Capture of CO2 Using Mixed Amines and Solvent Regeneration in a Lab-Scale Continuous Bubble-Column Scrubber
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Design
2.2. Indexes Determination
3. Experimental Procedure
3.1. Absorption Test
3.2. Regeneration Test
4. Results and Discussions
4.1. Steady-State Operation
4.2. Effects of Mixed Amines on the Indexes
4.3. Taguchi Analysis
4.4. Verifications of Optimum Conditions
4.5. Effects of Variables on the Indexes
4.6. Solvent Regeneration Test
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Special Report on Global Warming of 1.5 °C. Available online: https://en.wikipedia.org/wiki/Special_Report_on_Global_Warming_of_1.5_%C2%B0C (accessed on 5 June 2023).
- Gabrielli, P.; Poluzzi, A.; Kramer, G.J.; Spiers, C.; Mazzotti, M.; Gazzani, M. Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage. Renew. Sustain. Energy Rev. 2020, 121, 109629. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilization technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Han, K.; Ahn, C.K.; Lee, M.S. Performance of an ammonia-based CO2 Capture pilot facility in iron and steel industry. Int. J. Greenh. Gas Control 2014, 27, 239–246. [Google Scholar] [CrossRef]
- Weng, W.; Tang, L.; Xiao, W. Capture and electro-splitting of CO2 in molten salts. J. Energy Chem. 2019, 28, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Jiang, R.; Gao, M.; Mao, X.; Wang, D. Advancements and potentials of molten salt CO2 capture and electrochemical transformation (MSCC-ET) process. Curr. Opin. Electrochem. 2019, 17, 38–46. [Google Scholar] [CrossRef]
- Ratso, S.; Walke, P.R.; Mikli, V.; Locs, J.; Smits, K.; Viota, V.; Sutka, A.; Kruusenberg, I. CO2 turned into a nitrogen doped carbon catalyst for fuel cells and metal-air battery applications. Green Chem. 2021, 23, 4435–4445. [Google Scholar] [CrossRef]
- Feron, P.H.M. The potential for improvement of the energy performance of pulverized coal fired power stations with post-combustion capture of carbon dioxide. Energy Procedia 2009, 1, 1067–1074. [Google Scholar] [CrossRef] [Green Version]
- Badea, A.A.; Dinca, C.F. CO2 capture from post-combustion gas by employing MEA absorption process–experimental investigation for pilot studies. Univ. Politeh. Buchar. Sci. Bull. Ser. D Mech. Eng. 2012, 74, 1454–2358. [Google Scholar]
- Yu, C.H.; Huang, C.H.; Tan, C.S. A Review of CO2 Capture by absorption and adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef] [Green Version]
- Stec, M.; Tatarczuk, A.; Cław-Solny, L.W.; Krotki, A.; Spietz, T.; Wilk, A.; Spiewak, D. Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland. Clean Techn. Environ. Policy 2016, 18, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Hoff, K.A.; Mejdell, T. Heat of absorption of CO2 with aqueous solutions of MEA: New experimental data. Energy Procedia 2014, 63, 1446–1455. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Fu, K.; Liang, Z.; Yang, Z.; Rongwong, W.; Na, Y. Experimental studies of regeneration heat duty for CO2 desorption from aqueous DETA solution in a randomly packed column. Energy Procedia 2014, 63, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.B.; La Rubia, M.D.; Navaza, J.M.; Pacheco, R.; Gomez-Dıaz, D. Characterization of MIPA and DIPA aqueous solutions in relation to absorption, speciation and degradation. J. Ind. Eng. Chem. 2015, 21, 428–435. [Google Scholar] [CrossRef]
