Through-Thickness Inhomogeneity of Microstructures and Mechanical Properties in an As-Quenched Thin Specification High Strength NM450TP Steel Plate
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure and Morphology of NM450TP Steel
3.2. Microstructure of Ferrite and Martensite
3.2.1. Grain Boundary Feature and Effective Grain Size
3.2.2. Constituent Phase, Substructure and Recrystallization
3.2.3. Texture and Crystallographic Orientation
3.3. Relationship between Microstructure and Mechanical Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Q.; Feng, J. Development and current situation of advanced high-strength steel under the condition of automobile light weight. Steel Roll. 2020, 37, 65–70+90. [Google Scholar]
- Li, C.M. Effect of quenching on microstructure and properties of wear-resistant steel NM400. Heat Treat. Met. 2021, 45, 69–73. [Google Scholar]
- Su, C.; Feng, G.H.; Yuan, X.M.; Wang, S.B.; Li, Z. Development of low alloy NM400 wear-resistant steel strip based on 2250 mm hot continuous rolling mill. Iron Steel 2021, 56, 126–131. [Google Scholar]
- Miernik, K.; Pytel, S. Microstructure and mechanical properties of dual-phase steel. Arch. Metall. Mater. 2014, 59, 1257–1261. [Google Scholar] [CrossRef]
- Chen, X.; Xu, G.; Yao, Z. Static CCT curve of martensite wear-resistant steel NM 400. Spec. Steel 2021, 42, 63–66. [Google Scholar]
- Wang, X.; Li, H.; Tang, W.; Liu, D.; Liu, D.; Li, Y.; Peng, N.; Xiong, X. Determination and analysis of CCT curve of a high strength steel. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 1090–1098. [Google Scholar]
- Xue, J. Study on Microstructure Control and Hole Expansion Performance of 800 Mpa Grade Hot-Rolled Complex Phase Steel. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2020. [Google Scholar]
- Isfahani, T.D.; Shafyei, A.; Sharifi, H. Impact and tensile properties of ferrite-martensite dual-phase steels. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 141–147. [Google Scholar] [CrossRef]
- José, R.; Mikael, O. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods. Wear 2009, 267, 2055–2061. [Google Scholar]
- Li, G.; Feng, G.; Wang, C.; Hu, L.; Li, T.; Deng, D. Prediction of residual stress distribution in NM450TP wear-resistant steel Welded Joints. Crystals 2022, 12, 1093. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, G.; Wen, T.; Zhang, L.; Zheng, Y.; Yang, F.; Wang, X. Fracture prediction of NM450TP wear-resistant steel plates during air bending using a mesoscopic heterogeneous model. Theor. Appl. Fract. Mech. 2022, 123, 103711. [Google Scholar] [CrossRef]
- Das, D.; Chattopadhyay, P.P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J. Mater. Sci. 2009, 44, 2957–2965. [Google Scholar] [CrossRef]
- Saai, A.; Hopperstad, O.S.; Granbom, Y.; Ladem, O.G. Influence of volume fraction and distribution of martensite phase on the strain localization in dual phase steels. Proc. Mater. Sci. 2014, 3, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Pushkareva, I.; Allain, S.; Collin, S.; Rbdelkrim, A.; Moulin, A. Relationship between microstructure, mechanical properties and damage mechanisms in high martensite fraction dual phase steels. ISIJ Int. 2015, 55, 2237–2246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Di, H.; Deng, Y.; Misra, R.D.K. Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater. Sci. Eng. A 2015, 627, 230–240. [Google Scholar] [CrossRef]
- Lai, Q.; Bouaziz, O.; Goune, M.; Brassart, l.; Verdier, M.; Parry, G.; Perlade, A.; Brechet, Y.; Pardoen, T. Damage and fracture of dual-phase steels: Influence of martensite volume fraction. Mater. Sci. Eng. A 2015, 646, 322–331. [Google Scholar] [CrossRef]
