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Abstract: This paper contributes to improving a bottleneck residual block-based feature extractor as
a set of layers for transforming raw data into features for classification. This structure is utilized to
avoid the issues of the deep learning network, such as overfitting problems and low computational
efficiency caused by redundant computation, high dimensionality, and gradient vanishing. With
this structure, a domain adversarial neural network (DANN), a domain adversarial unsupervised
model, and a maximum classifier discrepancy (MCD), a domain adaptation model, have been applied
to conduct a binary classification of fault diagnosis data. In addition, a pseudo-label is applied to
MCD for comparison with the original one. In comparison, several popular models are selected for
transferability estimation and analysis. The experimental results have shown that DANN and MCD
with this improved feature extractor have achieved high classification accuracy, with 96.84% and
100%, respectively. Meanwhile, after using the pseudo-label semi-supervised learning, the average
classification accuracy of the MCD model increased by 15%, increasing to 94.19%.

Keywords: bearing fault diagnosis; adversarial domain adaptation; unsupervised learning; transfer
learning; transferability estimation

1. Introduction

Fault diagnosis is crucial given the widespread use of sophisticated technologies in
industrial machinery and equipment [1–7]. In production, various equipment faults, such
as wear and tear of moving parts, strong corrosion, strong vibration, etc., will result in
the equipment’s effectiveness and lifespan degrading with time [8–14]. The occurrence of
failures and a substantial financial loss can be avoided if the equipment faults are promptly
identified and fixed [15]. According to Li, approximately 30% of machinery failures can
be attributed to rolling bearing faults [16]. Therefore, it is essential to analyze bearing
fault signals obtained from rotating machinery and then conduct effective techniques and
methods to avoid these failures [6,17–21].

Methods for diagnosing bearing faults rely on analyzing vibration signal data [1].
Numerous scholars have studied the cross-domain defect diagnostic problem based on
transfer learning in the last few years. Originally, two approaches, transfer component
analysis (TCA) and maximum mean difference (MMD), were utilized for cross-domain
fault diagnosis [22]. However, the issues with unstable data and unpredictable fault char-
acteristics in the complexity and variety of the natural working state cannot be overcome
with these methods. To handle this, Chen et al. suggested a cross-domain feature extraction
based on TCA in 2017 [23]. The approach still has poor performance in the accuracy of fault
detection. In 2019, Kang et al. proposed a semi-supervised transfer component analysis
(SSTCA) with variational mode decomposition (VMD) and various feature structures to
increase the accuracy in predicting bearing conditions with compound faults or under
limited training data scenarios [24]. To improve fault detection accuracy further, the al-
gorithms based on deep learning methods have been widely studied and applied due to
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their self-adaptive learning characteristic [25–31]. In detail, a convolutional neural network
with automated hyper-parameter tuning based on Bayesian optimization was presented by
Kolar in 2021 [32]. Li has suggested a Frequency-Domain Fusing Convolutional Neural
Network (FFCNN) as a representation adaptation-based strategy for filtering inputs from
various frequency bands and fusing them into new input signals by using a frequency-
domain fusing layer [33]. Other issues with radial internal clearance and the meshing force
of a gear system have been considered recently. To deal with the problem of understanding
the influence of radial internal clearance on the dynamics of a rolling-element bearing,
Ambrożkiewicz utilized a nonlinear mathematical model and carried out experimental
validation. The findings reveal characteristic dynamical behaviors within specific clearance
ranges, offering insights into optimal clearance values [34]. Additionally, to explore the
influence of the inconsistent distribution of mesh force on the transmission performance of
the gear system, Jin proposed an 18-degrees-of-freedom bending-torsion-swing-coupled
dynamic model of a pair of involute spur gears for clearly describing the coupling relation-
ship between the nonuniformly distributed meshing force, shaft bending deformation, and
dynamic center distance [35].

With the introduction of adversarial-based transfer learning methods, adversarial-
based learning is a technique in machine learning that improves model robustness by train-
ing against adversarial examples—carefully crafted inputs designed to deceive the model.
By incorporating adversarial examples during training, models become more resilient and
better equipped to handle real-world challenges, improving generalization capabilities and
defense against adversarial attacks. The approaches generated by generative adversarial
networks (GAN) have been presented. In 2021, Jiao proposed a mixed adversarial network
(MANN) based on a residual learning network for cross-domain-based fault diagnosis of
machinery equipment [36]. This method uses the adversarial learning strategy to decrease
marginal and conditional distribution discrepancies. In addition, Jiao has suggested an
adversarial adaptation network based on classifier discrepancy (AACD) for diagnosing
faults in different machines when the source and target domains have distinct data distri-
butions [37]. This model conducts adversarial training to extract features from separable
classes and invariant domains for fault diagnosis using two structures, a standard fea-
ture extractor and two task-based classifiers [37]. Furthermore, another adversarial-based
unsupervised algorithm is the domain adversarial neural network (DANN), proposed
for domain adaptation in 2016, which enables the learning of features from unlabeled
input in some types of neural networks to conduct cross-data set classification [38]. The
feature extractor in this network is a critical component that learns to extract transferable
and relevant features from raw input data. It learns domain-invariant representations by
minimizing domain discrepancies, enabling the effective transfer of learned features across
different domains.

According to the literature analysis on adversarial-based unsupervised algorithms
above, the DANN feature extractor structure faces two key challenges:

• Overfitting problem. A model’s capacity is determined by its ability to fit data. A larger
capacity means stronger data fitting but does not guarantee better generalization. The
book Deep Learning [39] mentions that increasing model capacity reduces training
error but can increase generalization error if it is too high for the problem’s complexity.
A widely held belief is that more parameters increase a model’s fitting capacity by
adding depth to deep-learning models. However, excessive fitting capacity leads to
overfitting. To address this, a bottleneck residual block with a “jump link” is proposed
for achieving identity mapping [40].