- Choi, B.K.; Kim, S.M.; Lee, J.S.; Park, Y.C.; Chun, D.H.; Shin, H.Y.; Sung, H.J.; Min, B.M.; Moon, J.H. Effect of blending ratio and temperature on CO2 solubility in blended aqueous solution of monoethanolamine and 2-amino-2-methyl-propanol: Experimental and modeling study using the electrolyte nonrandom two-liquid model. ACS Omega 2020, 5, 28738–28748. [Google Scholar] [CrossRef]
- Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M. Kinetics of the reaction of CO2 with aqueous potassium salt of Taurine and Glycine. AIChE J. 2003, 49, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.C.; Lin, S.Z. Optimization in the absorption and desorption of CO2 using sodium glycinate solution. Appl. Sci. 2018, 8, 2041. [Google Scholar] [CrossRef] [Green Version]
- Diao, Y.F.; Zheng, X.Y.; He, B.S.; Chen, C.H.; Xu, X.C. Experimental study on capturing CO2 greenhouse gas by ammonia scrubbing. Energy Convers. Manag. 2004, 45, 2283–2296. [Google Scholar] [CrossRef]
- Yeh, J.T.; Resnik, K.P.; Rygle, K.; Pennline, H.W. Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process. Technol. 2005, 86, 1533–1546. [Google Scholar] [CrossRef]
- Chen, P.C. Absorption of carbondioxide in a bubble-column scrubber. In Greenhouse GASES—Capturing, Utlization and Reduction; InTech: Houston, TX, USA, 2012; Chapter 5; pp. 95–116. [Google Scholar]
- Borhani, T.N.G.; Azarpour, A.; Akbari, V.; Alwi, S.R.W.; Manan, Z.A. CO2 capture with potassium carbonate solutions: A state-of-the-art review. Int. J. Greenh. Gas Control 2015, 41, 142–162. [Google Scholar] [CrossRef]
- Bishnoi, S.; Rochelle, G.T. Absorption of carbon dioxide into aqueous piperazine: Reaction kinetics, mass transfer and solubility. Chem. Eng. Sci. 2000, 55, 5531–5543. [Google Scholar] [CrossRef]
- Aroonwilas, A.; Veawab, A. Integration of CO2 capture unit using blended MEA-AMP solution into coal-fired power plants. Energy Procedia 2009, 1, 4315–4321. [Google Scholar] [CrossRef] [Green Version]
- Mangalapally, H.P.; Notz, R.; Hoch, S.; Asprion, N.; Sieder, G.; Garcia, H.; Hasse, H. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents. Energy Procedia 2009, 1, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Adeosun, A.; Hadri, N.E.; Goetheer, E.; Abu-Zahra, M.R.M. Absorption of CO2 by amine blends solution: An experimental evaluation. Int. J. Eng. Sci. 2013, 3, 12–23. [Google Scholar]
- Dash, S.K.; Samanta, A.N.; Bandyopadhyay, S.S. Simulation and parametric study of post combustion CO2 capture process using (AMP + PZ) blended solvent. Int. J. Greenh. Gas Control 2014, 21, 130–139. [Google Scholar] [CrossRef]
- Nwaoha, C.; Idem, R.; Supap, T.; Saiwan, C.; Tontiwachwuthikul, P.; Rongwong, W.; Al-Marri, M.J.; Benamor, A. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2–amino–2–methyl–1–propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri–solvent blend for carbon dioxide (CO2) capture. Chem. Eng. Sci. 2017, 170, 26–35. [Google Scholar] [CrossRef]
