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Abstract: Single image super-resolution (SISR) aims to recover a high-resolution image from a single
low-resolution image. In recent years, SISR methods based on deep convolutional neural networks
have achieved remarkable success, and some methods further improve the performance of the SISR
model by introducing nonlocal attention into the model. However, most SISR methods that introduce
nonlocal attention focus on more complex attention mechanisms and only use fixed functions for
measurement when exploring image similarity. In addition, the model penalizes the algorithm
in terms of loss when the output predicted by the model does not match the target data, even if
this output is a potentially valid solution. To this end, we propose learnable nonlocal contrastive
attention (LNLCA), which flexibly aggregates image features while maintaining linear computational
complexity. Then, we introduce the adaptive target generator (ATG) model to address the problem
of the single model training mode. Based on LNLCA, we construct a learnable nonlocal contrastive
network (LNLCN). The experimental results demonstrate the effectiveness of the algorithm, which
produces reconstructed images with more natural texture details.

Keywords: single image super-resolution; deep convolutional network; nonlocal attention mechanism;
adaptive target

1. Introduction

As a classic image restoration problem, single image super-resolution (SISR) aims
to restore a given low-resolution (LR) image into a detailed high-resolution (HR) image.
Because of its extensive application value in remote-sensing imaging [1,2], video surveil-
lance [3,4], pedestrian detection [5], and other fields [6,7], it has attracted the attention of
many researchers. However, due to the irreversibility of the image degradation process,
multiple potential HR image solutions may be derived from a single input LR image.
Therefore, image super-resolution reconstruction is essentially an ill-posed problem.

To solve this ill-posed problem, researchers have proposed many algorithms. Tradi-
tional SISR algorithms are roughly divided into three categories, namely, interpolation-
based SISR [8–10], reconstruction-based SISR [11], and shallow-based SISR [12]. With the
development of convolutional neural networks (CNN), CNN-based SISR methods have
been widely used in the field of image super-resolution and achieved ideal results. Methods
of this type can flexibly learn the deep features of images and establish a mapping rela-
tionship between an input image and an output image, and they have achieved significant
improvements compared to the traditional method. SRCNN [13] applies CNNs to the SISR
task for the first time, achieving impressive performance. After that, many research scholars
proposed SISR methods with deeper CNN layers. Considering that the low-frequency
information contained in LR images and HR images has great similarity, some scholars
have significantly improved the performance of the network models by introducing the
idea of residual structure. Kim et al. [14] alleviated the slow training problem of deep CNN
by introducing residual learning and proposed a more efficient deep CNN-based model,
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VDSR. Although CNN-based SISR methods have made significant progress, most of them
treat different image layers between networks equally, ignore the potential image feature
correlation between adjacent network layers, which reduces the representation ability of
deep network models.

The attention mechanism can allocate resources to the input area with a large amount
of information. Recently, scholars have greatly improved the performance of CNN models
by applying attention mechanisms to super-resolution tasks [15–19]. Zhang et al. [15] pro-
posed the residual channel attention network (RCAN), which has improved discriminative
learning ability for cross-channel features due to the introduction of channel attention
and produces higher-quality SR images. Since nonlocal attention can utilize the intrinsic
feature correlations in images, scholars have introduced a nonlocal attention into the deep
networks to further improve the performance. The SAN network model proposed by
Dai et al. [20] exploits image high-order channel information and image self-similarity to
discover the intrinsic correlations between different network layers, thereby capturing the
potential intrinsic information of the image. Reviewing these classic methods, we find
that most attention-based SR methods are dedicated to studying more complex attention
mechanisms, which makes their algorithms increasingly demanding for training. Some
methods apply nonlocal attention to reduce the huge computational overhead imposed by
modules by limiting the search range of the modules, which causes the model to ignore
important globally relevant information and be insufficiently flexible. Furthermore, most
models use only the HR images of a given training set as the mappings for the LR image
training, which may ignore potentially better solutions and limit the generalization of
the model.

To address the above issues, we proposed a learnable nonlocal contrastive network
(LNLCN), which can explore the correlations between image intrinsic features and different
channel features of the network and obtain SR results with clearer textures. Inspired
by efficient nonlocal contrastive attention (ENLCA) [21] and global learnable attention
(GLA) [22], we proposed learnable nonlocal contrastive attention (LNLCA), which obtains
linear computational complexity through the combination of similarity functions and
matrix multiplication and can more effectively aggregate relevant information within
an image. To improve the ill-posedness of SR tasks, we introduced an adaptive target
generator (ATG) [23] module to relax the model’s constraints on potential solutions, thereby
generating more natural SR results. In addition, inspired by CutBlur [24], we proposed a
new data augmentation method (RFP) for the training data that achieves data augmentation
without destroying image pixel correlation. Our LNLCN achieves sharper visual SR results
than state-of-the-art SISR methods.

Overall, the main contributions of our work are listed as follows:

1. A novel learnable nonlocal contrastive attention (LNLCA) method was proposed for
exploring nonlocal textures with low similarity but more precise details, which main-
tains linear computational complexity while aggregating important image features;

2. We proposed a deep feature fusion attention group (DFFAG) for fusing local adjacency
information and learnable nonlocal self-similar information, thereby helping the
network repair damaged texture regions;

3. We introduced the adaptive target generator (ATG), which can alleviate the ill-
posedness of the SR task and further explore potential solutions by endowing the
model with more output flexibility.

