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Abstract: Pressure balance control between steel sleeve fillings and stratum is the key to ensuring
project safety in the receiving construction of subway shield tunnels. Here, to realize the active
regulation of the filing pressure in the steel sleeve, this study first improves the fixed cover of a
conventional steel sleeve to a piston cover that can slide freely along the longitudinal direction of the
sleeve and puts forward the corresponding methods for hydraulic pressure regulation and mechanical
pressure regulation. The pressure-holding sealing performance of a new steel sleeve structure was
tested, and a hydraulic pressure regulation method and a mechanical pressure regulation method
were proposed. Finally, an effective path to proactive filler pressure regulation in the steel sleeve was
explored. By improving the structure scheme of the steel sleeve, A steel sleeve model was designed
at a 1:5 proportion, following the shield receiving steel sleeve structures and their sizes in practical
tunneling. The model test was performed for several processes of active control of filler pressure,
including pressurization by injection, decompression by discharge, machinal pressurization in low
pressure, machinal pressurization in high pressure, and machinal decompression. The laws of filler
pressure variation with hydraulic pressure and machinal thrust, the reactive force of hydraulic jack,
and stress of steel sleeve were researched. The results revealed that the maximum stress of the
new steel sleeve structure was 14.5 MPa under an elastic stress state, and the circumferential stress
was always eight times the longitudinal stress. The new steel sleeve structure shows controllable
pressure-holding sealing performance. The hydraulic pressure decrease appears as a slow linear
trend of about 0.1% of the initial pressure per min after 1 min of pressure holding. The variation in the
filler pressure at the central position of the steel sleeve is 16~24% greater than that at the periphery.
Both hydraulic pressure regulation and mechanical pressure regulation could achieve controllable
proactive regulation effects on a steel sleeve’s filler pressure. The proposed new shield-receiving steel
sleeve structure and the study results about its sealing performance and filler pressure regulation
will promote the shield-receiving technology to be more controllable and safer.

Keywords: shield tunnel; shield receiving; steel sleeve; pressure regulation

1. Introduction

The shield method has been widely used in urban metro tunnel construction due to
its intelligent operation, fast tunneling speed, low labor intensity, and minor influence
on road traffic [1–8]. During metro tunnel construction using the shield method, steps
should be taken to address potential geohazards, including water ingress, stratum erosion,
ground surface settlement, and tunnel face collapse [9–12]. Studies have suggested that
there are high risks of water bursts and sand inrush during the shield tunneling receiving
construction stage, which accounts for more than 50% of all accidents [13,14].

Recently, with the development of scientific research and engineering, some shield-
receiving construction methods have been proposed and applied, including a physically
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and chemically improved soil layers method, a novel material shield-cuttable tunnel-wall
system construction method, an underwater receiving construction method, a steel sleeve
receiving construction method, a concrete sealed cabin receiving construction method, a pis-
ton sealing steel ring receiving method and a receiving method in foamed concrete [15–21].
Steel sleeve receiving construction is a new method featuring space savings, safety, reliabil-
ity and a minor influence on the environment. This method has been widely used in metro
shield tunneling projects, including Guangzhou rail transit’s Line 2, Line 8, and the Nanyan
Line; the TA08 Fuqiao Station–Daxinggong Station section of Nanjing Metro Line 3; and
the Nangang Station–Yonglu Station section of Guangzhou Metro Line 13 [22–24]. As a
result, the steel sleeve-receiving construction method is useful for inhibiting surrounding
ground settlement and building deformation, minimizing water leakage and sand inrush
risks, accelerating construction speed and saving construction costs.

The conventional shield-receiving steel sleeve device is a circular bucket-like structure
that is open at one end and sealed at the other (Figure 1). The open end connects the tunnel
portal to form a closed container. Before the shield-receiving construction, the steel sleeve is
filled with a mixture of sand and water; then, it is sealed after a certain pressure is reached
and sustained [25]. The shield machine drives into the steel sleeve after tunnel excavation.
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Figure 1. Receiving of shield machine by steel sleeve.

