Learnable Nonlocal Contrastive Network for Single Image Super-Resolution
Abstract
:1. Introduction
- A novel learnable nonlocal contrastive attention (LNLCA) method was proposed for exploring nonlocal textures with low similarity but more precise details, which maintains linear computational complexity while aggregating important image features;
- We proposed a deep feature fusion attention group (DFFAG) for fusing local adjacency information and learnable nonlocal self-similar information, thereby helping the network repair damaged texture regions;
- We introduced the adaptive target generator (ATG), which can alleviate the ill-posedness of the SR task and further explore potential solutions by endowing the model with more output flexibility.
2. Related Work
2.1. CNN-Based Methods
2.2. Attention-Based Methods
2.3. Multiple-Chioce Learning
3. Method
3.1. Network Structure
3.2. Learnable Nonlocally Residual Group (LNLRG)
3.2.1. Deep Feature Fusion Attention Group
3.2.2. Learnable Nonlocal Contrastive Attention
3.3. Adaptive Target Generator (ATG)
3.4. RFP Data Augmentation
3.5. Implementation
4. Experiment
4.1. Setup
4.2. Ablation Study of k in the LNLCA Module
4.3. Ablation Study of the Number of ATG Iteration
4.4. Ablation Study of Different Modules
4.4.1. Learnable Nonlocal Contrastive Attention (LNLCA)
4.4.2. Adaptive Target Generator (ATG)
4.4.3. RFP Data Augmentation
4.5. Comparison with State-of-the-Art Technology (BI)
Visualization Results
4.6. Comparison with State-of-the-Art Technology (BD)
Visualization Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, N.; Wang, Y.; Zhang, X.; Xu, D.; Wang, X.; Ben, G.; Zhao, Z.; Li, Z. A multi-degradation aided method for unsupervised remote sensing image super resolution with convolution neural networks. IEEE Trans. Geosci. Remote Sens. 2020, 60, 5600814. [Google Scholar] [CrossRef]
- Dong, X.; Sun, X.; Jia, X.; Xi, Z.; Gao, L.; Zhang, B. Remote Sensing Image Super-Resolution Using Novel Dense-Sampling Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1618–1633. [Google Scholar] [CrossRef]
- Chan, K.C.K.; Zhou, S.; Xu, X.; Loy, C.C. BasicVSR++: Improving video super-resolution with enhanced propagation and alignment. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 5962–5971. [Google Scholar]
- Isobe, T.; Jia, X.; Tao, X.; Li, C.; Li, R.; Shi, Y.; Mu, J.; Lu, H.; Tai, Y.W. Look Back and Forth: Video Super-Resolution with Explicit Temporal Difference Modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022; pp. 17411–17420. [Google Scholar]
- Pang, Y.; Cao, J.; Wang, J. JCS-Net: Joint Classification and Super-Resolution Network for Small-scale Pedestrian Detection in Surveillance Images. IEEE Trans. Inf. Forensics Secur. 2019, 14, 3322–3331. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Wang, C.; Liu, X.; Ma, J. Deep Learning-based Face Super-resolution: A Survey. ACM Comput. Surv. 2021, 55, 1–36. [Google Scholar] [CrossRef]
- Lugmayr, A.; Danelljan, M.; Gool, L.V.; Timofte, R. Srflow: Learning the super-resolution space with normalizing flow. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 715–732. [Google Scholar]
- Zhang, L.; Wu, X. An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 2006, 15, 2226–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keys, R. Cubic convolution interpolation for digital image processing. In IEEE Transactions on Acoustics, Speech, and Signal Processing; IEEE: Piscataway, NJ, USA, 1981; Volume 29, pp. 1153–1160. [Google Scholar]
- Wei, Z.; Ma, K.K. Contrast-guided image interpolation. IEEE Trans. Image Process. 2013, 22, 4271–4285. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Shen, H.; Li, J.; Yuan, Q.; Zhang, H.; Zhang, L. Image super-resolution: The techniques, applications, and future. Signal Process. 2016, 128, 389–408. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, F.; Yu, H.; Chen, C. Fast single image super-resolution via self-example learning and sparse representation. IEEE Trans. Multimed. 2014, 16, 2178–2190. [Google Scholar] [CrossRef]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a Deep Convolutional Network for Image Super-Resolution. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; Volume 8692, pp. 184–199. [Google Scholar]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1646–1654. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Wang, L.; Wang, Y.; Liang, Z.; Lin, Z.; Yang, J.; An, W.; Guo, Y. Learning parallax attention for stereo image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Yang, F.; Yang, H.; Fu, J.; Lu, H.; Guo, B. Learning texture transformer network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 5791–5800. [Google Scholar]
- Wang, T.; Xie, J.; Sun, W.; Yan, Q.; Chen, Q. Dual-Camera Super-Resolution with Aligned Attention Modules. In Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV), Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Magid, S.A.; Zhang, Y.; Wei, D.; Jang, W.D.; Lin, Z.; Fu, Y.; Pfister, H. Dynamic high-pass filtering and multi-spectral attention for image super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 4288–4297. [Google Scholar]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, California, CA, USA, 16–20 June 2019; pp. 11065–11074. [Google Scholar]
