work, especially the 7-round distinguisher, which
exceeds 95% accuracy for the first time.

4.2. Experiment with Different Data Format

In the work of Gohr [14], the data format (Cl , Cr, C′l , C′r) was used as the input data for
the neural network. Subsequently, Benamira et al. [21] transformed the input (Cl , Cr, C′l , C′r)
of Gohr’s neural network into (dl, dv, V0, V1) and a linear combination of these terms to
achieve better performance, where dl = Cl ⊕ C′l , dv = Cr ⊕ C′r, V0 = Cl ⊕ Cr, V1 = C′l ⊕ C′r.
The data format is simplified to (dl, dv) and the single ciphertext pair structure is converted
to a multi-ciphertext pair structure in the work of Hou et al. [18]. Zhang et al. [17]. proposed
(C_r, C_r′, Cl , Cr, C′l , C′r) considering that the key recovery attack requires ciphertext pairs
according to Speck’s round function, which effectively identifies the features of ciphertext
pairs and enhances the performance of the distinguisher.

To demonstrate that the data format of this paper outperforms other data formats, this
paper designed a comparison experiment that fixed all other parameters but only the data
format is variable, where the neural network uses the model from Section 3.3 The results
are shown in Table 3.

Table 3. Experiment with different data format.

Round Data Fromat Accuracy Source

7

(Cl , Cr, C′l , C′r) 86.35% Gohr [14]
(dl, dv) 81.95% Hou [18]

(dl, dv, V0, V1) 86.43% Benamira [21]
(C_r, C_r′, Cl , Cr, C′l , C′r) 87.74% Zhang [17]

(C_r, C_r′, d_l, Cl , Cr, C′l , C′r) 90.08% Ours
Training a neural network to distinguish 7-round Speck32/64 output for the input difference ∆ = (0x0040, 0)
from random data. Only the data format is different in these experiments while the other experimental conditions
are the same.

As shown in Table 3, since the data format proposed in this paper contains more
features of the previous round of the Speck cipher, the accuracy of the neural network for
the Speck has improved to 90.08%, which is the highest accuracy we know so far.

4.3. Experiment with Different Neural Network Model

Gohr [14] showed that the residual network could be trained to capture the non-
randomness of the value distribution of output pairs when the input pairs of round-reduced
Speck32/64 have a certain difference. Subsequently, Benamira [21] used the same neural
network, while Hou et al. [18] reduced it to 5 iterations and removed a hidden layer.
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In order to further improve the accuracy, better differential neural distinguishers have also
recently been investigated. Zhang et al. [17] changed the input data of the neural network to
three dimensions and modified the initial convolutional layer using the Inception module
instead of the width-1 convolutional layer.

In this section, a comparative experiment was designed to investigate the effect of
different neural networks on the distinguisher, with (C_r, C_r′, d_l, Cl , Cr, C′l , C′r) as the
input data format. Fixing all other parameters and only changing the neural network
model, the neural network in this paper is compared with the neural networks of Gohr [14],
Hou [18], and Zhang [17]. The comparison results are shown in Table 2.

It can be found that the accuracy increases when the dimensionality of the input data
and the model complexity grow, while the training time also adds up. In order to make a
trade-off between training time and accuracy, this paper improves Gohr’s neural network
and increases the accuracy of the neural network to 90.08%, and the training time is less
than Zhang’s model but longer than Gohr’s and Hou’s models.

4.4. Effect of the Number of Ciphertext Pairs in a Single Sample (s) on the Neural Network

Chen et al. [16] explain the high accuracy of neural networks in recognizing multiple
ciphertext pairs compared with a single ciphertext pair: if the ciphertext pairs obtained by
encrypting plaintext pairs with specific plaintext differences obey a non-uniform distribu-
tion, then some derived features are derived from the multiple ciphertext pairs. Once the
network captures these features, the accuracy of the neural distinguisher is improved.

Increasing the number of ciphertext pairs in a single sample (s) can improve the
accuracy of the neural network when keeping the number of samples (SN) in the training
dataset constant. And the number of cipher text pairs in the training dataset (CN = SN× s)
also increases. Similarly, keeping s constant and increasing the number of samples in the
training dataset (SN) can also improve the performance of the neural network.

In order to investigate the effect of the number of ciphertext pairs in a single sample
(s) on the neural network with a constant number of total ciphertext pairs (CN), this
paper designs a comparative experiment to explore the effect of s on neural networks: the
numbers of ciphertext pairs in the training dataset are CN = 107 and in the validation
dataset are CM = 106. Keeping the other parameters constant and changing the parameter s,
the number of samples in the training and validation sets are SN = CN/s and SM = CM/s.
The batch size for dataset processing is adjusted according to the number of ciphertext pairs
in a single sample (s) to maximize GPU performance, where s ∈ {1, 2, 4, 8, 16, 32, 64, 128}.

It can be found that the accuracy is growing when the parameter s increases in Figure 8.
At the same time, the number of samples in the training dataset (SN) and validation dataset
(SM) is decreasing, which leads to the overfitting phenomenon of the neural network when
the parameter s is higher. Mitigating the overfitting phenomenon can be achieved by
increasing the number of ciphertext pairs. Taking into account time and cost, in this paper,
the parameter s is set to 32, the batch size is 500, and the number of samples in the training
dataset (SN) and validation dataset (SM) are 106 and 105, respectively.
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(a) Training Loss (b) Training Accuracy

(c) Validation Loss (d) Validation Accuracy

Figure 8. Training a neural network to distinguish 7-round Speck32 output for parameters s ∈
{1, 2, 4, 8, 16, 32, 64, 128} from random data.

