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Abstract: Rock fragmentation by blasting influences ore recovery and the cost of downstream
operations. The development of electronic detonators makes it possible to improve fragmentation by
controlling the initiation timing in blasting projects, and the effect of the mechanism of delay timing
on rock fragmentation should be studied. Fragmentation of granite bench specimens with different
initiation timing was investigated in blast experiments. Conclusions are obtained by studying the
surface strain field and post-blast specimens. A total of six blasting tests were carried out on granite
bench specimens with four boreholes each having a diameter of 10 mm and a length of 450 mm. Each
borehole used pentaerythritol tetranitrate (PETN) as the explosive charge, which was approximately
4.84 g with a charge diameter of 5.5 mm. Delay times between adjacent boreholes in the same row
were set as 0, 50, 100, 150, 200, and 250 µs. The surface strain field of the bench specimen under
blast loading was analyzed using three-dimensional digital image correlation (3D-DIC) techniques
based on two cameras that captured high-speed images. Additionally, the post-blast specimen was
also observed and recorded. Fragments of each bench specimen were carefully collected, weighed,
and sieved with a set of sieves, including very fine particles. According to the 3D-DIC analysis for
bench specimens, the propagation pattern of the main strain concentration zone transformed from
horizontal to vertical with the increase in inter-hole delay. The maximum blast excavation weight was
obtained by the bench specimen with an inter-hole delay of 100 µs, while the bench specimen with
the longest inter-hole delay (250 µs) obtained the minimum blast excavation weight. By combining
the results for blast excavation weight with the results from fragment size distribution analysis
of all specimens, the optimal inter-hole delay was 200 µs. Compared to simultaneous detonation,
the median size was decreased by about 14.5% for the inter-hole delay of 200 µs. The results of
experiments show that delay time significantly influences rock fragmentation, but the stress wave
superposition in short delays cannot improve rock fragmentation. For long delays, the blast-induced
crack propagation time should be regarded as an influential factor when choosing the proper delay
time. The experimental findings of this study could provide a better understanding of the effect of
the mechanism of delay time on rock fragmentation.

Keywords: blast loading; delay time; 3D-DIC analysis; surface strain field; fragment size distribution

1. Introduction

Drilling and blasting technology has been widely used in mining and tunneling as an
economical and efficient approach for rock breaking [1,2]. In hard rock mining practice,
the immediate release of explosive energy in the blast hole can break the surrounding rock
material [3]. However, to date, the results of blasting in projects such as rock excavation
have not been satisfactory [4]. The empirical design of blast operation results in low energy
efficiency, which may lead to mineral loss, high ground vibration, explosive wastage,
and even safety accidents [5–9]. To optimize blasting design and make rock blasting more
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efficient, improvement in the understanding of rock fragmentation induced by blast loading
is essential.

Research on rock fragmentation mechanisms has been conducted for decades. In the
early studies, there were two views on the rock fragmentation mechanism. One view was
that rock fragmentation was mainly caused by stress waves [10,11]. Another view was that
explosive gas played the dominant role in rock fragmentation [12,13]. Since the 1970s, a more
acceptable view of the rock fragmentation mechanism has been found, i.e., the combined
effect of stress waves and explosive gas dominates rock fragmentation [14–17]. According to
the fracture characteristics around a blast hole under blast loading, the damaged area around
the blast hole is usually divided into the borehole expansion zone, crushed zone, fracture zone,
and vibration zone from near to far [6,18,19]. After the explosive column in the blast hole is
detonated, radial and circumferential cracks are generated around the blast hole under the
influence of the stress wave and gas pressure [20]. When the stress wave propagates to the free
surface, the reflected tensile wave will induce the fracturing of the surface rock. Holloway [21]
studied crack propagation using granite specimens. The study showed that radial cracks
initiated from the surface and propagated inward, that spalling cracks formed near the free
surface, and that other radial cracks propagated from the blast hole. As the cracks develop
and intersect within the rock, the rock is broken into fragments that can be moved under the
effect of expanding gases [22].