- Xia, B.; Hang, Y.; Tian, Y.; Yang, W.; Liao, Q.; Zhou, J. Efficient Non-local Contrastive Attention for Image Super-resolution. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 22 February–1 March 2022; Volume 36, pp. 2759–2767. [Google Scholar]
- Su, J.; Gan, M.; Chen, G.; Yin, J.; Chen, P.C.L. Global Learnable Attention for Single Image Super-Resolution. arXiv 2022, arXiv:2212.01057. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Wug Oh, S.; Vajda, P.; Joo Kim, S. Tackling the Ill-Posedness of Super-Resolution through Adaptive Target Generation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 16231–16240. [Google Scholar]
- Yoo, J.; Ahn, N.; Sohn, K.-A. Rethinking data augmentation for image super-resolution: A comprehensive analysis and a new strategy. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020. [Google Scholar]
- Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1874–1883. [Google Scholar]
- Kim, J.; Kwon Lee, J.; Mu Lee, K. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1637–1645. [Google Scholar]
- Tong, T.; Li, G.; Liu, X.; Gao, Q. Image Super-Resolution Using Dense Skip Connections. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4809–4817. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced deep residual networks for single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 136–144. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 June 2017; pp. 105–114. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 18–21 June 2018. [Google Scholar]
- Mei, Y.; Fan, Y.; Zhou, Y. Image super-resolution with non-local sparse attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3517–3526. [Google Scholar]
- Lu, Z.; Li, J.; Liu, H.; Huang, C.; Zhang, L.; Zeng, T. Transformer for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 457–466. [Google Scholar]
- Chen, R.; Zhang, H.; Liu, J. Multi-Attention augmented network for single image super-resolution. Pattern Recognit. 2022, 122, 108349. [Google Scholar] [CrossRef]
- Fang, J.; Lin, H.; Chen, X.; Zeng, K. A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 1103–1112. [Google Scholar]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- Krogh, A.; Vedelsby, J. Neural network ensembles, cross validation, and active learning. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1995; pp. 231–238. [Google Scholar]
- Guzman-Rivera, A.; Batra, D.; Kohli, P. Multiple choice learning: Learning to produce multiple structured outputs. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Lake Tahoe, NV, USA, 2012; pp. 1799–1807. [Google Scholar]
- Guzman-Rivera, A.; Kohli, P.; Batra, D.; Rutenbar, A.R. Efficiently enforcing diversity in multi-output structured prediction. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; pp. 284–292. [Google Scholar]
- Guzman-Rivera, A.; Kohli, P.; Glocker, B.; Shotton, J.; Sharp, T.; Fitzgibbon, A.; Izadi, S. Multi-output learning for camera relocalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 391–407. [Google Scholar]
- Timofte, R.; Agustsson, E.; Gool, L.V.; Yang, M.H.; Zhang, L.; Limb, B.; Som, S.; Kim, H.; Nah, S.; Lee, K.M.; et al. NTIRE 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the IEEE Conference on CVPRW, Honolulu, HI, USA, 21–26 July 2017; pp. 1110–1121. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Morel, M.L.A. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the 2012 British Machine Vision Conference, Guildford, UK, 3–7 September 2012. [Google Scholar] [CrossRef] [Green Version]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010; pp. 711–730. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the ICCV, Vancouver, BC, Canada, 7–14 July 2001; Volume 2, pp. 416–423. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on CVPR, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 2017, 76, 21811–21838. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch. In Proceedings of the NIPS-W, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Deep back-projection networks for super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1664–1673. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2472–2481. [Google Scholar]
- Wu, H.; Gui, J.; Zhang, J.; Kwok, T.J.; Wei, Z. Feedback Pyramid Attention Networks for Single Image Super-Resolution. IEEE Trans. Circuits Syst. Video Technol. 2023; early access. [Google Scholar] [CrossRef]
- Niu, B.; Wen, W.; Ren, W.; Zhang, X.; Yang, L.; Wang, S.; Zhang, K.; Cao, X.; Shen, H. Single Image Super-Resolution via a Holistic Attention Network. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 191–207. [Google Scholar]
- The MathWorks, Inc. MATLAB R2018a, Version 9.4; The MathWorks, Inc.: Natick, MA, USA, 2018.