- Ali Khan, A.; Halder, G.; Saha, A.K. Kinetic effect and absorption performance of piperizine activator into aqueous solutions of 2-amino-1-methyl-1-propanol through post-combustion CO2 capture. Korean J. Chem. Eng. Eng. 2019, 63, 1090–1101. [Google Scholar] [CrossRef]
- Lai, Q.; Kong, L.; Gong, W.; Russell, A.G.; Fa, M. Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution. Applied Energy 2019, 254, 113696. [Google Scholar] [CrossRef]
- Chen, P.C.; Luo, Y.X.; Cai, P.W. CO2 capture using monoethanolamine in a bubble-column scrubber. Chem. Eng. Technol. 2015, 38, 274–282. [Google Scholar] [CrossRef]
- Hwang, K.S.; Park, S.W.; Park, D.W.; Oh, K.J.; Kim, S.S. Absorption of carbon dioxide into diisopropanolamine solutions of polar organic solvents. J. Taiwan Inst. Chem. Eng. 2010, 41, 16–21. [Google Scholar] [CrossRef]
- Wanderley, R.R.; Ponce, G.J.C.; Knuutila, H.K. Solubility and heat of absorption of CO2 into diisopropylamine and N,N-diethylethanolamine mixed with organic solvents. Energy Fuels 2020, 34, 8552–8561. [Google Scholar] [CrossRef]
- Mun, J.H.; Shin, B.J.; Kim, S.M.; You, J.K.; Park, Y.C.; Chun, D.H.; Lee, J.S.; Min, B.M.; Lee, U.; Kim, K.M.; et al. Optimal MEA/DIPA/water blending ratio for minimizing regeneration energy in absorption-based carbon capture process: Experimental CO2 solubility and thermodynamic modeling Author links open overlay panel. Chem. Eng. J. 2022, 444, 136523. [Google Scholar] [CrossRef]
- Chakma, A.; Lemonier, J.P.; Chornet, E.; Overend, R.P. Absorption of CO2 by aqueous triethanolamine (TEA) solutions in a high shear jet absorber. Gas Sep. Purif. 1989, 3, 65–70. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; López, A.B.; La Rubia García, M.D.; Pacheco, R.; Gómez-Díaz, D. Carbon dioxide absorption in triethanolamine aqueous solutions: Hydrodynamics and Mass Transfer. Chem. Eng. Technol. 2014, 37, 419–426. [Google Scholar]
- Liu, B.; Cui, Z.; Tian, W. The kinetics investigation of CO2 absorption into TEA and DEEA amine solutions containing carbonic anhydrase. Processes 2021, 9, 2140. [Google Scholar] [CrossRef]
- Versteeg, G.F.; Dijck, L.A.J.; Swaaij, W.P.M. On the kinetics between CO2 and Alkaloamines both in aqueous and non-aqueous solutions. An overview. Chem. Eng. Comm. 1996, 144, 113–158. [Google Scholar] [CrossRef]
- Vaidya, P.D.; Kenig, E.Y. Absorption of CO2 into aqueous blends of alkanolamines prepared from renewable resources. Chem. Eng. Sci. 2007, 62, 7344–7350. [Google Scholar] [CrossRef]
- Vaidya, P.D.; Kenig, E.Y. CO2-alkanomine reaction kinetics: A review of recent work. Chem. Eng. Technol. 2007, 30, 1467–1474. [Google Scholar] [CrossRef]
- Cullinane, J.T.; Rochelle, G.T. Kinetics of carbon dioxide absorption into aqueous potassium carbonate and piperazine. Ind. Eng. Chem. Res. 2006, 45, 2531–2545. [Google Scholar] [CrossRef]
- Xiao, J.; Li, C.C.; Li, M.H. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol+monoethanolamin. Chem. Eng. Sci. 2000, 55, 161–175. [Google Scholar] [CrossRef]
- Khalili, F.; Rayer, A.V.; Henni, V.; East, A.L.L.; Tontiwachwuthikul, P. Kinetics and dissociation constants (pKa) of polyamines of importance in post-combustion carbon dioxide (CO2) capture studie. In Recent Advances in Post-Combustion CO2 Capture Chemistry; Attalla, M., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2012; Chapter 3. [Google Scholar]