The remainder portions of the paper are structured as follows: Section 2 presents
recent related work in the field of single-image super-resolution. Section 3 presents the
proposed algorithm in detail. Section 4 evaluates the performance of the proposed model
through tests on standard datasets. Section 5 discusses the complexity and computation of
the model. Section 6 concludes the paper and discusses future research.
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2. Related Work
2.1. CNN-Based Methods

Since the convolutional neural networks can effectively represent the nonlinear map-
ping between LR images and HR images, they have been widely used to solve the SISR
problem. Dong et al. [13] pioneered the application of a CNN to SISR, and the proposed
SRCNN achieved impressive performance with a three-layer convolutional layer as the
network architecture. Shi et al. [25] proposed an ESPCN that can reconstruct images in
real time, which extracts features from the input LR images and further applies subpixel
convolutional layers embedded to upsample the reconstructed images. Later, this method
of upsampling with subpixel convolutional layers at the end of the network architecture
became the primary choice for subsequent SISR network architectures. Some methods
improve the model’s ability to represent image features by increasing the network size.
Kim et al. alleviated the problems of model training difficulty and slow convergence,
by introducing residual strategies, and proposed VDSR [14] and DRCN [26] with deep
network architectures. Tong et al. [27] proposed an efficient network, namely, SRDenseNet,
by introducing dense blocks to maintain connections between different network layers.
The EDSR proposed by Lim et al. [28] achieves better performance metrics than previous
network models by improving the residual structure. Perceptual quality is an important
evaluation metric for reconstructed images, Ledig et al. [29] proposed the SRGAN, which
significantly improves the texture realism of SR images by using generative adversarial
networks and utilizing a multitask loss. When compared to conventional classic algorithms,
the majority of these methods have shown significant improvement, but, since they ignore
the feature correlations of intermediate network layers, it is difficult to reconstruct SR
results with natural texture details.

2.2. Attention-Based Methods

An attention mechanism enables an SR network focus on important information,
thereby helping the network to distinguish relevant information that is beneficial for re-
construction. Recently, scholars have greatly improved the evaluation indicators of deep
network models by introducing attention mechanisms. SENet, which was proposed by
Hu et al. [30], has greatly improved the accuracy of image classification models by intro-
ducing network channel features. Inspired by this, RCAN, proposed by Zhang et al. [15],
combines a residual block with a channel attention. The network model is more than
400 layers deep and has achieved significant improvements in image reconstruction quality.
SAN, proposed by Dai et al. [20], uses second-order channel attention (SOCA) for correla-
tion learning while also employing the nonlocal enhancement residual group (NLRG) to
capture the self-similarity information of the input image. To reduce the huge amount of cal-
culations required by the nonlocal attention mechanism, scholars have investigated efficient
nonlocal attention mechanisms. Mei et al. [31] proposed an NLSN network model that uses
locality-sensitive hashing (LSH) to identify the most important information regions, which
improves the computational efficiency and performance metrics of the model for nonlocal
attention. Xia et al. [21] adopted the kernel method to approximate the computational load
of the nonlocal module method as an exponential function, introduced contrastive learning
to make the model focus on the sparse aggregation of image information, and proposed
an efficient contrastive attention model (ENLCN). Su et al. [22] proposed a deep-learnable
similarity network (DLSN) that explores the self-similarity in nonlocal textures, mines non-
local textures with low similarity but more precise details, and restores damaged textures.
Lu et al. [32] proposed a super-resolution network model (ESRT) which realizes long-term
image information modeling by combining CNN and self-attention in transformer and
uses feature segmentation and high-frequency filter modules (HFM) to improve model
calculation efficiency. Chen et al. [33] proposed a deep multi-stage network (MAAN) for
accurate image SR by stacking attention enhancement modules and making full use of
the advantages of different modules. Fang et al. [34] proposed a hybrid network of CNN
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and Transformer (HNCT) for lightweight SISR, which extracts deep features that are more
conducive to image SR by exploiting local and nonlocal priors.

2.3. Multiple-Chioce Learning

Ensemble learning aims to reduce the error correlation by combining the diversity
among training member models under the joint loss, thereby improving the performance
of the model. The research on ensemble learning by Salamo et al. [35] and Krogh et al. [36]
demonstrated that cross-member model training can improve performance, which laid
the theoretical foundation for neural network model ensemble learning. Later, the work
of Guzman-Rivera et al. [37–39] on multiple-choice learning (MCL) provided another
attractive scheme that encourages the loss to generate diverse outputs by comparing
the predicted output of a single solution with the outputs of different member models.
Jo et al. [23] proposed an ATG training strategy suitable for SISR tasks. Unlike the MCL
method, ATG uses multiple potential solutions to generate a prediction to further train the
model as a loss.

3. Method

This section introduces our learnable nonlocal contrastive network (LNLCN). The
structure of LNLCN is shown in Figure 1. Next, we present the learnable nonlocally
residual group (LNLRG), adaptive target generator (ATG), and RFP data augmentation
methods in detail.
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Figure 1. Architecture of the proposed learnable nonlocal contrastive network (LNLCN).

