Predicting Critical Nodes in Temporal Networks by Dynamic Graph Convolutional Networks
Abstract
:1. Introduction
- Convert the problem of finding critical nodes in temporal networks to regression in deep learning.
- A novel and effective learning framework based on the combination of special GCNs and RNNs is proposed to identify nodes with the best spreading ability.
- The proposed method is superior to both classical and state-of-the-art methods when applied to four real-world temporal networks.
- It takes linear time complexity to deal with large networks with thousands of nodes and edges in a short time.
2. Related Works
3. Background
3.1. Temporal Networks
3.2. Recurrent Neural Network
3.3. Graph Neural Network
4. Method
4.1. Problem Definition
4.2. Dynamic Graph Convolutional Network
Algorithm 1: The flow of DGCN. |
4.3. Complexity Analysis
5. Experiments
5.1. Datasets
- Email [53]. The directed temporal network is generated by the mail data from a research institution in Europe.
- Contact [54]. An undirected temporal network contains connections between users using mobile wireless devices. An edge is generated if two people are in contact.
- DNC [55]. A directed temporal network of emails in the 2016 Democratic National Committee email leak.
- UCI [56]. A directed temporal network contains sent messages between students at the University of California, Irvine.
5.2. Experimental Settings
5.3. Benchmark Methods
5.4. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weng, J.; Lim, E.P.; Jiang, J.; He, Q. TwitterRank: Finding topic-sensitive influential twitterers. In Proceedings of the WSDM 2010-Proceedings of the 3rd ACM International Conference on Web Search and Data Mining, New York, NY, USA, 3–6 February 2010; pp. 261–270. [Google Scholar]
- Ghosh, S.; Banerjee, A.; Sharma, N.; Agarwal, S.; Ganguly, N.; Bhattacharya, S.; Mukherjee, A. Statistical analysis of the Indian Railway Network: A complex network approach. Acta Phys. Pol. B Proc. Suppl. 2011, 4, 123–137. [Google Scholar] [CrossRef]
- Guimerà, R.; Danon, L.; Díaz-Guilera, A.; Giralt, F.; Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E-Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2003, 68, 065103. [Google Scholar] [CrossRef] [Green Version]
- Colizza, V.; Flammini, A.; Serrano, M.A.; Vespignani, A. Detecting rich-club ordering in complex networks. Nat. Phys. 2006, 2, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Gallos, L.; Havlin, S.; Kitsak, M.; Liljeros, F.; Makse, H.; Muchnik, L.; Stanley, H. Identification of influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [Google Scholar]
- Zhou, F.; Lü, L.; Mariani, M.S. Fast influencers in complex networks. Commun. Nonlinear Sci. Numer. Simul. 2019, 74, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, P.; Yang, L.X.; Yang, X.; Tang, Y.Y.; Wu, Y. A discount strategy in word-of-mouth marketing. Commun. Nonlinear Sci. Numer. Simul. 2019, 74, 167–179. [Google Scholar] [CrossRef]
- Wang, S.; Lv, W.; Zhang, J.; Luan, S.; Chen, C.; Gu, X. Method of power network critical nodes identification and robustness enhancement based on a cooperative framework. Reliab. Eng. Syst. Saf. 2021, 207, 107313. [Google Scholar] [CrossRef]
- Joodaki, M.; Dowlatshahi, M.B.; Joodaki, N.Z. An ensemble feature selection algorithm based on PageRank centrality and fuzzy logic. Knowl.-Based Syst. 2021, 233, 107538. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, J.; Liu, S.; Wang, Y. Identifying influential spreaders in complex networks for disease spread and control. Sci. Rep. 2022, 12, 5550. [Google Scholar] [CrossRef]
- Lü, L.; Chen, D.; Ren, X.L.; Zhang, Q.M.; Zhang, Y.C.; Zhou, T. Vital nodes identification in complex networks. Phys. Rep. 2016, 650, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Yang, L.; Chen, X.; Chen, D.; Gao, H.; Ma, J. Influential nodes identification in complex networks via information entropy. Entropy 2020, 22, 242. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.B.; Sun, H.L.; Tang, Q.; Tian, S.Z.; Xie, M. Identifying influential spreaders in complex networks by propagation probability dynamics. Chaos 2019, 29, 030120. [Google Scholar] [CrossRef]
- Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 1972, 2, 113–130. [Google Scholar] [CrossRef]
- Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Cui, P.; Wang, X.; Pei, J.; Zhu, W. A Survey on Network Embedding. IEEE Trans. Knowl. Data Eng. 2019, 31, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.Y.; Wang, Y.P.; Fu, Y.; Chen, D.B.; Xie, M. Identifying critical nodes in complex networks via graph convolutional networks. Knowl.-Based Syst. 2020, 198, 105893. [Google Scholar] [CrossRef]
- Zhao, G.; Jia, P.; Zhou, A.; Zhang, B. InfGCN: Identifying influential nodes in complex networks with graph convolutional networks. Neurocomputing 2020, 414, 18–26. [Google Scholar] [CrossRef]
- Fan, C.; Zeng, L.; Sun, Y.; Liu, Y.Y. Finding key players in complex networks through deep reinforcement learning. Nat. Mach. Intell. 2020, 2, 317–324. [Google Scholar] [CrossRef]
- Holme, P.; Saramäki, J. Temporal networks. Phys. Rep. 2012, 519, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Michail, O.; Spirakis, P. Elements of the theory of dynamic networks. Commun. ACM 2018, 61, 72. [Google Scholar] [CrossRef]
- Pan, R.K.; Saramäki, J. Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2011, 84, 1577–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skarding, J.; Gabrys, B.; Musial, K. Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey. arXiv 2020, arXiv:2005.07496. [Google Scholar]
- Gers, F.A.; Schraudolph, N.N.; Schmidhuber, J. Learning precise timing with LSTM recurrent networks. J. Mach. Learn. Res. 2003, 3, 115–143. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2323. [Google Scholar] [CrossRef] [Green Version]
- Grover, A.; Leskovec, J. Node2vec: Scalable feature learning for networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Ribeiro, L.F.; Saverese, P.H.; Figueiredo, D.R. Struc2vec: Learning Node Representations from Structural Identity. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 13–17. [Google Scholar]
- Huang, D.W.; Yu, Z.G. Dynamic-Sensitive centrality of nodes in temporal networks. Sci. Rep. 2017, 7, 41454. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Zhan, X.; Zhou, Y.; Liu, C.; Zhang, Z.K. Identifying vital nodes on temporal networks: An edge-based K-shell decomposition. In Proceedings of the Chinese Control Conference, CCC, Dalian, China, 26–28 July 2017; pp. 1402–1407. [Google Scholar]
- Kimura, M.; Saito, K.; Motoda, H. Blocking links to minimize contamination spread in a social network. ACM Trans. Knowl. Discov. Data 2009, 3, 1–23. [Google Scholar] [CrossRef]
- Kim, H.; Anderson, R. Temporal node centrality in complex networks. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2012, 85, 026107. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G.; Lin, J.H.; Guo, Q.; Zhou, T. Locating influential nodes via dynamics-sensitive centrality. Sci. Rep. 2016, 6, 21380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, D.; Myers, S.A.; Clauset, A.; Porter, M.A.; Mucha, P.J. Eigenvector-based centrality measures for temporal networks. Multiscale Model. Simul. 2017, 15, 537–574. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Zhao, C.; Zhang, X.; Wang, X.; Yi, D. Centrality measures in temporal networks with time series analysis. Epl 2017, 118, 36001. [Google Scholar] [CrossRef]
- Chandran, J.; Viswanatham, V.M. Dynamic node influence tracking based influence maximization on dynamic social networks. Microprocess. Microsyst. 2022, 95, 104689. [Google Scholar] [CrossRef]
- Jiang, J.L.; Fang, H.; Li, S.Q.; Li, W.M. Identifying important nodes for temporal networks based on the ASAM model. Phys. A Stat. Mech. Its Appl. 2022, 586, 126455. [Google Scholar] [CrossRef]
- Bi, J.; Jin, J.; Qu, C.; Zhan, X.; Wang, G.; Yan, G. Temporal gravity model for important node identification in temporal networks. Chaos Solitons Fractals 2021, 147, 110934. [Google Scholar] [CrossRef]
- Niepert, M.; Ahmad, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the 33rd International Conference on Machine Learning, ICML 2016, New York, NY, USA, 19–24 June 2016; Volume 4, pp. 2958–2967. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017-Conference Track Proceedings, Toulon, France, 24–26 April 2017. [Google Scholar]