• Low computational efficiency. A model’s computational efficiency greatly impacts net-
work convergence. DANN is a technique used for domain adaptation. It employs
a feature extractor and domain classifier to enable the transfer of learning between
different domains. However, the DANN feature extractor’s standard residual block
with two convolutional layers has many parameters and operations, impeding com-
putational efficiency. It lacks channel reduction before costly convolutions, hindering
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the model’s ability to process data efficiently. Additionally, using 3 × 3 filters instead
of 1 × 1 filters in the bottleneck residual block adds computational complexity, further
increasing the computational requirements of the model.

Considering the literature study as mentioned, our two main contributions are as
follows:

(1) An improved feature extractor based on a bottleneck residual block is proposed. This
bottleneck residual block utilizes two 1 × 1 convolutional filters and one 3 × 3 con-
volutional filter to replace the two original 3 × 3 convolutional filters. This structure
can help the feature extractor extract transferable and robust features within a limited
time to achieve better accuracy when handling complex and large-scale data.

(2) The transferability of each model to conduct binary classification on bearing data sets
is compared. Several models are utilized for comparisons, such as the baseline model,
the DASN model, DANN with standard residual block, and MCD with residual
block. The final results show that DANN and MCD, with this improved feature
extractor, have achieved higher accuracy than other models. The outcomes of this
research can theoretically help the operation of intelligent manufacturing systems
safely and dependably.

The objective of this paper is to address two critical challenges in deep learning
models: overfitting and computational efficiency. Overfitting can be a significant issue
when dealing with large amounts of data, hindering accurate data classification in the
target domain. Additionally, the complex structure of deep learning models often leads to
many parameters during the feature extraction process, resulting in reduced computational
efficiency. Therefore, the motivation for this paper is to develop an improved feature
extractor in deep learning networks to extract more robust and meaningful features within
a limited time for enhancing classification accuracy, addressing overfitting concerns, and
improving computational efficiency. By achieving these objectives, this research aims
to contribute to advancing feature extraction techniques in deep learning and provide
practical solutions for improving the performance of classification models.

The rest of this paper is organized as follows. Section 2 discusses preliminary knowl-
edge, such as DANN, MCD, and pseudo-label semi-supervised learning. Methods are
introduced in Section 3. In Section 4, experiment results are displayed and analyzed. In
Section 5, the conclusion and future work are discussed.

2. Preliminary Knowledge

This paper presents an improved feature extractor based on a bottleneck residual
block to strengthen the ability to handle bearing fault data for deep learning networks. In
order to test it, two popular domain adaptation models, DANN and MCD, were selected
to conduct binary classification on bearing fault data. Furthermore, a pseudo-label semi-
supervised learning was also applied and utilized in MCD. This section introduces the
basic information about DANN, MCD, and pseudo-label semi-supervised learning.

2.1. Model 1: Domain Adversarial Neural Network (DANN)

Model 1 is a domain adaptation-based unsupervised adversarial learning model,
which has been widely applied in image classification but is hardly used in fault diagno-
sis [38]. As a result, this model has limited generalization ability, which is particularly
crucial in fault diagnosis as the source data utilized to train the model may be sparse or
not adequately representative of the situations the model will encounter in the real world.
Additionally, using adversarial domain training would help the model to be more robust
and less sensitive to variations in the data, which is essential in fault diagnosis where
data may be noisy or incomplete. This model comprises three main structures: feature
extractor, label predictor, and domain discriminator. The feature extractor in this network
is a critical component. This feature extractor includes a 5 × 5 convolutional layer, a batch
normalization, a max pooling, an activation function Relu, 2 standard residual blocks with
64 and 128 channels, respectively, and adaptive average pooling. A standard residual block
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includes a residual mapping involving two 3 × 3 convolutional layers, a Relu activation
function, and an identity containing a 1 × 1 convolutional layer. It is trained to withdraw
useful characteristics from raw data. The label predictor is trained to classify input data
according to their labels. The domain discriminator is also a neural network trained to
predict the domain of input data.

The entire model 1 structure is depicted in Figure 1. This model comprises three main
structures: feature extractor, label predictor, and domain discriminator, which are described
by θy, θ f , and θd, respectively. During training, the feature extractor and the domain
discriminator are trained simultaneously. Firstly, the feature extractor withdraws the input
data features before passing them to the domain discriminator. This structure is trained to
determine whether the data is from the source or target domain according to the features.
It aims to categorize the input data into source or target domains and minimize loss Ld(θd).
However, the objective of the feature extractor is extracted features that cannot help the
domain discriminator accurately classify input data into corresponding domains, so an
adversarial relationship is formed. To achieve both goals, a gradient reversal layer is located
in the middle of the domain classifier and the feature extractor. After applying this layer,
the object is to maximize the domain discriminator loss Ld(θ f ,θd) during backpropagation.
If the domain discriminator cannot correctly divide input data into the source or target
domain, the feature extractor will be successful as the data from the source domain and
target domain have been mixed in a particular space and cannot be separated. In addition,
to ensure that the characteristics withdrawn by the feature extractor can be utilized to
conduct classification, the label predictor will conduct supervised training on the labeled
source data and be optimized by minimizing the prediction loss Lc(θ f ,θy). The detailed
formulas are shown below:

L(θ f , θy, θd) = Lc(θ f , θy)− γ ∗ Ld(θ f , θd), (1)

(θ∗f , θ∗y) = arg min
θ f ,θy

L(θ f , θy, θ∗d) (2)

(θ∗d) = arg max
θd

L(θ∗f , θ∗y , θd) (3)

where γ means a self-adaptive weighting parameter, and n denotes the present training
number, which is specified below:

γ =
2

1 + e−10∗n − 1 (4)

Figure 1. Structure of DANN.
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2.2. Model 2: Maximum Classifier Discrepancy (MCD)

The second network is an adversarial learning-based unsupervised model with do-
main adaptation using a distinct training technique [41]. For various objectives, model
1 is commonly utilized as the central network for domain adaptation models based on
classifiers. Contrary to DANN, MCD concentrates on the decision boundary of distinct
domains. Through aligning two distinct domains’ distributions, this model can utilize the
outcomes of two different classifiers for adversarial training and then successfully conduct
binary classification on two domains with distinct data distributions. The basic ideas of
MCD are to train a classifier using labeled source data and then use it to conduct predictions
for the target data. These predictions are then used to align the difference between the
classifier predictions on two domains. Once the distributions are aligned, a final classifier
is trained through the aligned distributions. This classifier can then be used to conduct
predictions for the target data. By aligning the distributions of the two domains, MCD can
help increase the performance of the final classifier for the classification of target data, even
though a significant domain shift happens in the source domain and target domains.