For a long time, optimizing blasting design to obtain better fragmentation has been
a hot study topic for researchers and engineers. The emergence of electronic detonators
has allowed for more precise control of detonation time, which has led to more attention
being given to study of the effect of delayed initiation on rock damage and fragmentation,
especially the influence of stress wave interaction on fragmentation. Rossmanith [23,24]
used Lagrange diagrams to analyze the stress wave superposition in two adjacent boreholes
with different detonation times. He concluded that stress wave superposition positively
affects rock fragmentation and that using a short delay time between two boreholes is
beneficial in achieving uniform rock fragmentation. Influenced by the study of Rossmanith,
Vanbrabant and Espinosa [25] performed field tests using short delays between blast holes.
Their field test results indicated a dramatic improvement in rock fragmentation using short
delay times compared to long delay times, with a 45.6% improvement in median size.
Chiappetta [26] concluded, according to image analysis of blast fragments and statistics of
fragment sizes, that the delay time needs to be sufficiently short to allow for the interaction
of stress waves between adjacent boreholes.

However, as more relevant studies were conducted, the view that the stress wave
superposition is not the dominant factor in improving rock fragmentation appeared. Jo-
hansson and Ouchterlony [27] conducted blasting tests using concrete bench specimens
to investigate the influence of stress wave interactions on fragmentation. Their study
showed there is not enough experimental evidence suggesting that short delays with shock
wave interactions can obtain better fragmentation than long delays. Katsabanis et al. [28]
performed small-scale blasting tests on granite bench specimens, and the experimental
results showed that the worst result was obtained by simultaneous detonation. They found
that fragmentation improved with increased delay time, with fragment size stabilizing
when delay time was longer than 11 ms/m of burden. Stagg and Rholl [29] investigated
the effect of timing on fragmentation. Their results indicated that the best fragmentation
could be obtained by detonating the second blast hole when the damage process of the
first blast hole reached its final state. Tang et al. [30] used double-hole bench specimens
to study the influence of delay time on rock fragmentation. Their study indicated that a
long delay without stress wave superposition obtained the best blasting excavation quality.
Schill and Sjöberg [31] investigated the effect of accurate detonation on rock fragmentation
through the use of a 3D model in LS-DYNA. In their numerical study, the influence of stress
wave interaction on fragmentation was limited and occurred in localized zones. In the
theoretical and numerical studies of Yi et al. [32,33], they indicated that when the stress
waves between two blast holes are superposed, tensile stress increases in a small region
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around the interaction point, which cannot improve fragmentation. Blair [34] questioned
the positive influence of stress wave superposition on fragmentation, stating that stress
wave interactions were uncertain in the 3D model and that stress wave superposition had a
limited effect on fragmentation.

In mining and tunneling, the purpose of optimizing rock blasting projects is to obtain
better rock fragmentation. Compared to poor fragmentation, uniform rock fragmentation
can improve ore recovery and reduce the energy consumption of crushing and grinding
processes in the practice of mining operations. As rock fragmentation by blasting influences
a realistic mine-to-mill process, fragment size distribution is an important issue to study.
Zhang et al. [35] investigated rock fragmentation under different constraint conditions
by analyzing fragment size distribution. Chi et al. [36] performed blast experiments
using cylinder specimens with different decoupling ratios. The analysis of fragment size
distribution showed that the decoupling ratios and the filling materials in the blast hole have
a significant influence on rock fragmentation. Cho et al. [37] conducted two bench blasting
experiments in the field and estimated fragment sizes using sieving data and image analysis.
Furthermore, they proposed a numerical simulation method to predict the fragment size
distribution. In the 12 full-scale bench blast tests performed by Sanchidrián et al. [38], the
fragmentation results were compared using the fitted curve of fragment size distribution.
In addition, they used the fragmentation–energy fan concept to establish a relationship
between the fragment size distribution and the explosive energy concentration. Hashemi
and Katsabanis [20] investigated rock fragmentation in multi-hole blasting through the use
of LS-DYNA numerical code. In their study, the influence of stress wave interaction on
fragmentation was investigated by fragment size distribution analyzed from WipFrag.