3.1. Network Structure

Our proposed LNLCN consisted of five main modules: a shallow feature extraction
module, a deep feature extraction module based on the learnable nonlocally residual
group (LNLRG), an upsampling module, a reconstruction module, and an adaptive target
generator module. We represented by ILR and ISR the input image and output reconstructed
image of LNLCN, respectively. First, we extracted feature information on the input ILR
through a convolutional layer:

F0 = HSF(ILR) (1)

where HSF(∗) represents the operation of a convolution layer. Then, the obtained image
features F0 were input into the learnable nonlocally residual group (LNLRG) to extract
image depth features:

FDF = HLNLRG(F0) (2)

where HLNLRG(∗) represents our proposed learnable nonlocally residual group (LNLRG),
which consists of G deep feature fusion attention group (DFFAG) models that focus on
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image-related information. After that, we upscaled the resulting deep feature FDF through
the upsampling module:

FUP = HUP(FDF) (3)

where HUP(∗) and FUP represent the upsampling module and the upsampled features,
respectively. Some effective upsampling modules, such as transposed convolution [40] and
subpixel convolution [25], have been shown to improve performance without increasing
the computational complexity and, thus, are more suitable for deep network models. After
that, we reconstructed FUP through a convolutional layer to obtain an SR image:

ISR = HSR(FUP) = HLNLCN(ILR) (4)

where HSR(∗) and HLNLCN(∗) represent the features of the reconstruction module and the
proposed LNLCN, respectively.

After that, we optimized the model with a loss function. We used the same L1 loss as
in previous work (SAN) [20]. Specifically, for a given training set

{
Ii
LR, Ii

HR
}N

i=1 containing
N pairs of LR images ILR to be processed and corresponding original HR images IHR, the
ultimate goal of model training was to minimize the L1 loss function:

L(Θ) =
1
N

N

∑
i=1
‖ HLNLCN

(
Ii
LR

)
− Ii

HR ‖1
(5)

where Θ represents the parameter set of the LNLCN. In the optimization of the loss function,
we used the stochastic gradient descent algorithm to ensure the stability of the training.
After the initial training of the LNLCA network, an adaptive target

∼
yi was generated

through the ATG network:

∼
y i = ATG(IHR, HLNLCN(ILR)) (6)

where ATG(∗) and HLNLCN(ILR) represent the adaptive target generation network and
the current prediction output of the LNLCN, respectively. The ATG network affinely
transformed IHR to HLHAN(ILR) within an acceptable range. Finally, the pretrained model
was further fine-tuned by the adaptive objective

∼
y i generated from the ATG network:

∑
i
l
(∼

y i, HLHAN(ILR)
)

(7)

where l(∗) represents the L2 loss. The ATG network could adaptively generate additional
target

∼
y i according to the current iterative prediction of the pretrained network; hence, we

did not have to reprocess the training data, and it did not take a long time.

3.2. Learnable Nonlocally Residual Group (LNLRG)

We now present the learnable nonlocally residual group (LNLRG) models in detail,
which consisted of G deep feature fusion attention group (DFFAG) models. Specifically,
each DFFAG module consisted of a local source residual attention group (LSRAG) [20]
and a learnable nonlocal contrastive attention module (LNLCA). The DFFAG module can
integrate local and global features, and the shared connection architecture design can better
extract and fuse high-frequency features, making the model more accurate and efficient
when processing complex data, thereby improving the performance of the model.

3.2.1. Deep Feature Fusion Attention Group

To achieve efficient and accurate image feature extraction and fusion, we combined a
local source residual attention group (LSRAG) [20] with an innovative learnable nonlocal
contrastive attention module (LNLCA) to construct a deep feature fusion attention group
(DFFAG) module. Different DFFAG modules use the shared source residual skipping (SSC)
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connection [20], which ensures that the model bypasses the low-frequency information
of the training samples to the greatest extent possible, thereby focusing on the training of
high-frequency features. This design ensures that the LNLRG model has higher efficiency
and accuracy in the process of image feature extraction. Among them, the g-th DFFAG
module can be expressed as follows:

Fg = WSSCF0 + Hg
(

Fg−1
)

(8)

where WSSC represents the parameters of the convolutional kernel, which is initially set to
0 and then updated throughout the iteration of the network layer, and Hg(∗), Fg−1, and
Fg represent the function of the g-th DFFAG module and the input features and output
features of the DFFAG module, respectively. Furthermore, the depth features FDF of the
image can be expressed as below:

FDF = WSSCF0 + FG (9)

This method of stacking and simplifying residual blocks helps form a deep CNN and
accelerates the training of a network model with high-performance reconstructed images.

As previously discussed in the work on SAN [20], we introduced the LSRAG module
to capture the channel features of images and fully mine the feature correlations between
image channels (see Figure 2). Taking the g-th LSRAG module as an example, the function
of the m-th residual block in LSRAG module can be expressed as shown:

Fg,m = Hg,m
(

Fg,m−1
)

(10)

where Fg,m−1, Fg,m represent the inputs and outputs of the LSRAG module. We input the
obtained Fg,m into the SOCA [20] module to obtain channel attention. The output of the
DFFAG module was further obtained, which can be expressed as follows:

Fg = Hconv(H LNLCA(H SOCA
(

Fg,m
)
)) (11)

where HSOCA and HLNLCA represent the functions of the SOCA module in the g-th LSRAG
and LNLCA modules, respectively. Further, the output Fg of the g-th DFFAG module can
be obtained through a convolutional layer. Our proposed LNLCA module can fully exploit
more valuable nonlocal textures in LR images by modifying the self-similarity function,
enhancing the long-range modelling capability of the model.
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Figure 2. Structure of LNLCA. h, w, and c represent the training image height, width, and dimension,
respectively. m and N represent the number of random samples and the size of the input feature
map, respectively. Q, K, and V represent three sets of mappings. Among them, Q and K are further
transformed into φ(Q) and φ(K) by Gaussian random matrix F.
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3.2.2. Learnable Nonlocal Contrastive Attention

As shown in Figure 2, the proposed LNLCA module combines the advantages of self-
similar exploration and sparse aggregation strategies and can achieve global correlation
information aggregation of important information at the cost of linear complexity, avoiding
overfitting while improving the computational efficiency of the model combination and
information redundancy problem. Specifically, the self-similar exploration strategy can find
feature information highly related to the current location in the local area and aggregate
it with the current location. The sparse aggregation strategy can effectively reduce the
computational complexity while maintaining the integrity of global information.

