Ionizing Radiation Induced Removal of Ofloxacin, Abatement of Its Toxicity and Antibacterial Activity in Various Water Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Water Matrices, and Irradiation
2.2. COD, TOC, OUR and BOD
2.3. Toxicity and Agar Diffusion Tests
3. Results and Discussion
3.1. Reaction Systems
3.2. COD and TOC Removals
3.3. BOD and OUR Measurements
3.4. Agar Diffusion Tests
3.5. Toxicity Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Omar, M.A. Ofloxacin. In Profiles of Drug Substances, Excipients and Related Methodology; Brittain, H.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 34, pp. 265–298. [Google Scholar] [CrossRef]
- Zuccato, E.; Castiglioni, S.; Bagnati, R.; Melis, M.; Fanelli, R. Source, occurrence and fate of antibiotics in the Italian aquatic environment. J. Hazard. Mater. 2010, 179, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Esposito, B.R.; Capobianco, M.L.; Martelli, A.; Navacchia, M.L.; Pretali, L.; Saracino, M.; Zanellia, A.; Emmi, S.S. Advanced water remediation from ofloxacin by ionizing radiation. Radiat. Phys. Chem. 2017, 141, 118–124. [Google Scholar] [CrossRef]
- Babić, S.; Horvat, A.J.M.; Pavlović, D.M.; Kaštelan-Macan, M. Determination of pKa values of active pharmaceutical ingredients. TrAC Trends Anal. Chem. 2007, 26, 1043–1061. [Google Scholar] [CrossRef]
- Sanseverino, I.; Navarro Cuenca, A.; Loos, R.; Marinov, D.; Lettieri, T. State of the Art on the Contribution of Water to Antimicrobial Resistance; JRC Technical Reports; European Union: Luxemburg, 2018; Available online: https://ec.europa.eu/jrc (accessed on 6 June 2023).
- Rodriguez-Mozaz, R.; Vaz-Moreira, I.; Giustina, S.V.D.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- Wang, J.-F.; Liu, Y.; Shao, P.; Zhu, Z.-Y.; Ji, H.-D.; Du, Z.-X.; Wang, C.-C.; Liu, W.; Gao, L.-J. Efficient ofloxacin degradation via photo-Fenton process over eco-friendly MIL-88A(Fe): Performance, degradation pathways, intermediate library establishment and toxicity evaluation. Environ. Res. 2022, 210, 112937. [Google Scholar] [CrossRef]
- Fernández-Velayos, S.; Menéndez, N.; Herrasti, P.; Mazarío, E. Ofloxacin degradation over nanosized Fe3O4 catalyst via thermal activation of persulfate ions. Catalysts 2023, 13, 256. [Google Scholar] [CrossRef]
- Stefan, M.I. Advanced Oxidation Processes for Water Treatment; IWA Publishing: London, UK, 2017; 710p, ISBN 97817804071280. [Google Scholar]
- An, T.; Yang, H.; Song, W.; Li, G.; Luo, H.; Cooper, W.J. Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis. J. Phys. Chem. 2010, 114, 2569–2575. [Google Scholar] [CrossRef]
- Fu, X.-M.; Luo, M.; Ma, L.-L.; Yang, G.; Xu, D.-D.; Liu, Z.-M. Studies on the degradation of ofloxacin by Electron Beam irradiation in aqueous solution. China Environ. Sci. 2016, 36, 3033–3039. [Google Scholar]
- Changotra, R.; Guin, J.P.; Varshney, L.; Dhir, A. Assessment of reaction intermediates of gamma radiation-induced degradation of ofloxacin in aqueous solution. Chemosphere 2018, 208, 60–213. [Google Scholar] [CrossRef]
- Changotra, R.; Guin, J.P.; Khader, S.A.; Varshney, L.; Dhir, A. Electron beam induced degradation of ofloxacin in aqueous solution: Kinetics, removal mechanism and cytotoxicity assessment. Chem. Eng. J. 2019, 356, 973–984. [Google Scholar] [CrossRef]