Figure 2 illustrates the working process of the improved MCD. It contains a feature
generator that generates extracted feature vectors after receiving the source data and target,
and two different classifiers that classify input data into different classes according to the
extracted feature vectors. It aims to look for target data far from the source data by utilizing
two different classifiers, F1 and F2, to align features drawn from the source and target data.
To represent the differences between the predictions conducted by these two classifiers,
MCD introduces the discrepancy. During the training phase, the two classifiers are utilized
to maximize this difference to identify data beyond the boundary of the source domain.
The feature generator is trained by reducing the discrepancy between these two classifiers
for good feature performance. These training stages based on adversarial learning are
repeated until a satisfactory outcome is obtained. The whole model can be treated as an
adversarial-based min-max issue because, during the training phase, these two classifiers
aim to maximize the discrepancy of target data. At the same time, the feature generator
aims to minimize this discrepancy.

Figure 2. The general process of MCD.
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The discrepancy between the anticipations conducted by two distinct classifiers is
identified as the discrepancy loss.

d(p1, p2) =
1
K
∗

K

∑
K=1
|p1k − p2k| (5)

where the probability outputs of f1 and f2 for class k are denoted as p1k and p2k, respectively.
There are three stages in the training phase, as mentioned before. The first stage

involves training the entire model to categorize source data accurately and to reduce
softmax cross entropy.

min
G,F1,F2

ζ(Xs, Ys) (6)

ζ(Xs, Ys) = −E(xs, ys) ∼ (Xs, Ys)
K

∑
K=1

l[k=ys ]logp(y|xs) (7)

Stage 2 fixes the feature extractor’s settings and utilizes two classifiers to increase
discrepancy loss. The loss of classification is combined with discrepancy loss.

min
F1,F2

ζ(Xs, Ys)− ζadv(Xt) (8)

ζadv(Xt) = Ext∼Xt [d(p1(y|xt), p2(y|xt))] (9)

Stage 3 fixes the classifier and trains the feature extractor to reduce discrepancy loss.

min
G

ζadv(Xt) (10)

If the model can accurately predict the labels of source data, these three stages will
continue with adversarial repetition until achieving this goal.

2.3. Pseudo-Label Semi-Supervised Learning

In DANN and MCD, the strategy used in these two models is unsupervised domain
adaptation because the source data with labels is only utilized for training the model and
reducing the loss of classification. This strategy utilizes the target data with pseudo labels to
train the model to increase the classification accuracy of target data [42]. In addition, when
there is a large amount of unlabeled data available, it is too costly and takes a lot of time to
label it all by hand. This strategy can help researchers save time and energy performing this
work. This project has applied this strategy in MCD to increase the classification accuracy
of testing data. This strategy first utilizes the labeled data to train a model. This model
provides unlabeled data with pseudo labels at the next stage. The same model, through
utilizing both labeled and pseudo-labeled data, is trained.

Figure 3 shows how this strategy works. It first trains a model using labeled data. This
can be achieved using a supervised learning algorithm. This step aims to train the model
to classify the label data accurately. Secondly, the trained model produces pseudo labels for
the unlabeled data. The model is further trained using both labeled and pseudo-labeled
data. This can be achieved by treating the pseudo-labeled data as naturally labeled data
and using them to update the model’s parameters during training. This allows the model
to use both data types to improve its performance.
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Figure 3. Process of pseudo-label semi-supervised learning.

3. Methods

The feature extractor’s original structure includes two residual blocks, each consisting
of two convolution layers with a 3 × 3 convolution kernel for each. As a result, this
structure generates many parameters, significantly reducing the models’ computational
efficiency and increasing the risk of overfitting. To overcome these two issues, this project
improves the structure of the feature extractor. This new structure remains two convolution
layers. The first convolution layer contains a 20 × 20 filter, a bath normalization layer, a
max pooling layer, and a Relu activation layer. The second convolution layer consists of
the same layers as the first convolution layer, except for a 10 × 10 filter. This project has
modified the structure of two residual blocks. Both of them comprise a 1 × 1 filter, a 3 × 3
filter, a 1 × 1 filter, and an identity map with a 1 × 1 filter. Finally, the final result is passed
to the adaptive average pooling layer after going through a Relu activation layer.

Figure 4 represents the detailed structure of the improved feature extractor based on
a bottleneck residual block, which consists of two components: residual mapping and
identity [40]. The residual mapping is the main component of the structure. It is utilized
for learning the transferable and robust features of the input tensor and producing the
residual function F(x). This function is added back to the input tensor to produce the
output of the block. In this figure, one 1 × 1 convolutional layer, one 3 × 3 convolutional
layer, and one 1 × 1 convolutional layer make up the component of residual mapping.
Specifically, the first 1× 1 convolutional layer reduces the quantity of input tensor channels.
In comparison, the second 1 × 1 convolutional layer is utilized to restore the number
of channels to the original value. By applying this residual mapping, the whole set of
variations in the main convolutional layer will be reduced, resulting in a low computational
cost of the block. The 3 × 3 convolutional layer plays a critical part in the residual mapping,
where it operates on the reduced-channel input tensor and is utilized for learning the input
data’s underlying features.
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Figure 4. The brief structure of the revised feature extractor.