Formally, the process by which the LNLCA module applies attention to feature vectors
is defined as shown:

yi =
n

∑
j=1

exp
(
s
(
Qi, Kj

))
∑n

ĵ=1 f
(

s
(

Qi, K ĵ

))vj (12)

where Qi, Kj, and K ĵ represent the pixel features corresponding to positions i, j, and ĵ,
respectively, of feature map X; yi represents the output for position i; f (∗) represents
the similarity measurement between feature map Q and feature map K; vj represents the
feature transformation function; and n represents the input size. Among them, to ex-
plore more valuable nonlocal textures, we proposed to incorporate the learnable similarity
score function (LSS) [22] and the dot product similarity score function (DPSS) [22] into the
LNLCA module, thereby forming the s(∗, ∗) function. Furthermore, different from tradi-
tional nonlocal attention mechanisms, our LNLCA module achieves better performance by
approximating Gaussian random features and changing the multiplication order. Formally,
the s(∗, ∗) function can be defined as below:

s
(
Qi, Kj

)
= sj

l(Qi) + s f
(
Qi, Kj

)
(13)

where sj
l(∗) represents the score of position j in the learnable similarity scoring function

(LSS) and s f (∗) represents the dot product similarity scoring function (DPSS). sl(∗) can
adaptively modify the scores of different positions in the nonlocal texture, thereby helping
the network correct some inaccurate textures, which is formally defined as follows:

sl(Qi) = W2σ(W1θ(Qi) + b1) + b2 (14)

where σ(∗) represents the ReLU function and W1 ∈ Xn×c, W2 ∈ Xn×n, b1 ∈ Xn, and
b2 ∈ Xn. The dot product similarity score s f (∗) is formally defined as shown:

s f
(
Qi, Kj

)
= θ(Qi)

Tδ
(
Kj
)

(15)

For an input feature map X, we first multiplied by a scaling factor k to increase the
weight of the relevant information:

Q =
√

k
θ(X)

‖ θ(X) ‖ , K =
√

k
δ(X)

‖ θ(X) ‖ , V = g(X) (16)

K
(
Qi, Kj

)
= exp

(
Q>i Kj

)
= φ(Qi)

Tφ
(
Kj
)

(17)

where X and k represent the module input feature map and the magnification factor, re-
spectively; θ(*), δ(*), and g(*) represent feature transformation functions; and Qi and
Kj represent the pixel information at positions i and j in the feature maps Q and K, re-
spectively. By setting r Gaussian random samples and concatenating these samples into a
Gaussian random matrix F, the Gaussian random feature map was further approximated
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as φ(Qi)
Tφ
(
Kj
)
, where φ(u) = 1√

r exp
(
− ‖ u ‖2 /2

)
exp(Fu). Finally, an efficient nonlocal

attention mechanism was obtained:

Ŷ = D−1
(

φ
(

Q)>
(

φ(K)V>
))

(18)

D = diag
[
φ
(

Q)>(φ(K)1N)
]

(19)

where Ŷ represents the obtained approximate nonlocal attention and D represents the
normalization term in the softmax function.

3.3. Adaptive Target Generator (ATG)

Most SR models are trained by seeking a mapping between LR samples and HR
samples in the training dataset. When the image predicted by the model does not fit the
ground truth (GT) image, even if the output is a potential valid solution, the model is also
penalized according to the training loss function. Inspired by the ATG network [23], we
alleviated the ill-posedness of this SR task by introducing an adaptive target generator
model to the SR model. By introducing the ATG network, the model was given some
flexibility, thereby assisting the super-resolution model to generate more accurate recon-
structed images. Different from the exploration of generative adversarial networks in [23],
the proposed LNLCN model has extremely deep convolutional network layers, and we
will explore the performance of ATG on deep convolutional architecture models. The
adaptive object generation network (ATG) is presented in detail in Figure 3, which contains
a localization network consisting of four fully connected layers. All layers, except the last
one, contain the same number of BN layers and the ReLU function.
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Figure 3. Structure of ATG. f (xi) and yi represent the current prediction of the network and original
real images. By converting each nonoverlapping part of yi into a corresponding region of the network
output f (xi), the adaptive target y is further rearranged to generate a new target.

During model training, the ATG network works in a patch-like fashion to adaptively
generate new targets based on the predicted image for the current iteration of the SR
model; therefore, there is no requirement for additional data preparation nor to conduct
preprocessing. Specifically, the ATG network first slices the model prediction output f (xi)
into nonoverlapping image slices with stride p and size p× p, and then slices the original
ground truth (GT) image into overlapping image slices with stride p and size s× s, where
p < s. The image patch size of GT is set slightly larger than the image patch size of f (xi)
because this strategy needs to use the real target as the search space. Then, the affine
transformation matrix θi,j is obtained through the positioning network, and the yi image
slices are further sent to the bilinear sampling network for feature change. The j-th yi
image slices are converted into corresponding f (xi) image slices, and, finally, our adaptive
target is created by combining the transformed image patches of size p× p. Through
the ATG network, we create a new target

∼
y i that is most relevant to f (xi) predicted by
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the SR network while keeping the original content unchanged, which is further used for
network training.