The objective of this paper is to study the effect of delay time on rock fragmentation
in multi-hole bench blasting. Six small-scale blast tests were conducted with the pur-
pose of providing experimental data. In Section 2, the material properties of the granite,
the dimensions of the bench specimen, the devices of the experiment, and the combi-
nation measurement system of the high-speed cameras and the 3D-DIC are illustrated.
In Section 3, the surface strain fields of three bench specimens with different delay times are
compared and analyzed. The post-blast pattern and blast excavation weight of specimens
with different delay times are compared. Furthermore, the extended Swebrec function is
employed to fit the curves of the fragment size distribution for all specimens. In Section 4,
the stress wave propagation of the first three tests is briefly analyzed in the two-dimensional
(2D) horizontal plane. According to the experimental results, the factors other than stress
waves affecting blasting excavation quality are discussed. Finally, Section 5 presents the
conclusions of this study.

2. Experiment
2.1. Granite Material

Bench specimens of granite from the Zhangqiu District (Jinan, China) were utilized
in this study. The material properties of the Zhangqiu granite were measured by static
tests according to a TBM machine (Sunstest, Guangzhou, China) with a loading rate of
0.1 kN·s−1. The uniaxial static compressive strength test was performed on cylindrical
specimens with a diameter of 50 mm and a length of 100 mm. Splitting tests were carried
out on disc specimens 50 mm in diameter and 20 mm in thickness to determine static
tensile strength. Additionally, the longitudinal wave (P-wave) velocity of the granite rock
was tested. Five replicate tests were performed for each rock property, from which the
average value was determined. The material properties of the Zhangqiu granite are shown
in Table 1.
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Table 1. The material properties of Zhangqiu granite.

Density
(g cm−3)

Young’s
Modulus

(GPa)

Poisson’s
Ratio

Uniaxial
Static

Compressive
Strength

(MPa)

Static
Tensile

Strength
(MPa)

Longitudinal
Wave

Velocity
(m s−1)

2.61 13.69 0.21 69.08 5.65 3383

For the Zhangqiu granite used in this paper, quartz (63 wt%) and feldspar (21 wt%)
with grain sizes ranging from 1.2 to 10.2 mm were the principal visible minerals. The main
heavy mineral of Zhangqiu granite is magnetite (0.29 wt%), with a particle size range of
0.04 to 0.25 mm. The other heavy minerals are primarily in the particle size range of 0.03 to
0.45 mm. Figure 1 shows a thin-section image of Zhangqiu granite.
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Figure 1. Thin-section image of Zhangqiu granite.

2.2. Specimen and Explosive

One delivery of uniform granite was utilized to make the bench specimens. The
basic dimensions of the bench specimens with four vertically drilled through-holes were
679 mm × 548 mm × 450 mm. The through-holes 16 mm in diameter were drilled in two
rows, each with two through-holes. There was 120 mm between adjacent through-holes in
the same row, and the distance between the adjacent rows was 104 mm. Figure 2 shows
the dimensions of the bench specimen. The surface of the bench specimen had no visible
pre-existing cracks.