5. Key-Recovery Attack against Speck32

To demonstrate the utility of the neural distinguisher, this paper constructs a partial
key recovery attack based on a 7-round distinguisher. The basic idea is the decryption of
the resultant ciphertext under all final subkeys for each plaintext pair with a difference
∆ = 0x0040/0000, and the sorting of each partially decrypted ciphertext using the neural
distinguisher in this paper. Then the scores of the returned individual ciphertext pairs
are combined into the scores of the keys, and finally, the keys are sorted in descending
order according to their scores. A brief description of the attack steps is detailed below in
Algorithm 2.

1. Generate n randomly chosen plaintext pairs (P1, P1
′) with a difference ∆ = 0x0040/0000,

such that it obtains the corresponding sample data ciphertext pair (C1, C1
′) in encryption

8 rounds.
2. For each last-round subkey k, decrypt the Ci under k to get (Ck, Ck

′).
3. Using the neural distinguisher in this paper, the score xi

k is obtained for each
partially decrypted ciphertext pair (Ck, Ck

′).
4. For each k, the scores xi

k are combined into one score xk and arranged in descend-
ing order.
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Algorithm 2 Key-recovery Attack Against Speck32.

Require: Speck cipher Oracle, Number of randomly selected plaintext pairs n, an 8 round
neural distinguisher N.

Ensure: A descending sorted list of candidate keys Lck.
1: (P1, P1

′)← n random plaintext pairs with a difference of ∆ = 0x0040/0000
2: (Ck, Ck

′)← Oracle(P1, P1
′)

3: Lck ← {·}
4: for k in subkeys do
5: for i = 0 to n− 1 do
6: (Ck, Ck

′)← DecryptOneRound((Ci, Ci
′), k)

7: xi
k ← N(Ck, Ck

′)
8: end for
9: xk ← ∑n−1

i=0 log2(xi
k/(1− xi

k))

10: Append (k, xk)toLck
11: end for
12: return Lck

In this attack, the step 3 key ranking score is likely to be high when the 8-round subkey
is guessed correctly. So, when a key guess is returned, the distinguisher can be sure that
the correct 8-round key has been found.

In this paper, we repeated the key recovery attack 50 times for different keys. The attack
is considered successful if the correct key is in the top five in Lck. Finally, 46 keys were
successfully recovered, with a success rate of about 92% for the experimental attack. The key
ranking results are shown in Table 4. Of course, the success rate obtained with different
success criteria can be different, so this success rate can only be used as a reference for the
effectiveness of the key recovery algorithm.

Table 4. The result of the ranking of the correct subkeys in the list Lck.

Ranking of the Correct Subkeys 1st 2nd 3rd 4th 5th Others

Number of trials 23 11 7 4 1 4

In addition, in order to obtain in detail the correctness of each bit during the key
recovery attack. In this paper, the subkey with the highest score is selected as the candidate
key for guessing compared with the correct key, and the guess is considered successful if
the last subkey is incorrect within only two bits. Then an exhaustive method can be used to
eliminate the incorrect bits. The experimental results are shown in Tables 5 and 6.

Table 5. Guess the number of errors in the subkey bits.

The Number of Errors in the Subkey Bits 0 1 2 Others

Number of trials 23 15 12 0

Table 6. Guess the success rate of each subkey bit.

Subkey Bits k0 k1 k2 k3 k4 k5 k6 k7

Number of trials 100% 100% 100% 100% 100% 100% 100% 98%

Subkey Bits k8 k9 k10 k11 k12 k13 k14 k15

Number of trials 100% 100% 100% 100% 100% 100% 66% 58%

Table 5 shows that the neural network distinguisher in this paper guessed no more than
2 bits of the subkey incorrectly in 8 rounds of Speck experiments, and 23 experiments had
exactly correct subkey guesses, accounting for 46%. Among the experiments with incorrect
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guesses, 15 experiments (in 30%) have only 1 bit of incorrect guesses, and 12 experiments
have 2 bits of incorrect guesses.

Further analysis of the 16 bits of the subkeys in Table 6 shows that the success
rate of the neural network distinguisher in this paper reaches 98% for k7 of the subkey.
The success rates of k14 and k15 are 66% and 58%, respectively, and the rest of the bits are
guessed correctly.

6. Conclusions

This paper proposed a new data format and model to further improve neural distin-
guishers and then performed a practical key recovery attack on Speck. Firstly, by adopting
the new data format (C_r, C_r′, d_l, Cl , Cr, C′l , C′r) and stitching multiple ciphertext pairs
into a matrix as samples to capture more derived features, this can improve the accuracy
of the neural distinguishers. In addition, by using the idea of the Inception module to
modify the residual block of the neural network structure. As a result, the accuracy of the
distinguisher in this paper is 99.97% and 97.13% for 6- and 7-round of Speck, respectively.
Finally, the key recovery attack was performed on the 8-round Speck algorithm by the
trained differential neural distinguisher. Among the 50 experiments performed, 46 were
successful, with a 92% probability of success. In all the key recovery experiments, the num-
ber of subkey bits guessed incorrectly did not exceed 2 bits, and the accuracy of 100% was
achieved in 13 of them.

To be sure, there are many factors that affect the accuracy of the neural network distin-
guisher, such as the data format and structure, the neural network structure and methods
of model training, and so on. In this paper, we discuss the effects of data format, network
structure, and the number of ciphertext pairs in the samples on the accuracy of neural
networks. During the experiments, we found that the choice of neural network model
affects the accuracy and time complexity of the trained distinguisher. Therefore, in the
future, we will try to further eliminate the effect of the (i− 1)-round subkey on the data
format, optimize the neural network to improve the accuracy of the neural distinguisher,
and investigate other block ciphers.
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