The identity part in the bottleneck residual block is the shortcut connection, which
enables the addition of the block’s output to the input tensor. This connection can ensure
that the network can learn identity mapping, which is very important for achieving good
performance on a wide range of tasks. The identity part of the block involves adding the
input tensor to the output of the residual mapping:

y = F(x, Wi) + x (11)

where the input vector is represented as x, and the output vector is denoted as y in the
bottleneck residual block. If x and F have the same dimensions, Equation (11) is utilized.
Otherwise, to match the dimensions, a linear projection Ws using shortcut connections is
carried out:

y = F(x, Wi) + Wsx (12)

where Ws denotes a square matrix for matching the dimensions between input x and output
y. The residual mapping function is:

F(x, Wi) = W3σ(W2σ(W1x)) (13)

where F denotes residual mapping, σ represents the activation function Relu, and the biases
are eliminated to simplify the notations.

The pseudocode of this improved feature extractor is shown in Appendix A. In
Algorithm A1, a feature extractor based on the bottleneck residual block is defined by
the pseudocode. It is made up of two primary parts, a feature extractor module and a
residual block. The ResNet building block, which is a well-liked building block in deep
learning architectures, forms the foundation for the residual block in the code. It is intended
to make it possible for a deep learning network to quickly and efficiently extract more
robust and useful features from bearing fault data to improve classification accuracy. The
block accepts an n × c × l tensor as input, where n stands for the batch, c for the number of
input channels, and l for the sequence quantity. The first 1 × 1 convolutional layer applies
the 1D convolution process. When the convolutional layer is complete, batch normalization
normalizes the features and increases model convergence. After batch normalization
and the Relu activation function, the second convolutional layer receives the first 1 × 1
convolutional layer’s output. The second one has a 3 × 3 filter and one padding. Following
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batch normalization, the third convolutional layer with a 1 × 1 kernel size is used to
restore the reduced number of channels to their original size. Before applying the final
activation function, the short connection adds the input tensor to the third convolutional
layer’s output.

The feature extractor module defined in the code applies two sequential convolutional
layers with batch normalization and Relu activation, followed by two residual blocks
responsible for extracting and refining the features from the raw input data. The adaptive
average pooling is utilized to reduce the feature map’s spatial dimensions to 1, and a
flattened layer is applied to reshape the output tensor. Finally, a dropout layer with a
probability of 0.5 is applied to the output tensor to prevent overfitting during training.
The forward method of the feature extractor module takes an input tensor and applies the
defined layers in a sequential manner for extracting features from the input data, producing
an output tensor size.

4. Experiment Result Analysis
4.1. Experiment Settings

In order to test this improved feature extractor, two popular models, domain adversar-
ial neural networks (DANN) and maximum classifier discrepancy (MCD), were selected for
conducting binary classification on vibration signal data from two fault diagnosis data sets,
CWRU and XJTU. The source data was collected in CWRU. Target data was collected from
a complete run-to-failure data set, XJTU [43]. The labels of the target data were removed
before feeding source and target data into DANN and MCD. In this experiment, 0 was
utilized to represent the class of the inner race, and 1 was utilized to represent the class
of the outer race. All the samples were the same for DANN and MCD models during
training and testing. In addition, maximum classifier discrepancy (MCD) was applied
to pseudo-label semi-supervised learning. Finally, several comparison experiments were
conducted using the maximum classifier discrepancy model.

4.2. Data Selection
4.2.1. Source Domain Data Set

The source data was collected from the CWRU data set in this project due to three
accelerometers, including fan-end bearing accelerometers, base-plate accelerometers, and
drive-end bearing accelerometers, which can be used for collecting vibration signals of
different bearings. Electrical discharge machining (EDM) can automatically create seeded
faults in the bearing. The bearing fault types contained inner and outer races with three
distinct inches (0.07 mm, 0.014 mm, and 0.021 mm) collected from 48 k drive end bearing
fault data. The fault diameters of the inner race used in this experiment were 0.07 mm,
0.014 mm, and 0.021 mm, and their motor speed was 1730 rpm. The outer race’s fault
diameters and motor speed were identical to the inner race. The position relative to the
Load Zone of the outer race was centered at 6:00. Additionally, the motor load for both
inner and outer races was 3 hp. Table 1 shows the detail of the data:

Table 1. The details of the source data.

Fault Type Fault Diameter
(mm)

Motor Load
(HP)

Motor Speed
(rpm) Data Size Sampling Frequency

(Hz)
Outer Race

Position
Class
Label

Inner Race 0.007 3 1730 480,000 48 k * 0
Inner Race 0.014 3 1730 480,000 48 k * 0
Inner Race 0.021 3 1730 480,000 48 k * 0
Outer Race 0.007 3 1730 480,000 48 k Centered at 6:00 1
Outer Race 0.014 3 1730 480,000 48 k Centered at 6:00 1
Outer Race 0.021 3 1730 480,000 48 k Centered at 6:00 1

* denotes null.
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4.2.2. Target Domain Data Set

The target data was complete run-to-failure data obtained through accelerated degra-
dation experiments selected from the XJTU data set [43]. The bearing degradation reflected
in the data well simulates the bearing degradation in the real world. Figure 5 shows the
data used from the target data set. Figure 6 shows the target data observed in the full
process of bearing deterioration, from their normal state to frequent failures. In this project,
the fault state was used experimentally.

Figure 5. Target domain data.

Figure 6. Different stages of target data.

Table 2 provides information on target data, such as fault type, data set, fault diameter,
operating condition, normal state range, fault state range, data size, sampling frequency,
and class label. The important thing to note is that the class labels of target data are removed
when training.
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Table 2. The details of the target data.