- Esmaeili, A.; Liu, Z.; Xiang, Y.; Yun, J.; Shao, L. Assessment of carbon dioxide separation by amine solutions using electrolyte non-random two-liquid and Peng-Robinson models: Carbon dioxide absorption efficiency. J. Constr. Mater. 2021, 2, 3–10. [Google Scholar] [CrossRef]
- Derks, P.W.J.; Kleigeld, T.; van Aken, C.; Hogendoorn, J.A.; Versteeg, G.F. Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. Chem. Eng. Sci. 2006, 61, 6837–6854. [Google Scholar] [CrossRef] [Green Version]
- Little, R.J.; Versteeg, G.F.; van Swaaij, W.P.M. Kinetics of CO2 with primary and secondary amines in aqueous solutions-II. Influence of temperature and zwitterion formation and deprotonation rates. Chem. Eng. Sci. 1992, 47, 2037–2943. [Google Scholar] [CrossRef] [Green Version]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Mirzaei, S.; Shamiri, A.; Aroua, M.K. A review of different solvents, mass transfer, and hydrodynamics for postcombustion CO2 capture. Rev. Chem. Eng. 2015, 31. [Google Scholar] [CrossRef]
- Schlager, M.; Haushofer, G.; Triebl, A.; Wolf-Zöllner, V.; Lehner, M. Determination of volumetric mass transfer coefficients of structured packings at two different column diameters. Chem. Eng. Res. Des. 2022, 186, 462–472. [Google Scholar] [CrossRef]
- Tong, D.; Martin Trusler, J.P.; Maitland, G.C.; Gibbins, J.; Fennell, P.S. Solubility of carbon dioxide in aqueous solution of monoethanolamine or 2-amino-2-methyl-1-propanol: Experimental measurements and modeling. Int. J. Greenh. Gas Control 2012, 6, 37–47. [Google Scholar] [CrossRef]
- Chiu, L.F.; Li, M.H. Heat capacity of alkanolamine aqueous solutions. J. Chem. Eng. Data 1999, 44, 1396–1401. [Google Scholar] [CrossRef]
- Eller, K.; Henkes, E. Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed.; John Wiley & Sons: New York, NY, USA, 2005. [Google Scholar]
- Elhajj, J.; Al-Hindi, M.; Azizi, F. A Review of the absorption and desorption processes of carbon dioxide in water systems. Ind. Eng. Chem. Res. 2014, 53, 2–22. [Google Scholar] [CrossRef]
- Ojala, M.S.; Serrano, N.F.; Uusi-Kyyny, P.; Alopaeus, V. Comparative study: Absorption enthalpy of carbon dioxide into aqueous diisopropanolamine and monoethanolamine solutions and densities of the carbonated amine solutions. Fluid Phase Equilibria 2014, 376, 85–95. [Google Scholar] [CrossRef]
- Kim, E.K.; Yun, S.H.; Xhoi, J.H.; Nam, S.C.; Park, S.Y.; Jeong, S.K.; Yoon, Y.I. Comparison of CO2 absorption characteristics of aqueous solutions of diamines: Absorption capacity, specific heat capacity, and heat of absorption. Energy Fuels 2015, 29, 2582–2590. [Google Scholar] [CrossRef]
- Mangalapally, H.P.; Hasse, H. Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia 2011, 4, 1–8. [Google Scholar]
- Li, T.; Keener, T.C. A review: Desorption of CO2 from rich solutions in chemical absorption processes. Int. Greenh. Gas Control 2016, 51, 290–304. [Google Scholar] [CrossRef]
Items | MEA | DIPA | TEA | AMP | PZ |
---|---|---|---|---|---|
M.W. (g/mol) | 61.084 | 133.19 | 149.188 | 89.138 | 86.136 |
Density (g/cm3) | 1.0117 | 0.992 | 1.126 | 0.934 | 1.100 |