The granular pentaerythritol tetranitrate (PETN) was packed into a plastic tube
5.5 mm in diameter and 240 mm in length, with a charge weight of about 4.84 g and
a charge density of approximately 0.85 g/m3 for each borehole. Each end of the tube was
wrapped with black tape to form a lining equal to the diameter of the borehole to make sure
the explosive column was positioned at the center of the borehole. In order to provide accu-
rate delayed initiation between boreholes, the initiation timing of the explosive columns
in the boreholes was controlled by changing the length of detonating cord, referring to
the detonation method used in previous studies [27,30]. According to the information
from the supplier, the detonating cord had a linear density of 4.25 g/m and a detonation
velocity of 6850 m/s. A steel tube with a length of 60 mm was used at the bottom of the
borehole to separate the detonating cord from the wall of the borehole to reduce the impact
of the detonating cord on the bench specimen. Figure 3 shows a set of assembled explosive
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devices. The experimental number, inter-hole delay, and charge weights of each bench
specimen are presented in Table 2. In each blast experiment, the delay between rows was
set as two times the delay time between boreholes.
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Table 2. Inter-hole delays and explosive column weights for all bench specimens.

Bench
Specimen

No.

Inter-Hole
Delay
(µs)

Charge
Weight of A

(g)

Charge
Weight of B

(g)

Charge
Weight of C

(g)

Charge
Weight of D

(g)

BS1 0 4.83 4.84 4.82 4.85
BS2 50 4.84 4.85 4.86 4.86
BS3 100 4.86 4.83 4.85 4.84
BS4 150 4.85 4.83 4.84 4.86
BS5 200 4.83 4.85 4.86 4.84
BS6 250 4.84 4.86 4.83 4.84
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2.3. Experiment Setup

To reduce the diameter of the vertical through-holes, steel rods 10 mm in diameter
and 550 mm in length were positioned at the center of each vertical through-hole before the
blasting experiments were carried out. Cement mortar was used as a filling medium and
was filled into the gap between the steel rod and the wall of the borehole. After the cement
mortar was solidified and had a certain strength, the steel rods were removed. When
the diameter of the borehole was reduced to 10 mm, given the diameter of the explosive
column, the decoupling ratio was 1.8 for all bench specimens. In the blasting test, the top of
the explosive column inserted in the borehole was 100 mm down from the top of the bench
specimen, and cement mortar was selected as the stemming to be filled into the borehole.
Figure 4 shows a cross-sectional view of the first row with the explosive devices assembled
in the boreholes.
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Before the experiment, the bench specimen was assembled in a constraint device. The
constraint device consisted of three steel plates, six steel sticks, and some bolts. Three steel
plates with a thickness of 20 mm were welded together, and steel sticks were located on the
left and front sides of the bench specimen and bolted to the bottom steel plate. The purpose
of manufacturing the constraint device was to make the boundary conditions of the bench
specimen match the bench in the field. The assembled bench specimen and constraint
device are shown in Figure 5.

The blast experiments were carried out in an explosion chamber at the Beijing Institute
of Technology. Figure 6 illustrates a schematic diagram of the blasting experiment. The
detonating cords in each experiment were detonated by an electric detonator. While the
detonator was detonated by a direct current, the trigger signal would simultaneously start
two high-speed cameras to monitor the fracturing process of the bench specimen under
blast loading.

The fragments produced by the bench specimen in the explosion chamber were
carefully collected, and the post-blast bench specimen was observed and recorded after
each blasting test. Furthermore, the collected fragments were weighed and sieved. The
obtained sieving data would be fitted to analyze and compare fragment size distribution.
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2.4. High-Speed Cameras and DIC