Fault Type Data Set
Name

Fault
Diameter

(mm)
Operating Condition

Normal
State

Range
(min)

Fault
State

Range
(min)

Data
Size

Sampling
Frequency

(Hz)

Class
Label

Inner Race Bearing 2_1 29.30 2250 rpm (37.5 Hz) and 11 kN 1–452 454–484 982,000 25.6 k 0
Inner Race Bearing 3_3 29.30 2400 rpm (40 Hz) and 10 kN 1–340 341–369 982,000 25.6 k 0
Inner Race Bearing 3_4 29.30 2400 rpm (40 Hz) and 10 kN 1–1416 1417–1514 982,000 25.6 k 0
Outer Race Bearing 2_2 39.80 2250 rpm (37.5 Hz) and 11 kN 1–50 51–159 982,000 25.6 k 1
Outer Race Bearing 2_4 39.80 2250 rpm (37.5 Hz) and 11 kN 1–30 31–40 982,000 25.6 k 1
Outer Race Bearing 2_5 39.80 2250 rpm (37.5 Hz) and 11 kN 1–120 121–337 982,000 25.6 k 1
Outer Race Bearing 3_1 39.80 2400 rpm (40 Hz) and 10 kN 1–2463 2464–2536 982,000 25.6 k 1
Outer Race Bearing 3_5 39.80 2400 rpm (40 Hz) and 10 kN 1–10 11–110 982,000 25.6 k 1

4.3. Preprocessing Data

In the experiment, preprocessing is critical for preparing the input data for DANN
and MCD. The preprocessing stage involves retrieving source and target instances, loading
and separating data and labels, applying the downsampling technique, reshaping the
data to match the models’ input shape, and storing the preprocessed data. This prepares
the data for training the models and aims to improve their performance. The details are
shown below.

Figure 7 represents the detailed process of data preprocessing. The first stage is
to retrieve source and target instances from the CWRU and XJTU data sets. After that,
loading the data is a step responsible for reading and separating data and labels from
instances obtained from these two data sets. Then the downsampling technique is applied
to the source and target data to reduce the dimensionality of the data. Data after reduced
dimension and label arrays are utilized as inputs to reshape the length of 1-dimensional
signal data to 1000 to match the expected input shape of the two models. Finally, the
reshaped data and labels are stored in arrays for feeding into two models. In the model
training, source and target data with labels will be fed into two models to update the
weights to achieve convergence.

A specific window length of 1000 is considered for 1-dimensional signal data. A
window is a subset of consecutive data from the signal used for analysis. The input data is
divided into overlapping or non-overlapping segments by selecting a window length to
allow the network to capture local patterns and relationships within the signal. However,
it does not address the processing of several sensor signals from different sensors. Multiple
sensor signals can be handled as multiple channels in the input data. This means multiple
dimensions represent each sensor signal instead of having a single dimension for the input
signal data. Each dimension corresponds to a specific channel to allow the network to
process and learn from different sensor data simultaneously.

When dealing with 1-dimensional signal data, a technique involves applying 2-
dimensional kernels along the time axis of the signal. This is achieved by treating the
kernel as a sliding window that moves along the signal. A convolution operation occurs at
each step, where the values within the window are combined with the corresponding kernel
values. This process captures meaningful features and patterns in the signal, yielding a
new output value at each step. Using 2-dimensional kernels enables the examination of
local trends, edges, and other interconnected structures that may span neighboring time
points within the 1-dimensional signal data.
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Figure 7. The process of data preprocessing.

4.4. Outcomes of Domain Adversarial Neural Network

For training DANN, all input data is marked as domain labels. The target data are
designated 1, whereas the source domain data are marked as 0. The line chart below shows
DANN’s accuracy, domain loss, and classifier loss with the improved feature extractor
during 200 training epochs.

Figure 8 gives information about the accuracy and loss of the DANN with a bottleneck
residual block. It is clear that the best accuracy in this model is 96.84%, but the accuracy
curve oscillates significantly. In comparison, the domain loss and classifier loss curves
become stable at 0.75 and 0.3, respectively, after some training epochs. Various potential
reasons warrant discussion, among which data set differences emerge as a notable factor.
Notably, the quantity of two data sets used in the experiment represents acceleration. It is
worth considering that the CWRU and XJTU data sets may exhibit distinct characteristics,
such as fault types, levels of noise, and signal-to-noise ratios. The CWRU and XJTU data
sets may have different characteristics, such as fault types, levels of noise, and signal-to-
noise ratios. These differences can cause the DANN to struggle with domain adaptation
due to the possibility that it would be unable to accurately capture the variations between
these two domains. Consequently, the accuracy curve oscillates when this model tries to
adapt to the target domain. Another reason may be domain shift. A domain shift may
occur if the distributions between these two domains cannot match. This can also cause the
DANN to struggle with domain adaptation, as the effective generalization of this model
is impossible.
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Figure 8. Accuracy and loss plot of DANN.

However, relying solely on the maximum accuracy could be misleading if the accuracy
values exhibit significant fluctuations. It is possible that the maximum accuracy is a
result of chance or randomness during the training process rather than a consistent and
reliable representation of the model’s true performance. So, the average accuracy of the
DANN model is also calculated to provide a more valid assessment of the DANN’s overall
performance. The average accuracy in this model is 63.77%.

The measurement of the domain loss is the distance of these two distinct domains. In
comparison, the explanation for classifier loss is an index, which measures the accuracy
difference of different classifiers on the objective data. In the training process, these two
measures need to be optimized simultaneously. If the domain loss becomes stable, it
indicates that the DANN model has effectively adapted the target domain from the source
domain. When this index of classifier loss tends to be stable, it indicates that the model has
learned to classify the data accurately.

4.5. Outcomes of Maximum Classifier Discrepancy

The MCD model also is selected for testing this improved feature extractor. For
training the MCD, 0 indicates the category of source data, and 1 indicates the category of
target data. Furthermore, this paper has applied pseudo-label semi-supervised learning in
MCD. The following line chart represents the testing accuracies and discrepancy loss of
MCD and MCD with the pseudo label in 100 epochs. The details are shown below.