- Mansouri, T.; Zidekmek, S.; Allaoui, O. Effect of the tempering temperature on microstructure and mechanical properties X70 dual phase steel. Metall. Mater. Eng. 2022, 28, 351–358. [Google Scholar]
- Nouri, A.; Badkoobeh, F.; Rabiei, N.; Hassannejad, H. Evolutions of microstructural and mechanical properties of tempered dual-phase steels influenced by silicon content and the intercritical annealing temperature. J. Mater. Eng. Perform. 2022, 31, 5441–5457. [Google Scholar] [CrossRef]
- Li, G.; Lei, M.; Chen, H.; Lü, D. Phase transformation behavior of non-quenched and tempered NM400 multiphase wear-resistant steel. Heat Treat. Met. 2022, 47, 228–233. [Google Scholar]
- Li, Y.; Kang, J.; Zhang, W.; Liu, D.; Wang, X.; Yuan, G.; Misra, R.; Wang, G. A novel phase transition behavior during dynamic partitioning and analysis of retained austenite in quenched and partitioned steels. Mater. Sci. Eng. A 2018, 710, 181–191. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, Q.; Wang, H. Industrial production and application of high-strength high-toughness ultra-heavy rack steel. J. Iron Steel Res. 2022, 34, 1476–1484. [Google Scholar]
- Shi, Z.; Liu, K.; Wang, M.; Shi, J.; Dong, H.; Pu, J.; Chi, B.; Zhang, Y.; Jian, L. Effect of tensile deformation of austenite on the morphology and strength of lath martensite. Met. Mater. Int. 2012, 18, 317–320. [Google Scholar] [CrossRef]
- Shen, W. Study and Development of the New Expandable Tubular Ferrite/Martensite Dual Phase Steels. Ph.D. Thesis, Southwest Petroleum University, Chengdu, China, 2013. [Google Scholar]
- Yang, P.; Fu, Y.; Cui, F.; Sun, Z. Dynamic aspects of strain enhanced transformation in Q235 plain carbon steel. Acta Metall. Sin. 2001, 37, 617–624. [Google Scholar]
- Yang, P.; Cui, F.; Wang, F. Microstructural features during strain induced ferrite transformation in 08 and 20Mn steels. Int. J. Miner. 2001, 8, 105–110. [Google Scholar]
- Song, R.; Ponge, D.; Raabe, D.; Speer, J.; Madock, D. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc Steels. Mater. Sci. Eng. A 2006, 441, 1–17. [Google Scholar]
- Zhang, J.; Liu, Z.; Sun, J.; Zhao, H.; Shi, Q.; Ma, D. Microstructure and mechanical property of electropulsing tempered ultrafine grained 42CrMo steel. Mater. Sci. Eng. A 2020, 782, 139213. [Google Scholar] [CrossRef]
- Lin, X.; Zou, X.; An, D.; Krakauer, B.; Zhu, M. Multi-scale modeling of microstructure evolution during multi-pass hot-rolling and cooling process. Materials 2021, 14, 2947. [Google Scholar] [CrossRef]
- Paria, S.; Reza, M.; Alireza Sabour, R. Temperature effect of hot rolling process on microstructure, strength and fracture toughness of X65 pipeline steel. Trans. Indian Inst. Met. 2018, 71, 1531–1541. [Google Scholar]
- Li, S.; Guo, C.; Hao, L.; Kang, Y.; An, Y. In-situ EBSD study of deformation behaviour of 600 MPa grade dual phase steel during uniaxial tensile tests. Mater. Sci. Eng. A 2019, 759, 624–632. [Google Scholar] [CrossRef]
- Patra, S.; Kumar, V.; Haldar, A.; Chakrabarti, D. Effect of hot-deformation on micro-texture in ultra-fine grained HSLA steel. In Proceedings of the 16th International Conference on the Textures of Materials (ICOTOM 16), Indian Institute of Technology Bombay, Mumbai, India, 17 December 2011; pp. 439–442. [Google Scholar]
- Zhang, Y.; Yuan, Q.; Ye, J.; Weng, X.; Wang, Z. Effect of cold rolling reduction on microstructure, mechanical properties, and texture of deep drawing dual-phase (DP) steel. Mater. Res. Express 2019, 6, 125802. [Google Scholar] [CrossRef]