During the shield-receiving process, the inner space of the steel sleeve connects with
the external stratum because the final shield segments were not installed. Construction
safety is determined by the pressure balance between the steel sleeve’s filler and the
external stratum. When the pressure balance is mishandled, engineering risks, such as
water bursts, sand inrush, and collapse, can more easily occur [26–28]. In conventional steel
sleeve-receiving technology, the only part of the water and earth pressure in the stratum is
passively balanced by filler pressure in the steel sleeve. During portal demolition, the soil
and water of the stratum flow into the steel sleeve until complete pressure balance. Recently,
studies on shield receiving with steel sleeves have focused mainly on project construction
technologies and construction risks. Liu (2021) [29] studied the key technologies for steel
sleeve-receiving of a large-diameter slurry shield in highly permeable silty-fine sand strata
in coastal areas. Yang (2020) [30] and Zhou (2020) [31] analyzed the possible risk in steel
sleeve receiving for metro shields and proposed a corresponding preventive measure to
control construction risks. Liu et al. (2020) and Ji (2019) [32,33] introduced the detailed
construction procedures of shield receiving by encapsulated steel sleeves and prefreezing.
Wu et al. (2020) [34] studied the torsion resistance of steel sleeves in a case study of the
Canapuri River tunnel in Bangladesh. Xu et al. (2019) [35] studied the combined scheme
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of a cement system and vertical ground freezing for shield receiving and summarized the
main construction parameters of the receiving stages. Liu et al. (2020) [36] introduced
a combined technology of plain concrete diaphragm reinforcement and steel sleeves in
shield-receiving construction, solving the problems of secondary reinforcement without
working space. Wu (2017) [37] described the construction technology of a short sleeve for
shield receiving to save construction costs. He (2015) [38] described a technical receiving
technology of steel sleeves to solve the problem of hoisting steel sleeves without subsurface
sites. However, studies on the stress-bearing and deformation laws of shield-receiving
steel sleeves are rare. Liao (2016) [16] analyzed the rules of stress and deformation of steel
sleeves by numerical methods and field tests. Zhou (2018) [39] studied the mechanical
properties of steel sleeves and the soil disturbance patterns during the launching process
through field monitoring tests and numerical simulations. However, few scholars have
explored proactive control technology.

In this study, the conventional steel sleeve structure was improved. Specifically, the
fixed cover plate of the original steel sleeve was first enhanced using a piston-type cover
plate. Subsequently, two methods (i.e., the hydraulic and mechanical pressure regulation
methods) that regulate the filler pressure in the sleeve were developed. The hydraulic pres-
sure regulation method regulates filler pressure by setting an external hydraulic pressure
regulation device on the sleeve body. The mechanical pressure regulation method applies a
mechanical thruster onto the movable cover plate, which allows the surface pressure to
act upon the internal filler to regulate filler pressure. To verify the feasibility of these two
methods, various filler pressure regulation processes were tested, including pressurization
by water injection, depressurization by water discharge, mechanical pressurization under
low and high internal pressure levels, and mechanical depressurization. Finally, equations
for the filler pressure in response to external hydraulic pressure, mechanical thrust and
their action mechanisms were obtained, as well as the deformation equations of the steel
sleeve body. This study aims to render a theoretical method to promote the engineering
application of shield-receiving technology when the filler pressure is proactively controlled.

2. Test Profile
2.1. Specimen Design

A steel sleeve model was designed at a 1:5 proportion, following the shield-receiving
steel sleeve structures and their sizes in practical tunneling (Figure 2). The steel sleeve
model consists of two parts (i.e., a sleeve body and a cover plate), both of which were
processed from Q235 steel (Table 1). The sleeve body was sealed at the lower end, with a
height of 2.75 m and a thickness of 5 mm. The cover plate was 0.16 m in height and 1.18 m
in outer diameter (Figure 3), allowing it to be horizontally inserted from the upper-end
port of the sleeve body. Ribbed plates and pressure-bearing steel plates were arranged on
the top of the cover plate, and a silica gel sealing ring covered the external lateral surface to
seal the gap between the cover plate and the sleeve body. The results suggested that the
sealing effect was best under a circumference of 3.7 m and a diameter of 12 mm.

Table 1. Measured steel material property indexes.

Yield Strength
f s/MPa

Tensile Strength
f u/MPa

Yield Strain
Es/10−3

Elasticity Modulus
Es/MPa

292.8 418.0 1.44 2.03 × 105
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2.2. Loading Test Scheme

The sealing performance of a steel sleeve under a certain internal pressure is the
basis of the proactive control of internal filler pressure, and the pressure-holding sealing
performance of this steel sleeve was implemented first. First, water was injected into the
steel sleeve from the water injection port until the sleeve body was filled. Subsequently, the
exhaust valve on the cover plate was closed for sealing. Next, water was injected into the
sealed steel sleeve, and the internal water pressure was increased progressively in stages.
During pressurization at each stage, the water injection valve was closed, followed by the
pressure holding for 3 min. Pressurization was stopped when the internal water pressure
exceeded 0.2 MPa and the pressure was held for 7 min. Finally, the valve was opened at the
discharge opening (Figure 4). The ascent segment of the curve shows the pressurization
test by water injection, the platform segment shows the pressure-holding test process, and
the descent segment suggests the depressurization test process by water discharge.