Figure 9 gives information about the accuracies of MCD and MCD with the pseudo
label. In the first chart, the changes in the accuracy of classifier 1 are almost the same as in
classifier 2. After 30 epochs of training, the classification accuracy of MCD achieves over
90% and remains stable. In the second chart, the accuracies of classifiers in MCD with the
pseudo label fluctuate around 90%. However, the accuracies of these two classifiers are
different. It is easy to determine that classifier 1 achieves higher accuracy than classifier 2.
This difference may be because they are trained in a mixed domain. At the same time, they
are optimized for minimizing the domain losses for both domains. Furthermore, the pseudo-
labeling process in MCD with the pseudo-label introduces additional noise and uncertainty
into the training data, which can lead to different classifiers and different accuracies.
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Figure 9. Accuracies and discrepancy loss plot of MCD and MCD with the pseudo label.

Figure 9 represents the discrepancy loss from MCD and MCD with the pseudo label.
It is clearly shown that the discrepancy loss of MCD remains below 0.05. As training
continues, its discrepancy loss approaches 0. In contrast, the discrepancy loss of MCD with
the pseudo label fluctuates wildly between 0 and 0.3. As training continues, its discrepancy
loss fluctuates slightly but is still unstable. The fact that the feature distributions in these
two distinct domains are aligned using discrepancy loss, which is determined using the
variances between the model’s predictions on these data, might be one explanation for this.
However, in MCD with the pseudo label, pseudo-labels are used to designate data not
labeled in the objective domain, which introduces some noise into the training data. As a
result, the discrepancy loss in MCD with the pseudo label can fluctuate more wildly than
that of MCD as the model tries to adapt to the noisy and uncertain pseudo labels and align
the feature distributions in these two domains. Consequently, the optimization process
may become more challenging and unstable as the model seeks to reconcile the conflicting
goals of matching the feature distributions with minimized losses in these two domains.

The table below gives more details for comparing MCD with MCD using pseudo-label
semi-supervised learning. This strategy allows test samples with pseudo labels to be added
to the data set when training this model. The details are shown below.

Table 3 gives information about the average accuracy, best accuracy, average discrep-
ancy loss, and training time of MCD using different training strategies. The best testing
accuracy for both strategies is 100%. The average accuracy of the model using pseudo
labels is 94.14%, which is approximately 15% higher than the model without pseudo labels.
MCD can improve average accuracy with pseudo-labeling because pseudo-learning allows
the model to use unlabeled data, which can provide additional detail about the distribution
of the underlying data that can be used to make more accurate predictions. In addition,
pseudo-tags can help regularize models, reduce overfitting, and improve accuracy. In addi-
tion, the average discrepancy losses for these two strategies are 0.015 and 0.093, respectively,
and the training time for both is 139 s.

Table 3. The details of training strategies used in MCD.

Training Strategies Average
Accuracy Best Accuracy

Average
Discrepancy

Loss
Training Time

Without pseudo label 79.36% 100% 0.012 139s
With pseudo label 94.19% 100% 0.093 139s
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4.6. Transferability Estimation

This paper compares the transferability of different models, such as the baseline
model based on random forest, logistic regression with cross-validation, deep autoencoder
sparse network (DASN), support vector machine (SVM), DANN, and MCD. The details are
shown below.

Table 4 shows the testing accuracy of different models based on CWRU and XJTU
data sets [40]. The baseline model achieves the lowest accuracy in this table, only 52.13%.
DASN achieves 69.30%. The accuracies for DANN and MCD with an old feature extractor
are about 94.40% and 98.17%, respectively. The accuracies for DANN and MCD with an
improved feature extractor in this project achieve 96.84% and 100%, respectively.

Table 4. Transferability estimation of different models.

Training Strategies Best Accuracy

Baseline 52.13%
DASN 69.30%

DANN with the standard residual block 94.40%
MCD with the standard residual block 98.17%

DANN with the bottleneck residual block 96.84%
MCD with the bottleneck residual block 100%

To train the baseline model, only the source data is needed, and the model is then
applied to the target data to conduct binary classification. This baseline model is based on
logistic regression CV. Logistic regression CV is a method for training a logistic regression
model, a classification algorithm. It is similar to regular logistic regression but with an
additional step of performing cross-validation to tune the regularization parameter. This
allows the model to find a balance between model complexity and overfitting, resulting
in improved performance compared to regular logistic regression. The trained model can
then be used to make predictions on new data.

The MCD model achieves the best accuracy compared with other methods. The DANN
model ranks second place, but the accuracy curve of this model is violently oscillating.
When the MCD model utilizes pseudo-label semi-supervised learning, it achieves a better
average correct rate, and the correct rate curve is smoother. To evaluate the transferability
of different models, this project utilized fault diagnosis data sets to train several popular
models and compare their classification accuracy. The lowest requirement for the results
of the DANN and MCD models is that they are higher than those of the baseline model.
Otherwise, these models will have negative transferability and will be unfeasible. Finally,
these revised models should achieve high enough average accuracy on the test data set.

5. Conclusions and Future Work

In this paper, an improved feature extractor structure has been put forward, and two
popular networks, DANN and MCD, were selected for testing this revised feature extractor.
The result has shown that with the help of the improved feature extractor, both DANN
and MCD can well classify vibration signal data in fault diagnosis data sets, CWRU and
XJTU, and these two models have achieved classification accuracies of 96.84% and 100%.
Pseudo-label semi-supervised learning was also utilized in MCD, resulting in improved
performance on average accuracy, achieving 94.19%. Finally, this research selected several
popular models and estimated their transferability. The result has shown that the MCD
with the improved feature extractor achieved the highest classification accuracy. DANN
ranked in second place, but its accuracy curve oscillated significantly. Finally, pseudo-label
semi-supervised learning was useful and achieved higher average accuracy on the test
data set.