BP (°C) | 170 | 249 | 335.4 | 165.5 | 146 |
Solubility in water at 20 °C | Miscible | Miscible | Miscible | Miscible | Miscible |
Vapor pressure (pa) (20 °C) | 64 | 2 | 1 | 40 | 10.66 |
pKa | 9.50 | 8.80 | 7.76 | 9.70 | 9.78 |
Reaction rate constant, k2 (m3/s·kmol) (25 °C) | 3630 | 2585 | 2202 | 810.4 | 48,533 |
Activation energy Ea (kJ/mol) | 41.2 | 39.9 | 36.9 | 41.7 | 33.7 |
Factors/Levels | Level 1 | Level 2 | Level 3 | Level 4 | Level 5 |
---|---|---|---|---|---|
A (-) | MEA | MEA + DIPA | MEA + TEA | MEA + AMP | MEA + PZ |
B (wt%) | 5 | 10 | 15 | 20 | 25 |
C (mL/min) | 150 | 200 | 250 | 300 | 350 |
D (L/min) | 4 | 6 | 8 | 10 | 12 |
E (M) | 1 | 1.5 | 2 | 2.5 | 3 |
F (°C) | 25 | 30 | 35 | 40 | 45 |
No. 1 | 1 | 1 | 1 | 1 | 1 | 1 |
No. 2 | 1 | 2 | 2 | 2 | 2 | 2 |
No. 3 | 1 | 3 | 3 | 3 | 3 | 3 |
No. 4 | 1 | 4 | 4 | 4 | 4 | 4 |
No. 5 | 1 | 5 | 5 | 5 | 5 | 5 |
No. 6 | 2 | 1 | 2 | 3 | 4 | 5 |
No. 7 | 2 | 2 | 3 | 4 | 5 | 1 |
No. 8 | 2 | 3 | 4 | 5 | 1 | 2 |
No. 9 | 2 | 4 | 5 | 1 | 2 | 3 |
No. 10 | 2 | 5 | 1 | 2 | 3 | 4 |
No. 11 | 3 | 1 | 3 | 5 | 2 | 4 |
No. 12 | 3 | 2 | 4 | 1 | 3 | 5 |
No. 13 | 3 | 3 | 5 | 2 | 4 | 1 |
No. 14 | 3 | 4 | 1 | 3 | 5 | 2 |
No. 15 | 3 | 5 | 2 | 4 | 1 | 3 |
No. 16 | 4 | 1 | 4 | 2 | 5 | 3 |
No. 17 | 4 | 2 | 5 | 3 | 1 | 4 |
No. 18 | 4 | 3 | 1 | 4 | 2 | 5 |
No. 19 | 4 | 4 | 2 | 5 | 3 | 1 |
No. 20 | 4 | 5 | 3 | 1 | 4 | 2 |
No. 21 | 5 | 1 | 5 | 4 | 3 | 2 |
No. 22 | 5 | 2 | 1 | 5 | 4 | 3 |
No. 23 | 5 | 3 | 2 | 1 | 5 | 4 |
No. 24 | 5 | 4 | 3 | 2 | 1 | 5 |
No. 25 | 5 | 5 | 4 | 3 | 2 | 1 |
No. | pH | EF (%) | RA(104) (mol/L·s) | KGa (1/s) | γ (–) | ϕ (mol-CO2/L·mol-Solvent) |
---|---|---|---|---|---|---|
1 | 10.18 | 71.05 | 4.42 | 0.1195 | 1.2147 | 0.1485 |
2 | 10.75 | 80.26 | 7.74 | 0.2543 | 0.8856 | 0.1223 |
3 | 10.70 | 84.00 | 10.52 | 0.3808 | 0.6943 | 0.0990 |
4 | 10.56 | 84.42 | 14.68 | 0.5241 | 0.5902 | 0.0868 |
5 | 10.96 | 88.00 | 18.95 | 0.7740 | 0.5055 | 0.0755 |
6 | 10.55 | 90.67 | 13.54 | 0.6006 | 0.7201 | 0.1108 |
7 | 11.42 | 80.00 | 12.93 | 0.4179 | 0.5831 | 0.0792 |
8 | 10.20 | 58.67 | 12.46 | 0.2875 | 1.7294 | 0.1722 |
9 | 11.35 | 94.67 | 5.47 | 0.2825 | 0.3428 | 0.0551 |
10 | 10.65 | 89.33 | 8.21 | 0.3424 | 0.9110 | 0.1382 |
11 | 10.16 | 69.33 | 14.27 | 0.3962 | 1.3963 | 0.1643 |
12 | 10.61 | 94.67 | 5.79 | 0.3007 | 0.3086 | 0.0496 |
13 | 11.02 | 86.67 | 7.81 | 0.2980 | 0.2942 | 0.0433 |
14 | 9.60 | 79.73 | 9.98 | 0.3285 | 0.7979 | 0.1066 |
15 | 10.09 | 56.58 | 10.05 | 0.2283 | 2.2523 | 0.2192 |
16 | 10.90 | 90.79 | 8.30 | 0.3534 | 0.3055 | 0.0477 |
17 | 10.11 | 74.03 | 10.10 | 0.2938 | 1.0995 | 0.1419 |
18 | 9.85 | 72.73 | 12.79 | 0.3666 | 2.3056 | 0.2923 |
19 | 10.64 | 68.00 | 15.76 | 0.4150 | 1.3803 | 0.1593 |
20 | 10.98 | 96.00 | 5.60 | 0.3073 | 0.3149 | 0.0513 |
21 | 10.57 | 81.33 | 13.38 | 0.4497 | 0.6659 | 0.0919 |
22 | 10.43 | 77.33 | 15.62 | 0.4884 | 1.7929 | 0.2354 |
23 | 11.03 | 100.00 | 5.43 | 0.9139 | 0.3323 | 0.0564 |
24 | 9.96 | 89.33 | 7.71 | 0.3326 | 1.0898 | 0.1653 |
25 | 10.56 | 88.00 | 10.77 | 0.4339 | 0.8702 | 0.1300 |
Indexes | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|
EF | 81.54 | 82.67 | 77.40 | 80.31 | 87.20 |
RA (104) | 11.26 | 10.52 | 9.58 | 10.51 | 10.58 |