To regulate the internal filler pressure, two methods (i.e., a hydraulic pressure regula-
tion method and a mechanical pressure regulation method) were developed. Before the test,
fillers were formed by mixing sand and water and were placed in the steel sleeve (Table 2).
Next, the top face of the filler was leveled out using a level ruler, and the sleeve body was
sealed after the hoisting cover plate was inserted into it. Subsequently, hydraulic pressure
was regulated by water injection, while mechanical pressure regulation was realized by
jack loading and unloading (Figure 2). In the water injection pressurization test, water
was injected into the sleeve in stages (with the pressure increasing by 0.01 MPa in each
stage). In the water discharge depressurization test, we opened the valve at the discharge
opening to enable outward free water drainage. In the mechanical pressurization test under
a low internal pressure level, the jack pressure was elevated in stages from 0 MPa. In the
mechanical pressurization test under a high internal pressure level, the filler pressure inside
was increased to a high level through water injection and held for several minutes to start
the mechanical pressurization (Table 3).
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Table 2. Filler sieving test results.

Type
Cumulative Retained Percentage of Each Sieve Mesh/%

Fineness Modulus
4.75 2.36 1.18 0.6 0.3 0.15

Sand 1.90 19.24 35.78 53.12 80.17 90.41 2.97
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Table 3. Loading test and load-monitoring scheme.

Loading Type Loading Mode Initial Load Ending Load Load Monitoring

Pressurization by
water injection

Pressurization by
pressure pump 0.02 MPa 0.16 MPa Pressure at the water

injection port

Depressurization by
water discharge

Depressurization by
water discharge 0.1 MPa 0.01 MPa Pressure at the water

discharge opening

Mechanical
pressurization 1 Jack loading 0 116 kN Reaction force of jacks

Mechanical
pressurization 2 Jack loading 156 kN 199 kN Reaction force of jacks

Mechanical
depressurization Jack unloading 199 kN 77 kN Reaction force of jacks

Pressurization by
water injection

Pressurization by
pressure pump 0.02 MPa 0.16 MPa Pressure at the water

injection port

2.3. Layout of the Measuring Points

As shown in Figure 2, a total of four laser displacement meters were symmetrically
arranged at the top of the cover plate to measure vertical displacement during the me-
chanical pressure regulation process. A pressure sensor was set between the jacks and
the cover plate. A total of six strain-monitoring sections were arranged longitudinally
along its surface (Figure 5). Along each monitoring section, two strain monitoring points
(1 and 2) were arranged. At each point, one resistance-type strain gauge was placed along
the horizontal and vertical directions to measure the circumferential and longitudinal strain
on the steel sleeve body. Finally, a total of four vibrating wire-type earth pressure gauges
were vertically buried inside the steel sleeve 0.4 m away from the bottom to measure
the filler pressure changes within this plane. All data were obtained and recorded via a
dynamic data acquisition system.
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3. Results and Discussion
3.1. Steel Sleeve Pressure-Holding Sealing Performance

Figure 4 shows that the internal hydraulic pressure increases stably and rapidly during
the whole pressurization process. Pressurization via water injection was initiated, the inter-
nal hydraulic pressure increased gradually, and the rate of increase gradually accelerated
and stabilized at ~0.6 KPa/s when the hydraulic pressure reached 0.075 MPa. The different
rates of increase probably occurred because the cover plate slid slightly upward under
hydraulic action and the jack at the top gradually pressed closer to the reaction force frame
in the initial pressurization stage by water injection. In addition, the hydraulic pressure in
the steel sleeve showed a slow declining trend in the pressure-holding test.