In each blasting test, two high-speed cameras (i-SPEED 716, IX-Cameras Inc., Rochford,
Essex, UK) were used to monitor the breakage process of the bench specimen. The two
high-speed cameras were placed outside the explosion chamber and captured the process
through two inspection windows. The area of interest (AOI) on the front surface of the
specimen is shown in Figure 7. The square drawn in purple was the field of the AOI, which
was approximately 180 × 160 mm2. Two different settings of high-speed cameras were
utilized in the blasting tests. Specifically, 20,000 frames per second (fps) and an image
resolution of 1064 × 762 pixels was used in BS1 and BS2. In BS3–BS6, 30,000 fps and an
image resolution of 840 × 624 pixels was used.
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DIC can analyze high-speed images to obtain field shape, deformation, or motion
measurements [39]. With the development of the non-contact full-field measurement
method, its use in rock testing has been widely adopted. Lenoir [40], Bornert [41], and
Hedan [42] used the DIC technique to test rock surface strain under quasi-static loading.
Cheng et al. [43] applied the 3D-DIC technique in uniaxial compression tests of composite
rock specimens to investigate the development of the strain field. In rock tests under
dynamic loading, Xing et al. [44] investigated the full-field strain and strain rate fields of
rock materials using the 3D-DIC technique. To investigate the morphological characteristics
of dynamic tensile fractures in brittle materials, Xu et al. [45,46] used the 2D-DIC technique
to analyze the full-field tensile strain distribution on the surface of the rock and concrete
specimens in the split Hopkinson pressure bar system. Chi et al. [47] studied the dynamic
breakage process of granite blocks under blast loading and determined the beginning time
of the crack on the surface by strain gauge and DIC analysis. For the full-field strain analysis
of the rock surface in this study, commercial 3D-DIC software of version 2018 (MatchID
3D, MatchID NV, Ghent, Belgium) was employed. Corrections were performed using a
polymethyl methacrylate (PMMA) calibration plate with a 9 × 10 grid and a spacing of
9 mm. For the processing parameters of 3D-DIC in this study, 23 × 23 pixels and 3 pixels
were selected as subset size and step size, respectively.

3. Results
3.1. Full-Field Strain

Dynamic deformation of the rock material under blast loading can be obtained using
the 3D-DIC technique and analysis of high-speed images. Full-field strains of the AOI for
three specimens (BS1, BS3, and BS5) were obtained. The surface strain field of the AOI was
calculated using von Mises strain.

For BS1, the inter-hole delay was 0 µs, i.e., simultaneous detonation. The frame rates
of the high-speed cameras were set to 20,000 fps, and the image resolution was set to
1064 × 762 pixels in the experiment. The obtained surface strain fields of eight frames
(from 0 to 500 µs) for BS1 are shown in Figure 8, which shows the developing strain pattern.
As seen in Figure 8, strain concentrations first occurred in the lower part of the AOI at
200 µs. In the color plots from 250 to 300 µs, there were two clearly horizontal strain
concentration zones in the middle and lower part of the AOI. In addition, a vertical strain
concentration zone on the lower right side of the AOI intersects with the two horizontal
strain concentration zones. At 300 µs, two vertical strain concentration zones formed in the
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upper part of the AOI. From 350 to 500 µs, the strain concentration zones became wider
and formed macroscopic cracks as time increased. The cracks developed and intersected,
breaking the rock into different fragments. From the strain fields analyzed by 3D-DIC, the
surface strain development pattern and potential failure zone can be easily estimated.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 20 
 

× 762 pixels in the experiment. The obtained surface strain fields of eight frames (from 0 
to 500 µs) for BS1 are shown in Figure 8, which shows the developing strain pattern. As 
seen in Figure 8, strain concentrations first occurred in the lower part of the AOI at 200 µs. 
In the color plots from 250 to 300 µs, there were two clearly horizontal strain concentration 
zones in the middle and lower part of the AOI. In addition, a vertical strain concentration 
zone on the lower right side of the AOI intersects with the two horizontal strain concen-
tration zones. At 300 µs, two vertical strain concentration zones formed in the upper part 
of the AOI. From 350 to 500 µs, the strain concentration zones became wider and formed 
macroscopic cracks as time increased. The cracks developed and intersected, breaking the 
rock into different fragments. From the strain fields analyzed by 3D-DIC, the surface strain 
development pattern and potential failure zone can be easily estimated. 

 
Figure 8. Full-field strain of BS1. 