3.4. RFP Data Augmentation

Data augmentation is an effective way to increase the performance metrics of a convo-
lutional network. Most data augmentation methods increase prior knowledge by imposing
constraints on the data, which can reduce the influence of negative information on the
network and improve the accuracy of the model. However, SISR, as a class of classic
low-level vision problems, has image pixels that are more sensitive to local and global
relationships, and some image augmentation methods suitable for high-level vision tasks
usually manipulate pixels or features, which hinders the reconstruction of images by super-
resolution models. Traditional data augmentation strategies, such as rotation and flipping,
have brought some benefits to SISR model performance. Inspired by the data expansion
method CutBlur [24], we proposed an RFP data augmentation method. Specifically, the RFP
data enhancement method performs image enhancement on each training image through
a combined strategy of random rotation, horizontal flipping, and channel arrangement.
Considering the sensitivity of the super-resolution problem to pixels, our RFP data en-
hancement method can arrange and mix the RGB channels in the original image (by adding
constant values) without damaging the pixel space in the image. This enhancement method
does not change the image structure and can provide good performance and synergy with
other classic and traditional enhancement methods.

3.5. Implementation

For the network architecture, we followed the work of [20], adopted the LSRAG
module of the SAN network as the cornerstone for construction, and combined the LNLCA
module to form our deep feature fusion attention group (DFFAG). In the LNLCA module,
we set the expansion factor to 6, edge b to 1, and the number of random samples r to 128.
The learnable nonlocally residual group (LNLRG) consisted of G = 10 DFFAG modules,
and we combined a second-order attention module (SOCA) with M = 10 residual blocks
in each LSRAG module. In the ATG network, we set stride p = 7 and stride s = 9. For the
upsampling module part, we adopted ESPCN [25] to upgrade the image depth features.
Finally, a color SR image (RGB channel) was generated through a convolutional layer.

4. Experiment
4.1. Setup

After comparing RCAN [15], SAN [20], EDSR [28], and NLSN [31], we used DIV2K [41]
as the training dataset for the network, which contains 800 samples of RGB images with
a resolution of 2K. For model testing, we used five SISR benchmark datasets: Set5 [42],
Set14 [43], B100 [44], Urban100 [45], and Manga109 [46]. All samples were analyzed with
a bicubic downsampling (BI) degenerate model and a blurred descent (BD) model. We
evaluated the predicted SR results using PSNR and SSIM, and all tests were performed on
the Y channel after the image was converted to YCbCr space. During the model training
process, we augmented the dataset images by RFP data augmentation. We provided 16 LR
image patches with a size of 48 × 48 as the network input for each iteration batch. The
LNLCA model was iteratively trained using the ADAM optimizer [47], where β1 = 0.9,
β2 = 0.99, and ε = 10−8. During training, we initially set the learning rate to 10−4 and then
halved it every 200 batches. We first trained the model for 8.4× 105 iterations, after which
we used the ATG training strategy to fine-tune the entire network for 5.6× 104 iterations
with a learning rate of 10−5. In our LNLCN model, we used the ReLU activation function
in most layers to help the model better learn nonlinear relationships between input data. At
the same time, we also used some other activation functions, such as Sigmoid and Softmax.
Our model was implemented in the PyTorch [48] on an Nvidia 1080Ti GPU.
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4.2. Ablation Study of k in the LNLCA Module

In this study, the LNLCA module achieves superior performance with lower overhead
than traditional nonlocal modules. To find a suitable value of the amplification factor k, we
set different k values in the LNLCA module for the LNLCN model, and we conducted a
more detailed ablation study. As shown in Figure 4, we explored the reasons for the effect
of the scaling factor k on the existing infrastructure and evaluated the performance metrics
of the model on five standard datasets.
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The PSNR value of the LNLCN model steadily increases with increasing k value.
With a further increase in the amplification factor k, the performance of the model drops
sharply. According to this experimental result, our inference is that increasing k causes
the approximate variance of LNLCA to increase exponentially, which, in turn, leads to
performance degradation. Therefore, setting k in the LNLCA module to six produces
good results.

4.3. Ablation Study of the Number of ATG Iteration

To explore the impact of ATG network iteration number settings on the network
performance, we conducted more detailed ablation experiments. Specifically, the number
of iterations of the ATG network was set to 2.8× 104, 4.2× 104, 5.6× 104, 7.0× 104, 8.4× 104,
and 9.8× 104. We further evaluated the performance of the model on the Set5 dataset with
a downsampling factor of four. Table 1 shows the experimental results under different
iterations. Through the data, we explored the best iteration settings for LNLCN. As shown
in Figure 5, setting the number of iterations of the ATG network to 4.2× 104 and 5.6× 104

produces the best performance indicators, and the improvement in the SSIM values at
this time is considerable. In addition, too many iterations, such as 9.8 × 104, lead to
model performance degradation; this may be because too many iterations cause the model
to overfat the dataset and affect the generalization ability of the model. Thus, in our
LNLCN, we finally set the number of ATG network iterations to 5.6× 104 to obtain the best
reconstruction results. This result shows that our LNLCN model can effectively improve
the quality and visual effect of super-resolution images with an appropriate number of
iterations and has better practicality and application value.
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Table 1. Iterative experiment of ATG network.