The internal pressure was generally lower than 0.2 MPa in the steel sleeve receiv-
ing process. Hence, the test data in the pressure-holding stage under different hydraulic
pressures were selected for analysis. The steel sleeve hydraulic pressure loss time curves
(Figure 6) were plotted to identify the hydraulic loss within 3 min. As a result, the hy-
draulic pressure in the steel sleeve was subjected to loss in the pressure-holding stage. The
hydraulic pressure decreased rapidly within the first 10 s of pressure holding, accounting
for ~40% of the total hydraulic pressure loss. Subsequently, the hydraulic pressure loss
rate quickly decreased and stabilized at approximately 1 min, while the internal hydraulic
pressure continuously decreased. The greater initial hydraulic pressure resulted in a higher
hydraulic pressure loss rate, while the absolute hydraulic pressure loss under each initial
pressure level was always lower than the corresponding magnitude of the pressure value.
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The hydraulic pressure loss curve inside the steel sleeve within 12 min under an initial
hydraulic pressure of 0.205 MPa is shown in Figure 7. As a result, after 3 min of pressure
holding, the hydraulic pressure loss shows a linear growth trend, and the pressure loss
rate was approximately 0.16 KPa per min, which accounted for only 0.08% of the initial
pressure. Therefore, the filler pressure loss inside was stable and sustained at a low speed,
and it could be naturally eliminated with normal filler pressure regulation during shield
receiving. This would generate no adverse effects on the internal filler pressure regulation.
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Figure 8 shows the relationships between the internal hydraulic pressure and the
stress on the steel sleeve body in the pressurization stage. The results show that the
circumferential stress was always eight times the longitudinal stress. Except for the A-1
monitoring section at the bottom, the longitudinal stress was similar to the circumferential
stress at other positions. Moreover, the pressure in section A-1 was much smaller than that
in the other sections, which was probably because the internal pressure induced by the
hydraulic pressure at this position was borne by the nearby sealing steel plate at the bottom.
During the test, when the hydraulic pressure in the steel sleeve reached its maximum value
(0.205 MPa), the maximum tensile stress and maximum compressive stress were 14.5 MPa
and 2.5 MPa, respectively. The maximum stress is only 6% of yield strength suggesting a
low elastic stress level. The design of the shield-receiving steel sleeve in practical tunneling
is conservative, and the thickness of the steel sleeve body should be decreased according to
the test result of stress and expectant safety.
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3.2. Results and Analysis of the Hydraulic Pressure Regulation Test

As shown in Figure 9a, when the water injection pressure increased gradually from
0 to 0.16 MPa, the filler pressure at each measuring point showed a linear growth trend
before reaching 0.15–0.18 MPa. The filler pressure was almost identical at all measuring
points when the water injection pressure was lower than 0.04 MPa. As the water injection
pressure continued to increase, the filler pressure at two peripheral measuring points
(4-2 and 5-2) was consistent, while it increased quickly at the central point (1-2) and in-
creased slowly at the peripheral measuring point (2-2). With a water injection pressure of
0.16 MPa, the filler pressure at the measuring points of the two peripheral sides was 14%
lower than that at the central measuring point and 6% higher than that at the distant mea-
suring points. When the water injection pressure varied within the range of 0.04–0.16 MPa,
the difference in pressure between different measuring points could be estimated based on
the linear difference value. The reason for the pressure difference in different positions of
filler is the various seepage path. The mean value of filler pressure results in measuring
points can be calculated as the normal reference values of filler pressure.
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Figure 9. Hydraulic pressure-filler pressure curves. (a) Pressurization by water injection; (b) Depres-
surization by water discharge.

The filler pressure at each measuring point along each filler pressure monitoring
section decreased linearly with the decline in pressure at the water discharge opening from
0.1 to 0.01 MPa (Figure 9b). The curves of the measuring points at these two peripheral
sides (4-2 and 5-2) overlapped with the distant peripheral measuring point (2-2). The filler
pressure at the central measuring point (1-2) declined at a high decreasing rate, but its
pressure difference from other measuring points gradually narrowed with depressurization
until the difference was negligible. The results in Figure 9 show that when the water
injection port was pressurized by one bar or when the water discharge opening was
depressurized by one bar, the mean value of the filler pressure on each monitoring section
increased or decreased by one bar.

3.3. Results and Analysis of the Mechanical Pressure Regulation Test

As shown in Figure 10, the filler pressure increased with mechanical pressurization
under a low internal pressure level (less than 0.15 MPa), which could be divided into three
stages. When the jack pressure was lower than 40 kN, the filler pressure increased slowly.
However, it increased quickly for jack pressures in the range of 40 to 45 kN. Finally, the
filler pressure increased stably with the jack pressure at a gradually decreasing growth
rate. During the whole pressurization process, the filler pressure at all measuring points
followed change curves. The filler pressure at the peripheral measuring points overlapped
the change curves, whereas it grew faster at the central measuring point.
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A pressurization test under a high internal pressure level was conducted when the
filler pressure reached a high level (greater than 0.15 MPa) (Figure 10). In this case, the
difference between the initial value of the filler pressure at the central measuring point
(1-2) and that at the peripheral measuring points (2-2, 4-2, and 5-2) was further increased.
The filler pressure at the measuring points of the two peripheral sides (4-2 and 5-2) was
different from that at the peripheral distant measuring point (2-2). During the test, the
filler pressure at each measuring point showed a linear growth relationship as the jack
pressure increased continuously from the initial pressure of 150 kN. When the jack pres-
sure increased by 1 kN, the filler pressure at the peripheral measuring point increased
by 0.2 MPa, and that at the central measuring point increased by 0.25 KPa.