- Venkatsurya, P.; Zhang, Y.; Raja Devesh Kumar, M.; Michael, M.; Murali, M.; Hartmann, J. Understanding mechanical property anisotropy in high strength niobium-microalloyed linepipe steels. Mater. Sci. Eng. A 2012, 556, 194–210. [Google Scholar] [CrossRef]
- Kang, H.; Huh, M.; Park, S.; Engler, O. Effect of lubrication during hot rolling on the evolution of through-thickness textures in 18%Cr ferritic stainless steel sheet. Steel Res. Int. 2008, 79, 489–496. [Google Scholar] [CrossRef]
- Szeliga, D.; Chang, Y.; Madej, L.; Bzowski, K.; Perzynski, K.; Haase, C.; Bleck, W.; Pietrzyk, M. Correlating the microstructural heterogeneity with local formability of cold-rolled dual-phase and complex-phase steels through hardness gradients. Steel Res. Int. 2022, 93, 2200130. [Google Scholar] [CrossRef]
- Zeng, W.; Zhou, M.; Yang, M.; Qiu, R. Effect of Zr on the microstructure and mechanical properties of 12Cr ferritic/martensitic steels. Fusion Eng. Des. 2021, 177, 113084. [Google Scholar] [CrossRef]
- Hu, C.; Chen, L.; Zhao, Z.; Gong, A.; Shi, W. Effects of controlled cooling-induced ferrite–pearlite microstructure on the cold forgeability of XC45 steel. J. Mater. Eng. Perform. 2018, 27, 2772–2781. [Google Scholar] [CrossRef]
Element | C | Mn | Si | Cr | Ti | Nb | S | P |
---|---|---|---|---|---|---|---|---|
content | 0.17 | 1.78 | 1.20 | 0.50 | 0.015 | 0.03 | 0.003 | 0.010 |
Direction\Position | Top Surface | Core Position | Bottom Surface |
---|---|---|---|
Grain sizes in horizontal direction/μm | 1.4805 | 1.4856 | 1.3048 |
Grain sizes in vertical direction/μm | 1.2356 | 1.3744 | 1.1638 |
Grain size ratios | 1.1982 | 1.0809 | 1.1212 |
Texture Percentage\Type | {223} <110> | {113} <110> | {112} <110> | {001} <110> | {110} <110> | {332} <113> |
---|---|---|---|---|---|---|
Top surface | 14.3% | 21.4% | 19.9% | 8.85% | 8.46% | 22.2% |
Core position | 23.2% | 20.9% | 22.2% | 8.48% | 3.9% | 30.8% |
Bottom surface | 25.9% | 25.4% | 28.6% | 9.16% | 4.15% | 22.6% |
Positions | Yield Strength/MPa | Tensile Strength/MPa | Elongation/% | |
---|---|---|---|---|
RD | Top surface | 1220 | 1467 | 6.6 |
Core location-1 | 1133 | 1487 | 8.6 | |
Core location-2 | 1136 | 1490 | 8.2 | |
Bottom surface | 1189 | 1492 | 7.6 | |
TD | Top surface | 1315 | 1604 | 5.2 |
Core location-1 | 1259 | 1621 | 6.2 | |
Core location-2 | 1203 | 1578 | 6.6 | |
Bottom surface | 1328 | 1606 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Lu, S.; Ren, J.; Zhou, Z. Through-Thickness Inhomogeneity of Microstructures and Mechanical Properties in an As-Quenched Thin Specification High Strength NM450TP Steel Plate. Appl. Sci. 2023, 13, 7017. https://doi.org/10.3390/app13127017
Li G, Lu S, Ren J, Zhou Z. Through-Thickness Inhomogeneity of Microstructures and Mechanical Properties in an As-Quenched Thin Specification High Strength NM450TP Steel Plate. Applied Sciences. 2023; 13(12):7017. https://doi.org/10.3390/app13127017
Chicago/Turabian StyleLi, Guannan, Shuqing Lu, Jie Ren, and Zheng Zhou. 2023. "Through-Thickness Inhomogeneity of Microstructures and Mechanical Properties in an As-Quenched Thin Specification High Strength NM450TP Steel Plate" Applied Sciences 13, no. 12: 7017. https://doi.org/10.3390/app13127017
APA StyleLi, G., Lu, S., Ren, J., & Zhou, Z. (2023). Through-Thickness Inhomogeneity of Microstructures and Mechanical Properties in an As-Quenched Thin Specification High Strength NM450TP Steel Plate. Applied Sciences, 13(12), 7017. https://doi.org/10.3390/app13127017