This paper identifies several areas that could be investigated to improve these two
networks, DANN and MCD, with the improved feature extractor. First, future research
could focus on the multi-mode fault diagnosis data. This paper considers the vibration
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signal data and conducts binary classification on vibration fault data sets. If multi-mode
faults are under consideration, fault diagnosis networks can quickly and accurately identify
the fault type and provide a solution. This can avoid property damage to the greatest extent
and maintain the lasting stable operation of the machinery. Secondly, imbalanced data
should be under consideration in the future. In this paper, source data is gathered from
CWRU, and target data is gathered from the XJTU. Both of these are balanced data sets.
However, imbalanced data is more common in actual production and life. When dealing
with these data, the current network could achieve low performance and classification
accuracy. So, how to improve these two networks for adapting imbalanced data is another
future direction. Additionally, information loss should be considered in future research. In
this paper, a bottleneck residual is utilized in the improved feature extractor. During the
process of reducing the channels of input vectors, it could cause information loss.

In addition, it has been observed that the proposed improvements to the feature ex-
tractor bring only marginal performance gains to already well-performing methods and
applications. However, the applicability of this modified feature extractor to data sets with
low predictability requires further examination. To evaluate its performance on such data
sets, several strategies can be employed, including cross-domain validation, and transfer
learning and domain adaptation. Cross-domain validation involves assessing the feature
extractor’s performance on diverse data sets from various domains and measuring its gen-
eralization capabilities. This approach enables researchers to predict its performance across
different domains and determine if the modification consistently improves classification
accuracy. On the other hand, transfer learning and domain adaptation involve fine-tuning
the feature extractor using pre-trained models on established data sets to analyze its adap-
tation capabilities and performance in domains with different statistical properties. These
strategies provide avenues for evaluating the modified feature extractor’s performance and
predicting its suitability for data sets with lower predictability.

Finally, future research may look forward to the development of an explainable frame-
work [44]. This framework could integrate additional sensor types, such as acoustic and
temperature, to enhance the model’s accuracy. Additionally, it could be applied to pre-
dict the future behavior of the fault system to enable proactive maintenance and prevent
catastrophic failure. Addressing these future research directions can improve the fault diag-
nosis model’s accuracy and applicability, making it suitable for deployment in real-world
industrial systems.
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Appendix A

Algorithm A1 Pseudocode of the improved feature extractor.

class Residual:
function __init__(self, input_channels, num_channels, use_1×1conv=False,
strides=1):

self.conv1 = Conv1d(input_channels, num_channels, kernel_size = 1, padding = 0,
stride=strides)
self.bn1 = BatchNorm1d(num_channels)
self.conv2 = Conv1d(num_channels, num_channels, kernel_size = 3, padding = 1)
self.bn2 = BatchNorm1d(num_channels)
self.conv3 = Conv1d(num_channels, num_channels×4, kernel_size = 1,
padding=0)
self.bn3 = BatchNorm1d(num_channels×4)
self.activation = Activation(’relu’)
if use_1×1conv then

self.conv4 = Conv1d(input_channels, num_channels×4, kernel_size = 1,
stride=strides)

else self.conv4 = None
end if

function forward(self,X):
Y = apply_activation(apply_batch_norm(self.conv1(X)))
Y = apply_activation(apply_batch_norm(self.conv2(Y)))
Y = apply_batch_norm(self.conv3(Y))
if self.conv4 then

X = self.conv4(X)
end if
Y += X
return apply_activation(Y)

class FeatureExtractor:
function __init__(self):

conv1 = Sequential(Conv1d(1, 30, kernel_size = 20, stride = 2), Batch-
Norm1d(30),

MaxPool1d(2), ReLU())
conv2 = Sequential(Conv1d(30, 50, kernel_size = 10, stride = 2), Batch-

Norm1d(50),
MaxPool1d(2), ReLU())
residualBlock = Sequential (Residual(50, 512, use_1×1conv=True),
Residual(2048, 64, use_1×1conv=True), AdaptiveAvgPool1d((1)), Flatten())
dpout = Dropout(0.5)

function forward(self, x):
out = apply_convolution(self.conv1, x)
out = apply_convolution(self.conv2, out)
out = apply_module(self.residualBlock, out)
out = reshape(out, (out.shape[0], −1))
return out

References
1. Wang, H.S.; Yang, R. Adversarial Based Unsupervised Domain Adaptation for Bearing Fault Diagnosis. In Proceedings of the

2022 27th International Conference on Automation and Computing, Bristol, UK, 1–3 September 2022; pp. 1–6.
2. Wan, Z.T.; Yang, R. Deep Transfer Learning-Based Fault Diagnosis for Gearbox under Complex Working Conditions. Shock Vib.

2020, 2020, 8884179. [CrossRef]
3. Li, H.; Wang, S.; Zhang, W.; Niu, Y. Actuator Fault Diagnosis Research of Control System Based on EWT-SOM Method. In

Proceedings of the 2021 33rd Chinese Control and Decision Conference, Kunming, China, 22–24 May 2021; pp. 6268–6273.
4. Han, Q.; Wang, X.H.; Yang, R. A Novel Fault Diagnosis method for Rotating Machinery of Imbalanced Data. In Proceedings of

the 2021 33rd Chinese Control and Decision Conference, Kunming, China, 22–24 May 2021; pp. 2072–2077.

http://doi.org/10.1155/2020/8884179


Appl. Sci. 2023, 13, 7157 18 of 19

5. Shen, Y.W.; Gou, L.F.; Zeng, X.Y.; Shao, W.X.; Yang, J. Actuator Fault Diagnosis of an Aero-Engine Based on Unknown Input
Observers. In Proceedings of the 2020 11th International Conference on Mechanical and Aerospace Engineering, Athens, Greece,
14–17 July 2020; pp. 129–133.