- Santoke, H.; Song, W.; Cooper, W.J.; Greaves, J.; Miller, G.E. Free-radical-induced oxidative and reductive degradation of fluoroquinolone pharmaceuticals: Kinetic studies and degradation mechanism. J. Phys. Chem. A 2009, 113, 7846–7851. [Google Scholar] [CrossRef] [PubMed]
- Tegze, A.; Sági, G.; Kovács, K.; Homlok, R.; Tóth, T.; Mohácsi-Farkas, C.; Wojnárovits, L.; Takács, E. Degradation of fluoroquinolone antibiotics during ionizing radiation treatment and assessment of antibacterial activity, toxicity and biodegradability of the products. Radiat. Phys. Chem. 2018, 147, 101–105. [Google Scholar] [CrossRef]
- Tegze, A.; Sági, G.; Kovács, K.; Tóth, T.; Takács, E.; Wojnárovits, L. Radiation induced degradation of ciprofloxacin and norfloxacin: Kinetics and product analysis. Radiat. Phys. Chem. 2019, 158, 68–75. [Google Scholar] [CrossRef]
- Iswarya, G.S.M.; Nirkayani, B.; Kavithakani, A.; Padmanaban, V.C. Statistical modeling of radiolytic (60Co γ) degradation of ofloxacin, antibiotic: Synergetic effect, kinetic studies and assessment of its degraded metabolites. Front. Environ. Sci. Eng. 2019, 13, 42. [Google Scholar] [CrossRef]
- ISO/ASTM 51538:2009(E); Standard Practice for Use of the Ethanol-Chlorobenzene Dosimetry System. ISO: Geneva, Switzerland, 2009.
- ISO 6060:1989; International Standard, Water-Quality: Determination of Chemical Oxygen Demand, 2nd ed. ISO: Geneva, Switzerland, 1989.
- DIN EN 1899-1, 1998; Water Quality. Determintion of the Biochemical Oxygen Demand after N Days (BOD[n]) of Water—Part 1: Dilution and Seeding Method with Allylthiourea Addition. ISO: Geneva, Switzerland, 1989.
- ISO 8192:1986; Water Quality—Test for Inhibition of Oxygen Consumption by Activated Sludge. ISO: Geneva, Switzerland, 1986.
- Illés, E.; Tegze, A.; Kovács, K.; Sági, G.; Papp, Z.; Takács, E.; Wojnárovits, L. Hydrogen peroxide formation during radiolysis of aerated aqueous solutions of organic molecules. Radiat. Phys. Chem. 2017, 134, 8–13. [Google Scholar] [CrossRef]
- Kovács, K.; Sági, G.; Takács, E.; Wojnárovits, L. Use of bovine catalase and manganese dioxide for elimination of hydrogen peroxide from partly oxidized aqueous solutions of aromatic molecules—Unexpected complications. Radiat. Phys. Chem. 2017, 139, 147–151. [Google Scholar] [CrossRef]
- Sági, G.; Bezsenyi, A.; Kovács, K.; Klátyik, S.; Darvas, B.; Székács, A.; Wojnárovits, L.; Takács, E. The impact of H2O2 and the role of mineralization in biodegradation or ecotoxicity assessment of advanced oxidation processes. Radiat. Phys. Chem 2018, 144, 361–366. [Google Scholar] [CrossRef]
- Bezsenyi, A.; Sági, G.; Makó, M.; Wojnárovits, L.; Takács, E. The effect of hydrogen peroxide on the biochemical oxygen demand (BOD) values measured during ionizing radiation treatment of wastewater. Radiat. Phys. Chem. 2021, 189, 109773. [Google Scholar] [CrossRef]
- DIN EN ISO 11348-2:1999; Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio Fischeri (Luminescent Bacteria Test) Part 2: Method Using Liquid-Dried Bacteria. ISO: Geneva, Switzerland, 1999.
- Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 2008, 61, 1295–1301. [Google Scholar] [CrossRef] [Green Version]
- Buxton, G.V. An overview of the radiation chemistry of liquids. In Radiation Chemistry: From Basics to Applications in Material and Life Sciences; Spotheim-Maurizot, M., Mostafavi, M., Douki, T., Belloni, J., Eds.; EDP Sciences: Les Ulis, France, 2008; pp. 3–16. [Google Scholar] [CrossRef]
- Bielski, B.H.J.; Cabelli, D.E.; Ravindra, L.; Arudi, R.L. Reactivity of HO2/O−2 radicals in aqueous solution. J. Phys. Chem. Ref. Data 1985, 14, 1041–1100. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.R.; Milke, M.W.; Michelcic, J.R. Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals. Water Res. 1999, 33, 327–334. [Google Scholar] [CrossRef]
- Homlok, R.; Takács, E.; Wojnárovits, L. Degradation of organic molecules in advanced oxidation processes: Relation between chemical structure and degradability. Chemosphere 2013, 91, 383–389. [Google Scholar] [CrossRef]
- Giannakis, S.; Gamarra Vives, F.A.; Grandjean, D.; Magnet, A.; De Alencastro, L.F.; Pulgarin, C. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods. Water Res. 2015, 84, 295–306. [Google Scholar] [CrossRef]
- Michael, I.; Hapeshi, E.; Aceña, J.; Perez, S.; Petrović, M.; Zapata, M.; Barceló, D.; Malato, S.D.; Fatta-Kassinos, D. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: Mineralization and characterization of major intermediate products. Sci. Total Environ. 2013, 461–462, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Shende, R.V.; Mahajani, V.V. Kinetics of wet air oxidation of glyoxalic acid and oxalic acid. Ind. Eng. Chem. Res. 1994, 33, 3125–3130. [Google Scholar] [CrossRef]
- Von Sonntag, C. The Chemical Basis of Radiation Biology; Taylor and Francis: London, UK, 1987. [Google Scholar]
- Metcalf, L.; Eddy, H.P. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Zona, R.; Solar, S. Oxidation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: Degradation, detoxification and mineralization. Radiat. Phys. Chem. 2003, 66, 137–143. [Google Scholar] [CrossRef]
- Ren, S.; Frymier, P.D. Estimating the toxicities of organic chemicals to bioluminescent bacteria and activated sludge. Water Res. 2002, 36, 4406–4414. [Google Scholar] [CrossRef]
- IAEA. Radiation Processing, Environmental Applications; International Atomic Energy Agency: Vienna, Austria, 2007. [Google Scholar]
- CGN. 2020. Available online: https://www.cgndea.com/worlds-largest-industrial-wastewater-treatment-project/ (accessed on 6 June 2023).
- IAEA. 2020. Available online: https://www.iaea.org/newscenter/news/started-with-iaea-support-chinas-electron-beam-industry-opens-worlds-largest-wastewater-treatment-facility (accessed on 6 June 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojnárovits, L.; Homlok, R.; Kovács, K.; Bezsenyi, A.; Takács, E. Ionizing Radiation Induced Removal of Ofloxacin, Abatement of Its Toxicity and Antibacterial Activity in Various Water Matrices. Appl. Sci. 2023, 13, 7211. https://doi.org/10.3390/app13127211
Wojnárovits L, Homlok R, Kovács K, Bezsenyi A, Takács E. Ionizing Radiation Induced Removal of Ofloxacin, Abatement of Its Toxicity and Antibacterial Activity in Various Water Matrices. Applied Sciences. 2023; 13(12):7211. https://doi.org/10.3390/app13127211
Chicago/Turabian StyleWojnárovits, László, Renáta Homlok, Krisztina Kovács, Anikó Bezsenyi, and Erzsébet Takács. 2023. "Ionizing Radiation Induced Removal of Ofloxacin, Abatement of Its Toxicity and Antibacterial Activity in Various Water Matrices" Applied Sciences 13, no. 12: 7211. https://doi.org/10.3390/app13127211
APA StyleWojnárovits, L., Homlok, R., Kovács, K., Bezsenyi, A., & Takács, E. (2023). Ionizing Radiation Induced Removal of Ofloxacin, Abatement of Its Toxicity and Antibacterial Activity in Various Water Matrices. Applied Sciences, 13(12), 7211. https://doi.org/10.3390/app13127211