The resolution and frame rate of the high-speed cameras for BS3 was set to 840 × 624 
pixels and 30,000 fps, respectively. There was approximately 33.3 µs between adjacent 
frames. The full-field strain of BS3 is shown in Figure 9, which presents the calculated 
results obtained by 3D-DIC software from 0 to 566 µs. At 233 µs after the detonation of the 
detonator, strain concentration was observed on the left side of the AOI. From 266 to 333 
µs, the strain concentration zone in the AOI developed upward along the vertical direc-
tion. There were secondary strain concentrations near the vertical strain concentration 
zone at 366 µs. As the effect of blast loading continued, strain concentration zones devel-
oped along the horizontal direction formed in the middle and bottom of the surface strain 
field. It should be noted that strain concentrations were found on the right side of the AOI 
at 433 µs, though these did not form significant strain concentration zones as time in-
creased. At 566 µs, the middle horizontal strain concentration zone reached the right edge 
of the surface strain field. Compared with the strain evolution process of BS1, the for-
mation time of the horizontal strain concentration zone for BS3 was relatively late. 

Figure 8. Full-field strain of BS1.

The resolution and frame rate of the high-speed cameras for BS3 was set to
840 × 624 pixels and 30,000 fps, respectively. There was approximately 33.3 µs between
adjacent frames. The full-field strain of BS3 is shown in Figure 9, which presents the calcu-
lated results obtained by 3D-DIC software from 0 to 566 µs. At 233 µs after the detonation
of the detonator, strain concentration was observed on the left side of the AOI. From 266 to
333 µs, the strain concentration zone in the AOI developed upward along the vertical direc-
tion. There were secondary strain concentrations near the vertical strain concentration zone
at 366 µs. As the effect of blast loading continued, strain concentration zones developed
along the horizontal direction formed in the middle and bottom of the surface strain field.
It should be noted that strain concentrations were found on the right side of the AOI at
433 µs, though these did not form significant strain concentration zones as time increased.
At 566 µs, the middle horizontal strain concentration zone reached the right edge of the
surface strain field. Compared with the strain evolution process of BS1, the formation time
of the horizontal strain concentration zone for BS3 was relatively late.

BS5, with an inter-hole delay of 200 µs, was selected with the same image resolution
and frame rate setting as BS3. Figure 10 shows the surface strain fields for BS5 from
0 to 566 µs. It can be seen that the strain concentration zone of BS5 from 233 to 333 µs
mainly appeared on the left side of the AOI, which was similar to that of BS3. From
266 to 366 µs, the left vertical strain concentration zone extended in the middle and branched
horizontally. Strain concentration then occurred at 400 µs in the middle of the AOI and
formed a horizontal strain concentration zone as time increased. From 500 to 566 µs, a
downward developing vertical strain concentration zone appeared in the upper right of the
AOI. As time increased, the vertical strain concentration zone intersected with the middle
horizontal strain concentration zone.

Figures 8–10 show the evolution of the strain field on the bench specimens with
different delay times. The strain fields obtained by the 3D-DIC technique are favor-
able for observing the dynamic deformation of the specimen surface before the appear-
ance of macroscopic cracks. By comparing the developing strain patterns shown in
Figures 8–10, it indicates that the strain field of simultaneous detonation was first observed
as the strain concentration zone developed horizontally. However, the strain concentration
zone that developed vertically appeared relatively later and developed in a smaller range.
As the delay time increased, the vertical strain concentration zone on the surface was fully
developed, with the left vertical strain concentration zone mainly developing in both BS3
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and BS5 from 0 to 333 µs. This observation indicates that the development pattern of
the main strain concentration zone changed from horizontal to vertical as the inter-hole
delay increased.
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3.2. Blast Excavation Pattern and Weight

The excavation pattern of each bench specimen after blasting is shown in Figure 11.
As seen in Figure 11, all bench specimens were severely damaged.
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(f) post-blast pattern of BS6.