Iteration Settings 9.8×104 8.4×104 7.0×104 5.6×104 4.2×104 2.8×104

PSNR(dB) 32.267 32.435 32.559 32.638 32.625 32.608

SSIM 0.8943 0.8961 0.8982 0.9008 0.9002 0.8999
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4.4. Ablation Study of Different Modules

To further explore the potential of the proposed method, we comprehensively analyzed
our model through ablation experiments. The LNLCN model consists mainly of two parts,
namely, the learnable nonlocally residual group (LNLRG) and the adaptive target generator
(ATG). We verified their effectiveness by testing them on the Set5 dataset. In addition, we
analyzed the benefits of RFP data augmentation for model training, as shown in Table 2.

Table 2. Experimental results of different modules. After 8.9× 105 iterations, we provide the best
PSNR (dB) and SSIM values on Set5.

KERRYPNX Baseline Ra Rb Rc Rd Re Rf

Learnable nonlocal contrastive attention (LNLCA)
√ √ √ √

Adaptive target generator (ATG)
√ √ √

RFP data augmentation
√ √ √

Avg. PSNR on Set5 (4×) 32.642 32.692 34.853 38.350 32.686 34.849 38.346
Avg. PSNR on Set5 (3×) 34.746 32.638 34.732 38.307 32.694 34.881 38.356
Avg. PSNR on Set5 (2×) 38.314 32.653 34.794 38.327 32.693 34.874 38.354

Avg. SSIM on Set5 (4×) 0.9003 0.9007 0.9306 0.9624 0.9009 0.9310 0.9627
Avg. SSIM on Set5 (3×) 0.9300 0.9008 0.9309 0.9626 0.9007 0.9308 0.9625
Avg. SSIM on Set5 (2×) 0.9620 0.9003 0.9302 0.9620 0.9009 0.9311 0.9627
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4.4.1. Learnable Nonlocal Contrastive Attention (LNLCA)

By testing our model on the Set5 dataset, we verified the importance of the LNLCA
module. Specifically, the established baseline network contained 20 LSRAG modules,
each of which contained 10 simplified residual blocks, resulting in a network architecture
with hundreds of layers, and we added skip connections to each base module. Table 2
shows the performance of the model after 8.9× 105 training iterations on the Set5 dataset
with a downsampling factor of 4, where the baseline model achieves PSNR = 32.642 dB
and SSIM = 0.9003. The result for Ra verifies the effectiveness of the learnable nonlocal
contrastive attention (LNLCA) module, as the PSNR value increases from the original
32.642 dB to 32.692 dB and the SSIM value increases from the original 0.9003 to 0.9007
compared with the baseline network. Specifically, we combined the LSRAG module in the
baseline and our proposed LNLCA module to form a deep feature fusion attention group
(DFFAG). The results for Ra are predictable because, compared with the traditional nonlocal
attention module adopted by the baseline, we applied the proposed learnable nonlocal
contrastive attention to sparsely aggregate the globally relevant information of the image
with linear computational complexity, which significantly increased the discriminative
learning ability of the network. These experimental results fully prove the superiority of
using the LNLCA module.

4.4.2. Adaptive Target Generator (ATG)

We present the results of our ATG training strategy for Rb, Rd, and R f . Specifically,
Rb refers to the use of the ATG training strategy on the basis of the baseline. According
to the numerical value, using the ATG training strategy alone slightly reduces the PSNR
value of the generated image, whereas the SSIM value is significantly improved. This is to
be expected, because the ATG training strategy enables the model to have slightly different
outputs, which reduces the erroneous impact of off-target details on the network, thereby
restoring the reconstructed images more naturally. As presented in Table 2, both Rd and
R f obtain better SSIM values than Ra and Re; these metrics indicate that the ATG training
strategy has a positive impact on the reconstructed image quality.

4.4.3. RFP Data Augmentation

The results of Rc, Re, and R f show that our RFP data augmentation method is beneficial
for model training. Specifically, we took the RFP data augmentation method alone as the
baseline, and the metric for Rc demonstrates the effectiveness of this method because the
PSNR value increases from the original 32.642 dB to 32.653 dB. This is because the adopted
RFP data augmentation method achieves data augmentation without changing the image
structure, which is beneficial to image reconstruction while ensuring the correlation of
pixels. Re and R f in Table 2 verify that the RFP data augmentation method can also achieve
better results when combined with other modules.

4.5. Comparison with State-of-the-Art Technology (BI)

To further demonstrate the superiority of the proposed LNLCN model, we compared
our LNLCN model with nine state-of-the-art SISR models: SRCNN [13], FSRCNN [40],
VDSR [14], EDSR [28], DBPN [49], RDN [50], FPAN [51], RCAN [15], ESRT [32], HNCT [34],
SAN [20], HAN [52], and NLSN [31]. For comparison, we measured the PSNR and SSIM
values on the Y channel of the reconstructed image using a MATLAB [53] function. Table 3
shows the degradation model reconstruction indicators of different methods at scaling
factors of two, three, and four. The proposed LNLCN model achieves the best performance
at various scaling factors compared to the other SR methods. This is mainly because,
compared with the traditional nonlocal modules, we used the learnable nonlocal contrastive
attention module to sparsely aggregate image-related information more effectively so that
the network could focus on discriminating valid information. In addition, our ATG target
training strategy could alleviate the ill-posedness of the super-resolution task by enabling
the network to generate slightly different outputs, which is meaningful for obtaining super-
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resolution results that are satisfactory in reality and perception, especially in terms of
generating pleasing images.

Table 3. Comparison of quantitative results obtained with the BI degradation model. The best and
second-best performances are highlighted in bold and underlined, respectively.