6. Lu, Q.D.; Yang, R.; Zhong, M.Y.; Wang, Y.Q. An Improved Fault Diagnosis Method of Rotating Machinery Using Sensitive
Features and RLS-BP Neural Network. IEEE Trans. Instrum. Meas. 2022, 69, 1585–1593. [CrossRef]

7. Yang, R.; Er, P.V.; Wang, Z.D.; Tan, K.K. An RBF neural network approach towards precision motion system with selective sensor
fusion. Neurocomputing 2016, 199, 31–39. [CrossRef]

8. Lei, Y.G. (Ed.) 1—Introduction and background. In Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating
Machinery; Publishing House: Oxford, UK, 2017; pp. 1–16.

9. Yang, J.C.; Clarke, D.W. The self-validating actuator. Control Eng. Pract. 1999, 7, 249–260. [CrossRef]
10. Jie, S.; Hong, G.S.; Rehman, M.; Wong, Y.S. Feature Extraction and Selection in Tool Condition Monitoring System. In AI 2002:

Advances in Artificial Intelligence; McKay, B., Ed.; Publishing House: Heidelberg, Germany, 2002; pp. 487–497.
11. Di, Y.; Yang, R.; Huang, M.J. Fault Diagnosis of Rotating Machinery based on Domain Adversarial Training of Neural Networks.

In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics, Kyoto, Japan, 20–23 June 2021; pp. 01–06.
12. Li, Z.M.; Wang, X.H.; Yang, R. Fault Diagnosis of Bearings Under Different Working Conditions based on MMD-GAN. In

Proceedings of the 2021 33rd Chinese Control and Decision Conference, Kunming, China, 22–24 May 2021; pp. 2906–2911.
13. Yang, Z.N.; Wang, X.Y.; Yang, R. Transfer Learning Based Rolling Bearing Fault Diagnosis. In Proceedings of the 2021 IEEE 10th

Data Driven Control and Learning Systems Conference, Suzhou, China, 14–16 May 2021; pp. 354–359.
14. Wen, C.L.; Lv, F.Y.; Bao, Z.J.; Liu, M.Q. A review of data driven-based incipient fault diagnosis. Acta Autom. Sin. 2016, 42,

1285–1299.
15. Wu, L.F.; Yao, B.B.; Peng, Z.; Guan, Y. Fault Diagnosis of Roller Bearings Based on a Wavelet Neural Network and Manifold

Learning. Appl. Sci. 2017, 7, 158. [CrossRef]
16. Kankar, P.K.; Sharma, S.C.; Harsha, S.P. Fault diagnosis of ball bearings using machine learning methods. Expert Syst. Appl. 2011,

38, 1876–1886. [CrossRef]
17. Chen, S.; Yang, R.; Zhong, M. Graph-based semi-supervised random forest for rotating machinery gearbox fault diagnosis. Control

Eng. Pract. 2021, 117, 104952. [CrossRef]
18. Yang, R.; Zhong, M. Machine Learning-Based Fault Diagnosis for Industrial Engineering Systems; CRC Press: Boca Raton, FL, USA,

2022.
19. Shakiba, F.M.; Shojaee, M.; Azizi, S.M.; Zhou, M. Real-time sensing and fault diagnosis for transmission lines. Int. J. Netw. Dyn.

Intell. 2022, 1, 36–47. [CrossRef]
20. Chen, X.; Yang, R.; Xue, Y.; Huang, M.; Ferrero, R.; Wang, Z. Deep transfer learning for bearing fault diagnosis: A systematic

review since 2016. IEEE Trans. Instrum. Meas.2023, 72, 3508221. [CrossRef]
21. Chen, S.; Zhong, M.; Yang, R.; Xi, X.; Liu, C. A random forest and model-based hybrid method of fault diagnosis for satellite

attitude control systems. IEEE Trans. Instrum. Meas. 2023, 72, 3518413. [CrossRef]
22. Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain Adaptation via Transfer Component Analysis. IEEE Trans. Neural Netw. 2011,

22, 199–210. [CrossRef]
23. Chen, C.; Li, Z.H.; Yang, J.; Liang, B. A cross domain feature extraction method based on transfer component analysis for rolling

bearing fault diagnosis. In Proceedings of the 2017 29th Chinese Control And Decision Conference, Chongqing, China, 28–30
May 2017; pp. 5622–5626.

24. Kang, S.; Hu, M.; Wang, Y.; Xie, J.; Mikulovich, V.I. Fault Diagnosis Method of a Rolling Bearing Under Variable Working
Conditions Based on Feature Transfer Learning. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 2019, 39, 764–772.

25. de Bruin, T.; Verbert, K.; Babuška, R. Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2017, 28, 523–533. [CrossRef]

26. He, M.; He, D. Deep Learning Based Approach for Bearing Fault Diagnosis. IEEE Trans. Ind. Appl. 2017, 10, 3057–3065. [CrossRef]
27. Udmale, S.S.; Singh, S.K.; Singh, R.; Sangaiah, A.K. Multi-Fault Bearing Classification Using Sensors and ConvNet-Based Transfer

Learning Approach. IEEE Sens. J. 2020, 10, 1433–1444. [CrossRef]
28. Zhao, G.; Li, Y.; Xu, Q. From emotion AI to cognitive AI. Int. J. Netw. Dyn. Intell. 2022, 1, 65–72. [CrossRef]
29. Guo, X.; Bi, Z.; Wang, J.; Qin, S.; Liu, S.; Qi, L. Reinforcement learning for disassembly system optimization problems: A Survey.

Int. J. Netw. Dyn. Intell. 2023, 2, 1–14. [CrossRef]
30. Fang, J.; Liu, W.; Chen, L.; Lauria, S.; Miron, A.; Liu, X. A survey of algorithms, applications and trends for particle swarm

optimization. Int. J. Netw. Dyn. Intell. 2023, 2, 24–50. [CrossRef]
31. Li, X.; Li, M.; Yan, P.; Li, G.; Jiang, Y.; Luo, H.; Yin, S. Deep learning attention mechanism in medical image analysis: Basics and

beyonds. Int. J. Netw. Dyn. Intell. 2023, 2, 93–116. [CrossRef]
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