In the post-blast specimens of BS1–BS3 (0–100 µs), there were toes of rock formed
in the area between boreholes above the bench floor. Although the superposition and
interaction of stress waves occurred with short delays, the rock mass between boreholes
was not sufficiently broken in BS1 and BS2, resulting in the significant generation of toe
rock above the bench floor. In the first three experiments, BS2 (50 µs) produced the largest
toe rock. With a further increase in delay time, the range of toe rock remaining above
the bench floor for BS4 (150 µs) and BS5 (200 µs) decreased. The range of toe rock on the
bottom floor of BS6, which had the longest delay (250 µs), presented an increase; however,
it was still smaller than that of BS1 and BS2. The post-blast bench specimens indicate that
delayed initiation influences the range of toe rock, and the use of a long delay can reduce
the amount of toe rock between boreholes compared to a short delay.
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To better compare blast excavation results, the blast fragments produced by each
bench specimen were weighed. The blast excavation weights of all bench specimens are
shown in Figure 12.
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As shown in Figure 12, BS1 and BS2 obtained similar fragments weights of 61.2 kg and
58.3 kg, respectively. When the inter-hole delay was increased to 100 µs, the blast excavation
weight of BS3 increased to 85.2 kg, which is 1.4 times the weight of blast excavation for
simultaneous detonation. However, a further increase in delay time did not continue
to increase the blast excavation weight, which was 55.8 kg for BS4 (inter-hole delay of
150 µs). BS5 recorded the second heaviest blast excavation weight of all bench specimens,
reaching 65.9 kg. BS6, with the longest inter-hole delay, obtained the minimum blast
excavation weight of 47.1 kg. Although the specimen dimensions and the charge weights
were the same, there were differences in blast excavation weight at different inter-hole
delays, indicating that delay time influences blast excavation weight.

3.3. Fragment Size Distribution

To further study the effect of delay timing on rock fragmentation, the fragments of
each bench specimen were screened through a set of 16 standard sieves. The mesh sizes of
the standard sieves ranged from 0.048 to 35 mm. The coarse fragments with particle sizes
larger than 35 mm were weighed individually. The connected scatterplots of the fragment
size distribution for all bench specimens are shown in Figure 13.
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Due to the wide size range of fragments, the size distributions of measured data were
constructed using the extended Swebrec function, which is considered one of the best-
fitting distribution functions to describe rock fragmentation data [48–50]. The extended
Swebrec function is a five-parameter distribution whose cumulative distribution, P(x), is as
follows [50]:

P(x) =
1

1 + a · [ln(xmax/x)/ln(xmax/x50)]
b + (1 − a) ·

[( xmax
x − 1

)
/
(

xmax
x50

− 1
)]c (1)

The five fitting parameters include the maximum size xmax, the median size x50, the
partition coefficient a, the shape parameter b, and the shape parameter c. Given the wide
variation in fragment sizes and accumulated mass passing values, as well as the tendency
of an ordinary least squares scheme to match the coarse zone and ignore the fine zone, a
weighted least squares scheme was used to fit the curves. In this study, the curves fitted by
the extended Swebrec function were made with 1/P2 weighting to make the fitted curves
more accurate. The corresponding parameters of fitted curves are shown in Table 3.

Table 3. Parameters and goodness of the constructed fitted curves.

Bench
Specimen

No.

Inter-Hole
Delay
(µs)

xmax
(mm)

x50
(mm) a b c R2

BS1 0 195.4 122.1 0.4604 1.708 0.8526 0.9924
BS2 50 166.3 121.3 0.1085 2.309 0.6165 0.9961
BS3 100 237.1 128.4 0.8099 2.265 0.8727 0.9956
BS4 150 167.4 112.7 0.4377 1.904 07194 0.9945
BS5 200 171.5 103.7 0.4092 2.116 0.7438 0.9969
BS6 250 105.7 65.9 0.4626 1.929 0.7543 0.9981

Figure 14 shows the sieving data for the fragments and the constructed sieving curves.
The accumulated mass passing is generally divided into four zones, including mass passing
less than 2% (very fine zone), mass passing from 2 to 20% (fine zone), mass passing from 20
to 80% (central zone), and mass passing more than 80% (coarse zone) [51]. A larger particle
size represents a coarser fragment at the same mass passing. In the range of the four zones,
mass passings of 1%, 10%, 50%, and 100% were selected as the parameters for comparison
and analysis. The particle sizes of each bench specimen at the selected four percentages are
given in Table 4.
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Table 4. The particle sizes at the given four mass passings.