KGa | 0.410 | 0.386 | 0.310 | 0.347 | 0.524 |
ϕ | 0.1064 | 0.1111 | 0.1166 | 0.1385 | 0.1358 |
Indexes | A1 | A2 | A3 | A4 | A5 |
---|---|---|---|---|---|
EF | 3 | 4 | 1 | 2 | 5 |
RA | 5 | 3 | 1 | 2 | 4 |
KGa | 4 | 3 | 1 | 2 | 5 |
ϕ | 1 | 2 | 3 | 5 | 4 |
mean | 3.25 | 3 | 1.5 | 2.75 | 4.5 |
Level | A | B | C | D | E | F |
---|---|---|---|---|---|---|
1 | 38.1559 | 37.9573 | 37.7625 | (38.9978) | 36.5413 | 37.784 |
2 | 37.9301 | 38.1093 | 37.4206 | 38.7922 | 37.9967 | 37.6308 |
3 | 37.3404 | 37.6729 | 37.7078 | 38.343 | 38.262 | 37.674 |
4 | 37.8643 | (38.2346) | 37.9977 | 37.2163 | 38.7237 | 38.2035 |
5 | (38.7104) | 37.9347 | (38.4925) | 36.9414 | (38.7678) | (38.6857) |
DELTA | 1.37 | 0.5617 | 1.0719 | 2.0564 | 2.2265 | 1.0549 |
RANK | 3 | 6 | 5 | 2 | 1 | 4 |
Indicators | Optimum Condition | Parameter Sequence |
---|---|---|
EF (No. 26) | A5B4C5D1E5F5 | E > D > A > F > C > B |
RA (No. 27) | A2B2C3D5E4F5 | D > C > E > F > A > B |
KGa (No. 28) | A5B3C3D5E5F4 | E > A > D > F > C > B |
ϕ (No. 29) | A1B4C1D5E1F4 | E > C > D > A > B > F |
No. | EF (%) | RA × 104 (mol/s·L) | KGa (1/s) | ϕ (mol-CO2/L·mol-Solvent) |
---|---|---|---|---|
1–25 | 56.58–100.0 | 4.4153–18.9500 | 0.1195–0.9139 | 0.0433–0.2923 |
EF(26) | (100.0) | 5.6630 | 1.1698 | 0.0313 |
RA(27) | 90.67 | (19.9584) | 0.8784 | 0.1507 |
KGa(28) | 96.67 | 19.2220 | (1.1675) | 0.1316 |
ϕ(29) | 82.67 | 17.3165 | 0.6144 | (0.4148) |
Mixed Solvent | α | a | b | c | R2 |
---|---|---|---|---|---|
A1 | 1.067 × 10−6 | 0.9495 | −0.7488 | 1.2368 | 0.9966 |
A2 | 2.459 × 10−7 | 3.4971 | 0.6338 | 0.03703 | <0.5 |
A3 | 6.959 × 10−3 | −0.3646 | 0.2882 | −0.3088 | <0.5 |
A4 | 5.063 × 10−21 | 15.3879 | 0.9809 | 1.0931 | 0.6863 |
A5 | 3.608 × 10−5 | 2.6498 | 0.5845 | −0.7938 | 0.7099 |
Mixed Solvent | α | a | b | c | R2 |
---|---|---|---|---|---|
A1 | 3.286 × 10−6 | 3.0754 | −1.1424 | 1.1148 | 0.9994 |
A2 | 8.256 × 10−12 | 8.4837 | 0.5876 | 1.2734 | <0.5 |
A3 | 5.733 | −1.5210 | −0.1029 | 0.1648 | <0.5 |
A4 | 1.576 × 10−20 | 16.8625 | 0.7071 | 1.4307 | 0.9680 |
A5 | 4.146 × 10−14 | 11.7191 | 0.08486 | 0.7232 | 0.9792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.-C.; Jhuang, J.-H.; Wu, T.-W.; Yang, C.-Y.; Wang, K.-Y.; Chen, C.-M. Capture of CO2 Using Mixed Amines and Solvent Regeneration in a Lab-Scale Continuous Bubble-Column Scrubber. Appl. Sci. 2023, 13, 7321. https://doi.org/10.3390/app13127321
Chen P-C, Jhuang J-H, Wu T-W, Yang C-Y, Wang K-Y, Chen C-M. Capture of CO2 Using Mixed Amines and Solvent Regeneration in a Lab-Scale Continuous Bubble-Column Scrubber. Applied Sciences. 2023; 13(12):7321. https://doi.org/10.3390/app13127321
Chicago/Turabian StyleChen, Pao-Chi, Jyun-Hong Jhuang, Ting-Wei Wu, Chen-Yu Yang, Kuo-Yu Wang, and Chang-Ming Chen. 2023. "Capture of CO2 Using Mixed Amines and Solvent Regeneration in a Lab-Scale Continuous Bubble-Column Scrubber" Applied Sciences 13, no. 12: 7321. https://doi.org/10.3390/app13127321
APA StyleChen, P. -C., Jhuang, J. -H., Wu, T. -W., Yang, C. -Y., Wang, K. -Y., & Chen, C. -M. (2023). Capture of CO2 Using Mixed Amines and Solvent Regeneration in a Lab-Scale Continuous Bubble-Column Scrubber. Applied Sciences, 13(12), 7321. https://doi.org/10.3390/app13127321