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning Deep CNN Denoiser Prior for Image Restoration. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2808–2817. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268. [Google Scholar]
Iteration Settings | ||||||
---|---|---|---|---|---|---|
PSNR(dB) | 32.267 | 32.435 | 32.559 | 32.638 | 32.625 | 32.608 |
SSIM | 0.8943 | 0.8961 | 0.8982 | 0.9008 | 0.9002 | 0.8999 |
KERRYPNX | Baseline | ||||||
---|---|---|---|---|---|---|---|
Learnable nonlocal contrastive attention (LNLCA) | √ | √ | √ | √ | |||
Adaptive target generator (ATG) | √ | √ | √ | ||||
RFP data augmentation | √ | √ | √ | ||||
Avg. PSNR on Set5 (4×) | 32.642 | 32.692 | 34.853 | 38.350 | 32.686 | 34.849 | 38.346 |
Avg. PSNR on Set5 (3×) | 34.746 | 32.638 | 34.732 | 38.307 | 32.694 | 34.881 | 38.356 |
Avg. PSNR on Set5 (2×) | 38.314 | 32.653 | 34.794 | 38.327 | 32.693 | 34.874 | 38.354 |
Avg. SSIM on Set5 (4×) | 0.9003 | 0.9007 | 0.9306 | 0.9624 | 0.9009 | 0.9310 | 0.9627 |
Avg. SSIM on Set5 (3×) | 0.9300 | 0.9008 | 0.9309 | 0.9626 | 0.9007 | 0.9308 | 0.9625 |
Avg. SSIM on Set5 (2×) | 0.9620 | 0.9003 | 0.9302 | 0.9620 | 0.9009 | 0.9311 | 0.9627 |
Method | Scale | Set5 | Set14 | BSD100 | Urban100 | Manga109 |
---|---|---|---|---|---|---|
(PSNR/SSIM) | (PSNR/SSIM) | (PSNR/SSIM) | (PSNR/SSIM) | (PSNR/SSIM) | ||
Bicubic | ×2 | 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 | 30.80/0.9339 |
SRCNN [13] | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 | 35.60/0.9663 | |
FSRCNN [40] | 37.05/0.9560 | 32.66/0.9090 | 31.53/0.8920 | 29.88/0.9020 | 36.67/0.9710 | |
VDSR [14] | 37.53/0.9590 | 33.05/0.9130 | 31.90/0.8960 | 30.77/0.9140 | 37.22/0.9750 | |
EDSR [28] | 38.11/0.9602 | 33.92/0.9195 | 32.32/0.9013 | 32.93/0.9351 | 39.10/0.9773 | |
DBPN [49] | 38.09/0.9600 | 33.85/0.9190 | 32.27/0.9000 | 32.55/0.9324 | 38.89/0.9775 | |
RDN [50] | 38.24/0.9614 | 34.01/0.9212 | 32.34/0.9017 | 32.89/0.9353 | 39.18/0.9780 | |
FPAN [51] | 38.19/0.9612 | 33.88/0.9210 | 32.30/0.9012 | 32.72/0.9339 | 39.03/0.9772 | |
RCAN [15] | 38.27/0.9614 | 34.12/0.9216 | 32.41/0.9027 | 33.34/0.9384 | 39.44/0.9786 | |
HNCT [34] | 38.08/0.9608 | 33.65/0.9182 | 32.22/0.9001 | 32.22/0.9294 | 38.87/0.9774 | |
SAN [20] | 38.31/0.9620 | 34.07/0.9213 | 32.42/0.9028 | 33.10/0.9370 | 39.32/0.9792 | |