Method Scale
Set5 Set14 BSD100 Urban100 Manga109

(PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM)

Bicubic

×2

33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN [13] 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN [40] 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR [14] 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750
EDSR [28] 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351 39.10/0.9773
DBPN [49] 38.09/0.9600 33.85/0.9190 32.27/0.9000 32.55/0.9324 38.89/0.9775
RDN [50] 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 39.18/0.9780
FPAN [51] 38.19/0.9612 33.88/0.9210 32.30/0.9012 32.72/0.9339 39.03/0.9772
RCAN [15] 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 39.44/0.9786
HNCT [34] 38.08/0.9608 33.65/0.9182 32.22/0.9001 32.22/0.9294 38.87/0.9774
SAN [20] 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 39.32/0.9792
HAN [52] 38.27/0.9614 34.16/0.9217 32.41/0.9027 33.35/0.9385 39.46/0.9785
NLSN [31] 38.34/0.9618 34.08/0.9231 32.43/0.9027 33.42/0.9394 39.59/0.9789

LNLCN (Ours) 38.35/0.9627 34.17/0.9226 32.46/0.9036 33.46/0.9388 39.62/0.9798

Bicubic

×3

30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN [13] 30.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN [40] 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR [14] 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340
EDSR [28] 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653 34.17/0.9476
RDN [50] 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 34.13/0.9484
FPAN [51] 32.62/0.9291 32.55/0.8467 29.24/0.8090 28.73/0.8642 34.14/0.9481
RCAN [15] 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 34.44/0.9499
HNCT [34] 34.47/0.9275 30.44/0.8439 29.15/0.8067 28.28/0.8557 33.81/0.9459
ESRT [32] 34.42/0.9268 30.43/0.8433 29.15/0.8063 28.46/0.8574 33.95/0.9455
SAN [20] 34.75/0.9300 30.59/0.8476 29.33/0.8112 28.93/0.8671 34.30/0.9494
HAN [52] 32.75/0.9299 30.67/0.8483 29.32/0.8110 29.10/0.8705 34.48/0.9500
NLSN [31] 34.85/0.9306 30.70/0.8485 29.34/0.8117 29.25/0.8726 34.57/0.9508

LNLCN (Ours) 34.87/0.9311 30.75/0.8490 29.38/0.8119 29.18/0.8729 34.53/0.9512

Bicubic

×4

28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN [13] 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN [40] 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [14] 31.35/0.8830 28.02/0.7680 27.29/0.7251 25.18/0.7540 28.83/0.8870
EDSR [28] 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
DBPN [49] 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137
RDN [50] 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 31.00/0.9151
FPAN [51] 32.48/0.8984 28.78/0.7867 27.71/0.7412 26.61/0.8025 30.99/0.9144
RCAN [15] 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173
HNCT [34] 32.31/0.8957 28.71/0.7834 27.63/0.7381 26.20/0.7896 30.70/0.9112
ESRT [32] 32.19/0.8947 28.69/0.7833 27.69/0.7379 26.39/0.7962 30.75/0.9100
SAN [20] 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 31.18/0.9169
HAN [52] 32.64/0.9002 28.90/0.7890 27.80/0.7442 26.85/0.8094 31.42/0.9177
NLSN [31] 32.59/0.9000 28.87/0.7891 27.78/0.7444 26.96/0.8109 31.27/0.9184

LNLCN (Ours) 32.69/0.9006 28.95/0.7896 27.84/0.7448 26.94/0.8112 31.44/0.9186

Visualization Results

In Figure 6, we show the visual quality comparison of SR results with 4×SR under
the BI model, from which we can find that most SR models cannot clearly reconstruct the
image texture information. Some early models, such as Bicubic, SRCNN, and FSRCNN,
cannot even reconstruct the rough outline of the original image. Although some of the more
popular methods can reconstruct the general outline of the image, they also suffer from
serious artefacts and cannot reconstruct natural textures. Taking “img 8006” as an example,
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most existing methods cannot reconstruct the lattice accurately, and there are problems such
as blurring and artefacts. Our LNLCN is able to obtain sharper reconstructions with fewer
artefacts, which are closer to the original real image. This obvious contrast demonstrates
the superiority of our LNLCN model.
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4.6. Comparison with State-of-the-Art Technology (BD)

We further compared the LNLCN model with eight state-of-the-art SR models with
blur descent (BD) kernels: SRCNN [13], FSRCNN [40], VDSR [14], RCAN [15], IRCNN [54],
RDN [50], FPAN [51], SAN [20], and HAN [52]. Table 4 shows the degradation model
reconstruction metrics of these models using a scaling factor of three. Our LNLCN model
consistently outperforms other models in terms of reconstruction accuracy. Under the
condition of blur descent (BD), our proposed learnable nonlocal contrastive attention
module can aggregate image-related information more effectively than traditional nonlocal
modules, thus enabling the network to better recognize effective information. In addition,
the self-similar function setting endows the network with more flexibility. On the Urban100
dataset, the PSNR gain of the LNLCN model is as high as 0.3 dB compared with the RCAN
model, which fully verifies the superiority of our LNLCN model.

Visualization Results

In Figure 7, we show the visual quality comparison of SR results with 3 × SR under
the BD model. Taking “img_99” as an example, the architectural meshes reconstructed
by some methods, such as IRCNN [54] and VDSR [14], have serious artefacts and do not
match the reality. The methods with better performance are RDN [50], RCAN [15], and
SAN [20], which produce natural overall mesh reconstruction results but still have the
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problem of detail texture blurring. Compared with these classic methods, our LNLCN can
not only remove image texture blur but also restore high-frequency details, reconstructing
relatively sharp edges and clear images. This is because we incorporate learnable nonlocal
attention into each DFFAG module, which captures important features which are useful
for image texture. IRCNN [54] and RDN [50] are specifically designed to handle image
reconstruction tasks with the BD model, and our LNLCN achieves a numerical increase of
nearly 1 dB PSNR compared to these models, which fully demonstrates the advantages of
the proposed method.
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Table 4. Comparison of quantitative results obtained with the BD degradation model. The best and
second-best performances are highlighted in bold and underlined, respectively.