- Kazemi, S.M.; Kobyzev, I.; Forsyth, P.; Goel, R.; Jain, K.; Kobyzev, I.; Sethi, A.; Forsyth, P.; Poupart, P.; Goel, R.; et al. Representation Learning for Dynamic Graphs: A Survey. J. Mach. Learn. Res. 2020, 21, 2648–2720. [Google Scholar]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef] [Green Version]
- Medsker, L.R.; Jain, L.C. Recurrent Neural Networks Design and Applications. J. Chem. Inf. Model. 2013, 53, 1689–1699. [Google Scholar]
- Seo, Y.; Defferrard, M.; Vandergheynst, P.; Bresson, X. Structured sequence modeling with graph convolutional recurrent networks. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); LNCS; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11301, pp. 362–373. [Google Scholar]
- Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. Adv. Neural Inf. Process. Syst. 2016, 59, 395–398. [Google Scholar]
- Taheri, A.; Gimpel, K.; Berger-Wolf, T. Learning to represent the evolution of dynamic graphs with recurrent models. In Proceedings of the Web Conference 2019-Companion of the World Wide Web Conference, WWW 2019, San Francisco, CA, USA, 13–17 May 2019; pp. 301–307. [Google Scholar]
- Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R. Gated Graph Sequence Neural Networks. arXiv 2015, arXiv:1511.05493. [Google Scholar]
- Chen, J.; Xu, X.; Wu, Y.; Zheng, H. GC-LSTM: Graph convolution embedded LSTM for dynamic link prediction. arXiv 2018, arXiv:1812.04206. [Google Scholar] [CrossRef]
- Munikoti, S.; Das, L.; Natarajan, B. Scalable graph neural network-based framework for identifying critical nodes and links in complex networks. Neurocomputing 2022, 468, 211–221. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Urgen Schmidhuber, J. Long Shortterm Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Trans. Knowl. Data Eng. 2020, 34, 249–270. [Google Scholar] [CrossRef] [Green Version]
- Paranjape, A.; Benson, A.R.; Leskovec, J. Motifs in temporal networks. In Proceedings of the WSDM 2017-Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; pp. 601–610. [Google Scholar]
- Chaintreau, A.; Hui, P.; Crowcroft, J.; Diot, C.; Gass, R.; Scott, J. Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput. 2007, 6, 606–620. [Google Scholar] [CrossRef]
- Yu, E.Y.; Fu, Y.; Chen, X.; Xie, M.; Chen, D.B. Identifying critical nodes in temporal networks by network embedding. Sci. Rep. 2020, 10, 12494. [Google Scholar] [CrossRef]
- Opsahl, T.; Panzarasa, P. Clustering in weighted networks. Soc. Netw. 2009, 31, 155–163. [Google Scholar] [CrossRef]
- Knight, W.R. A Computer Method for Calculating Kendall’s Tau with Ungrouped Data. J. Am. Stat. Assoc. 1966, 61, 436. [Google Scholar] [CrossRef]
Networks | N | M | L | |
---|---|---|---|---|
986 | 332,334 | 168 | 75 | |
Contact | 274 | 28,244 | 1 | 69 |
DNC | 1865 | 39,623 | 12 | 56 |
UCI | 1899 | 59,835 | 24 | 58 |
Networks | ||||||
---|---|---|---|---|---|---|
69.17 | 77.45 | 94.46 | 132.30 | 195.10 | 341.90 | |
Contact | 21.54 | 22.73 | 28.06 | 38.87 | 58.55 | 106.61 |
DNC | 128.01 | 147.25 | 175.50 | 247.95 | 362.78 | 643.84 |
UCI | 126.32 | 142.78 | 176.30 | 261.63 | 385.58 | 752.10 |
Networks | DGCN | N2V-LSTM | S2V-LSTM | TDC | TK |
---|---|---|---|---|---|
2.46 | 0.08 | 0.07 | 26.67 | 0.32 | |
Contact | 0.09 | 0.04 | 0.04 | 1.20 | 0.06 |
DNC | 0.45 | 0.16 | 0.14 | 132.71 | 0.37 |
UCI | 0.23 | 0.17 | 0.13 | 140.74 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, E.; Fu, Y.; Zhou, J.; Sun, H.; Chen, D. Predicting Critical Nodes in Temporal Networks by Dynamic Graph Convolutional Networks. Appl. Sci. 2023, 13, 7272. https://doi.org/10.3390/app13127272
Yu E, Fu Y, Zhou J, Sun H, Chen D. Predicting Critical Nodes in Temporal Networks by Dynamic Graph Convolutional Networks. Applied Sciences. 2023; 13(12):7272. https://doi.org/10.3390/app13127272
Chicago/Turabian StyleYu, Enyu, Yan Fu, Junlin Zhou, Hongliang Sun, and Duanbing Chen. 2023. "Predicting Critical Nodes in Temporal Networks by Dynamic Graph Convolutional Networks" Applied Sciences 13, no. 12: 7272. https://doi.org/10.3390/app13127272
APA StyleYu, E., Fu, Y., Zhou, J., Sun, H., & Chen, D. (2023). Predicting Critical Nodes in Temporal Networks by Dynamic Graph Convolutional Networks. Applied Sciences, 13(12), 7272. https://doi.org/10.3390/app13127272