HAN [52] | 38.27/0.9614 | 34.16/0.9217 | 32.41/0.9027 | 33.35/0.9385 | 39.46/0.9785 | |
NLSN [31] | 38.34/0.9618 | 34.08/0.9231 | 32.43/0.9027 | 33.42/0.9394 | 39.59/0.9789 | |
LNLCN (Ours) | 38.35/0.9627 | 34.17/0.9226 | 32.46/0.9036 | 33.46/0.9388 | 39.62/0.9798 | |
Bicubic | ×3 | 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 | 26.95/0.8556 |
SRCNN [13] | 30.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.24/0.7989 | 30.48/0.9117 | |
FSRCNN [40] | 33.18/0.9140 | 29.37/0.8240 | 28.53/0.7910 | 26.43/0.8080 | 31.10/0.9210 | |
VDSR [14] | 33.67/0.9210 | 29.78/0.8320 | 28.83/0.7990 | 27.14/0.8290 | 32.01/0.9340 | |
EDSR [28] | 34.65/0.9280 | 30.52/0.8462 | 29.25/0.8093 | 28.80/0.8653 | 34.17/0.9476 | |
RDN [50] | 34.71/0.9296 | 30.57/0.8468 | 29.26/0.8093 | 28.80/0.8653 | 34.13/0.9484 | |
FPAN [51] | 32.62/0.9291 | 32.55/0.8467 | 29.24/0.8090 | 28.73/0.8642 | 34.14/0.9481 | |
RCAN [15] | 34.74/0.9299 | 30.65/0.8482 | 29.32/0.8111 | 29.09/0.8702 | 34.44/0.9499 | |
HNCT [34] | 34.47/0.9275 | 30.44/0.8439 | 29.15/0.8067 | 28.28/0.8557 | 33.81/0.9459 | |
ESRT [32] | 34.42/0.9268 | 30.43/0.8433 | 29.15/0.8063 | 28.46/0.8574 | 33.95/0.9455 | |
SAN [20] | 34.75/0.9300 | 30.59/0.8476 | 29.33/0.8112 | 28.93/0.8671 | 34.30/0.9494 | |
HAN [52] | 32.75/0.9299 | 30.67/0.8483 | 29.32/0.8110 | 29.10/0.8705 | 34.48/0.9500 | |
NLSN [31] | 34.85/0.9306 | 30.70/0.8485 | 29.34/0.8117 | 29.25/0.8726 | 34.57/0.9508 | |
LNLCN (Ours) | 34.87/0.9311 | 30.75/0.8490 | 29.38/0.8119 | 29.18/0.8729 | 34.53/0.9512 | |
Bicubic | ×4 | 28.42/0.8104 | 26.00/0.7027 | 25.96/0.6675 | 23.14/0.6577 | 24.89/0.7866 |
SRCNN [13] | 30.48/0.8628 | 27.50/0.7513 | 26.90/0.7101 | 24.52/0.7221 | 27.58/0.8555 | |
FSRCNN [40] | 30.72/0.8660 | 27.61/0.7550 | 26.98/0.7150 | 24.62/0.7280 | 27.90/0.8610 | |
VDSR [14] | 31.35/0.8830 | 28.02/0.7680 | 27.29/0.7251 | 25.18/0.7540 | 28.83/0.8870 | |
EDSR [28] | 32.46/0.8968 | 28.80/0.7876 | 27.71/0.7420 | 26.64/0.8033 | 31.02/0.9148 | |
DBPN [49] | 32.47/0.8980 | 28.82/0.7860 | 27.72/0.7400 | 26.38/0.7946 | 30.91/0.9137 | |
RDN [50] | 32.47/0.8990 | 28.81/0.7871 | 27.72/0.7419 | 26.61/0.8028 | 31.00/0.9151 | |
FPAN [51] | 32.48/0.8984 | 28.78/0.7867 | 27.71/0.7412 | 26.61/0.8025 | 30.99/0.9144 | |
RCAN [15] | 32.63/0.9002 | 28.87/0.7889 | 27.77/0.7436 | 26.82/0.8087 | 31.22/0.9173 | |