Method Scale
Set5 Set14 BSD100 Urban100 Manga109

(PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM)

Bicubic

×3

28.78/0.8308 26.38/0.7271 26.33/0.6918 23.52/0.6862 25.46/0.8149
SRCNN [13] 32.05/0.8944 28.80/0.8074 28.13/0.7736 25.70/0.7770 29.47/0.8924

FSRCNN [40] 26.23/0.8124 24.44/0.7106 24.86/0.6832 22.04/0.6745 23.04/0.7927
VDSR [14] 33.25/0.9150 29.46/0.8244 28.57/0.7893 26.61/0.8136 31.06/0.9234

IRCNN [54] 33.38/0.9182 29.63/0.8281 28.65/0.7922 26.77/0.8154 31.15/0.9245
RDN [50] 34.58/0.9280 30.53/0.8447 29.23/0.8079 28.46/0.8582 33.97/0.9465

RCAN [15] 34.70/0.9288 30.63/0.8462 29.32/0.8093 28.81/0.8645 34.38/0.9483
SAN [20] 34.75/0.9290 30.68/0.8466 29.33/0.8101 28.83/0.8646 34.46/0.9487
HAN [52] 34.76/0.9294 30.70/0.8475 29.34/0.8106 28.99/0.8676 34.56/0.9494

LNLCN (Ours) 34.81/0.9301 30.73/0.8482 29.35/0.8109 29.17/0.8692 34.55/0.9506
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5. Discussion

Figure 8 shows the relationship between the reconstruction accuracy of different mod-
els and the model parameters. We compared the LNLCA model with 10 state-of-the-art SISR
models: VDSR [14], DRCN [26], CARN [55], DBPN [49], RDN [50], EDSR [28], RCAN [15],
SAN [20], HAN [52], and NLSN [31]. Among these methods, we observed that some meth-
ods, such as DRCN, VDSR, and CARN, contain less computational overhead, but at the cost
of reduced reconstruction accuracy. Although some large-scale super-resolution models,
such as EDSR and HAN, achieved good results in improving super-resolution performance,
the large number of parameters of these models also hinders their use in lightweight ap-
plications. In contrast, our proposed LNLCN model has fewer parameters than RDN but
achieves higher performance metrics, which means our LNLCN model can achieve good
reconstruction results with moderate computational complexity. This is mainly due to the
use of Deep Feature Fusion Attention Group (DFFAG) in our LNLCN model, which enables
the model to fully utilize the limited LR sample information to achieve more powerful
feature representations and thus improve super-resolution performance. Furthermore,
our adopted Adaptive Target Generator (ATG) model helps the network explore potential
solutions, resulting in sharp outputs. This strategy helps alleviate the ill-posedness of the
super-resolution task, enabling the network to generate slightly different outputs, leading
to realistically and perceptually pleasing super-resolution results.
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Table 5 shows the relationship between inference speed and computational cost of
different models. We compared the LNLCA model with five state-of-the-art SISR models:
VDSR [14], CARN [55], RDN [50], NLSN [31], and HAN [52]. Among these methods,
we observed that our proposed LNLCN model performs better in terms of number of
parameters, FLOPs, and running time. Compared with other models, the LNLCN model
has higher inference speed and lower computational cost.

However, our work also has some limitations. Although the performance on the
standard dataset reached a good performance index, the real image has the problem of
sparse data samples and unknown degradation kernel. In actual application, the algorithm
may not achieve the expected effect. Determining how to simulate the actual image
degradation kernel is the key to improving the robustness of the algorithm.

In summary, in future work, we will focus on reconstructing natural and realistic SR
images under different degradation conditions. We will use image prior knowledge to
improve the accuracy of super-resolution reconstruction in real complex scenes. Specifically,
we will use the parser to deal with the degradation factors of different spatial variations,
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simulating the situation of super-resolution tasks in real situations, making the model
more applicable.

Table 5. Relationship between inference speed and computational cost of different models under 4×.

Method Params. FLOPs (4×) PSNR (Set5 4×) Running Time

VDSR [14] 670 k 612.6 G 31.35 0.00597 s

CARN [55] 1600 k 90.9 G 32.13 0.00278 s

RDN [50] 22,271 k 1310 G 32.47 0.243 s

NLSN [31] 44,157 k 2956 G 32.59 0.502 s

HAN [52] 64,199 k 3776 G 32.64 0.628 s

LNLCN (Ours) 17,943 k 1175 G 32.69 0.236 s

6. Conclusions

In this paper, we propose a novel learnable nonlocal contrastive network (LNLCN).
To reduce the huge computational cost of the nonlocal mechanism, we propose a learnable
nonlocal contrastive attention module (LNLCA) and further propose a deep feature fusion
module (DFFAG) capable of fusing local adjacency information with nonlocal self-similarity
information. Furthermore, we alleviate the ill-posedness of the SR task by introducing
an adaptive objective training strategy to seek a potentially optimal solution. Extensive
experiments demonstrate that the proposed method has advantages in terms of computa-
tional cost and reconstruction effects. The next step will focus on reconstructing natural
and realistic SR images under different degradation conditions.
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