As shown in the unloading area of Figure 10, the filler pressure at each measuring
point declined with the reduction in jack pressure, and the deceleration rate was inversely
proportional to the jack pressure. The filler pressure at the central measuring point de-
clined the fastest, followed by those at the two peripheral sides and the peripheral distant
measuring point. Thus, the filler pressure difference between different measuring points
was gradually narrowed during the depressurization process.

Compared with the hydraulic pressure regulation process, the mechanical pressure
regulation process was more complicated, especially the mechanical pressurization method
using a low internal pressure level. During the mechanical pressure regulation, a proactive
pressure was applied to the filler inside the steel sleeve by multiple jacks, but the filler
was an inhomogeneous semifluid mixture composed of sandy soil, water, and air. Under
a low jack pressure, the filler was relatively loose and nonuniform, and the compressive
deformations at the points of action of different jacks differed considerably. As a result, the
cover plate was more prone to tilt and further contacted the inner wall of the steel sleeve. In
this case, the partial jack pressure was directly transferred to the steel sleeve and effectively
transferred to the filler. Thus, the filler pressure grew slowly during the test when the
jack pressure was lower than 40 kN. Subsequently, as the jack pressure was increased, the
pressure and displacement of each jack were dynamically adjusted, the deviation of the
cover plate was corrected, and the partial pressure directly acting upon the sleeve was
redistributed to the filler, which resulted in a sudden increase in filler pressure. The filler
was gradually compacted after compression, exhibiting more stable and homogeneous
mechanical properties, which facilitated the stable control of the pressure and displacement
of each jack. Finally, the cover plate steadily applied pressure inside the sleeve, and the
filler pressure stably changed with the jack pressure.
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Under a low internal pressure level, the filler pressure was elevated with mechani-
cal pressurization, which was manifested in three stages (Figure 10). The filler pressure
changed stably during mechanical pressurization and depressurization under a high inter-
nal pressure level. The variation trend of the displacement of the cover plate with the jack
pressure was consistent with the filler pressure under each working condition (Figure 11),
and their features can be explained by the aforementioned changes in the filler pressure.
During the practical engineering of the mechanical pressurization process, when the filler
pressure did not increase stably with the jack pressure, the cover plate deviated excessively,
as evidenced by the displacement monitoring result of the cover plate.
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4. Conclusions

Both hydraulic pressure regulation and mechanical pressure regulation could achieve
controllable proactive regulation effects on a steel sleeve’s filler pressure. The detailed
conclusion includes five parts as follows.

(1) By hydraulic pressure regulation, the linear and equally proportional variation in the
filler pressure of the steel sleeve in response to external hydraulic pressure variation is
observed. The pressure variation at the entrance point of the filler pressure monitoring
cross section is 16~24% larger than that at the peripheral measuring points.

(2) During mechanical pressure regulation, the pattern of its increase and decrease is ob-
vious, the action mechanism is clear, and the pressure value is steady and controllable.
Under the low internal pressure level (less than 0.15 MPa), the nonlinear variation in
filler pressure is complicated by mechanical pressurization which could be divided
into three stages. The filler pressure changed stably during mechanical pressurization
and depressurization under a high internal pressure level (greater than 0.15 MPa).

(3) The maximum stress of the new steel sleeve structure was 14.5 MPa under an elastic
stress level. Variations in the jack reaction forces and cover plate displacement are
stable, guaranteeing the safety of the steel sleeve structure.

(4) Under the low internal pressure level (greater than 0.15 MPa), the operation of me-
chanical pressure regulation requires more prudential control. The slight slant of the
cover plate should be dynamically revised by accurate adjustment of Jack pressure,
and normal mechanical pressure regulation should implement after pressurization to
0.05 MPa via water injection. A simple and stable method involves regulating filler
pressure using the hydraulic pressure regulation method. However, with the use of the
mechanical pressure regulation method, faster regulation effects will be obtained with
higher control precision. Two methods for regulating filler pressure should be selected
according to practical operational capacity and pressure regulation requirements.
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(5) Under the proposed design scheme, the pressure in the steel sleeve is still slowly
lost during pressure holding, and absolute sealing cannot be achieved in the whole
pressure regulation process. The present solution is to compensate for the pressure
according to the pressure monitoring result. The design scheme should be optimized
from the view of seal ring material and seal structure design, and further related
research work will be carried out. In addition, the current research is only on the
principle and performance of the filler pressure regulation for the new steel sleeve
structure, and the specific construction technology needs to be further studied in the
engineering application.
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