HNCT [34] | 32.31/0.8957 | 28.71/0.7834 | 27.63/0.7381 | 26.20/0.7896 | 30.70/0.9112 | |
ESRT [32] | 32.19/0.8947 | 28.69/0.7833 | 27.69/0.7379 | 26.39/0.7962 | 30.75/0.9100 | |
SAN [20] | 32.64/0.9003 | 28.92/0.7888 | 27.78/0.7436 | 26.79/0.8068 | 31.18/0.9169 | |
HAN [52] | 32.64/0.9002 | 28.90/0.7890 | 27.80/0.7442 | 26.85/0.8094 | 31.42/0.9177 | |
NLSN [31] | 32.59/0.9000 | 28.87/0.7891 | 27.78/0.7444 | 26.96/0.8109 | 31.27/0.9184 | |
LNLCN (Ours) | 32.69/0.9006 | 28.95/0.7896 | 27.84/0.7448 | 26.94/0.8112 | 31.44/0.9186 |
Method | Scale | Set5 | Set14 | BSD100 | Urban100 | Manga109 |
---|---|---|---|---|---|---|
(PSNR/SSIM) | (PSNR/SSIM) | (PSNR/SSIM) | (PSNR/SSIM) | (PSNR/SSIM) | ||
Bicubic | ×3 | 28.78/0.8308 | 26.38/0.7271 | 26.33/0.6918 | 23.52/0.6862 | 25.46/0.8149 |
SRCNN [13] | 32.05/0.8944 | 28.80/0.8074 | 28.13/0.7736 | 25.70/0.7770 | 29.47/0.8924 | |
FSRCNN [40] | 26.23/0.8124 | 24.44/0.7106 | 24.86/0.6832 | 22.04/0.6745 | 23.04/0.7927 | |
VDSR [14] | 33.25/0.9150 | 29.46/0.8244 | 28.57/0.7893 | 26.61/0.8136 | 31.06/0.9234 | |
IRCNN [54] | 33.38/0.9182 | 29.63/0.8281 | 28.65/0.7922 | 26.77/0.8154 | 31.15/0.9245 | |
RDN [50] | 34.58/0.9280 | 30.53/0.8447 | 29.23/0.8079 | 28.46/0.8582 | 33.97/0.9465 | |
RCAN [15] | 34.70/0.9288 | 30.63/0.8462 | 29.32/0.8093 | 28.81/0.8645 | 34.38/0.9483 | |
SAN [20] | 34.75/0.9290 | 30.68/0.8466 | 29.33/0.8101 | 28.83/0.8646 | 34.46/0.9487 | |
HAN [52] | 34.76/0.9294 | 30.70/0.8475 | 29.34/0.8106 | 28.99/0.8676 | 34.56/0.9494 | |
LNLCN (Ours) | 34.81/0.9301 | 30.73/0.8482 | 29.35/0.8109 | 29.17/0.8692 | 34.55/0.9506 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Zheng, Y. Learnable Nonlocal Contrastive Network for Single Image Super-Resolution. Appl. Sci. 2023, 13, 7160. https://doi.org/10.3390/app13127160
Xu B, Zheng Y. Learnable Nonlocal Contrastive Network for Single Image Super-Resolution. Applied Sciences. 2023; 13(12):7160. https://doi.org/10.3390/app13127160
Chicago/Turabian StyleXu, Binbin, and Yuhui Zheng. 2023. "Learnable Nonlocal Contrastive Network for Single Image Super-Resolution" Applied Sciences 13, no. 12: 7160. https://doi.org/10.3390/app13127160
APA StyleXu, B., & Zheng, Y. (2023). Learnable Nonlocal Contrastive Network for Single Image Super-Resolution. Applied Sciences, 13(12), 7160. https://doi.org/10.3390/app13127160