Bench
Specimen

No.

Inter-Hole
Delay
(µs)

x1
(mm)

x10
(mm)

x50
(mm)

x100
(mm)

BS1 0 1.06 28.08 122.1 195.4
BS2 50 1.14 31.72 121.3 166.3
BS3 100 1.99 43.18 128.4 237.1
BS4 150 0.92 33.12 112.7 167.4
BS5 200 0.89 27.69 103.7 171.5
BS6 250 0.46 17.05 65.9 105.7

The fitted curves of the first three experiments are shown in Figure 15. By combining
Table 3 and Figure 15, the fitted curves move downward in the range of 1–20% mass
passing, indicating that the particle sizes become larger with increasing delay time in this
range. However, the fitted curve of BS2 is located above the fitted curve of BS1 in the range
of 20–100% mass passing, which indicates that the fragmentation of BS2 was better than
that of BS1 in this range. Additionally, the difference in particle size between BS1 and BS2
becomes significant in the coarse zone. Taking 100% passing as an example, the x100 of BS1
was 195.4 mm, while the x100 of BS2 was 166.3 mm, with the difference between the x100
values reaching 29.1 mm. When the inter-hole delay was increased to 100 µs, the particle
size produced by BS3 was larger than BS2 in the range of 1–100% passing, which indicated
that further increases in inter-hole delay in the range of 50–100 µs were not effectively
improved rock fragmentation. The maximum particle size of BS3 reached 237.1 mm, which
is 1.4 times larger than that of BS2. The variation in the fragmentation of BS1–BS3 shows
that when the inter-hole delay was in the range of 0–100 µs, the delays had less effect on
the particle size at 1–50% mass passing. For example, the median sizes of BS1, BS2, and BS3
were 122.1 mm, 121.3 mm, and 128.4 mm, respectively, with insignificant differences. In
the blasting experiments of BS1–BS3, the effect of delay time on fragmentation was mainly
observed in 50–100% mass passing, especially in the coarse zone.
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Figure 16 shows the fitted curves for BS4–BS6 with inter-hole delays in the range of
150–250 µs. In 1–80% mass passing, the fitted curves for the three specimens move upward
in log-log space. The movement trend of the fitted curves shows that rock fragmentation
improved with the increased inter-hole delay (from 150 to 250 µs). As seen in Figure 16,
the fitted curve of BS4 was close to that of BS5, i.e., the difference between the particle
sizes at the same mass passing was insignificant. For example, particle size at 10% mass
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passing was 33.1 mm and 27.7 mm for BS4 and BS5, respectively, with a difference of
5.4 mm. The particle size of BS6, with an inter-hole delay of 250 µs, was significantly smaller
than that of BS4 and BS5 in the mass passing of 1–100%, indicating that fragmentation was
significantly improved at this delay time. Compared to BS5, BS6 had decreased values
for x50 (by about 36.5%) and x100 (by about 38.4%). In summary, BS6 produced the most
uniform rock fragmentation.
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Using x50 as the indicator for evaluating the effect of blast fragmentation in this
study, Figure 17 shows the histograms of median size versus delay time. As shown in
Figure 17, BS6 obtained the best fragmentation, while BS3 achieved the worst fragmentation.
In addition, Figure 7 shows that in the range of 0–100 µs, the increase in delay time did not
effectively improve fragmentation, shown by BS3 obtaining the maximum x50 value. In the
inter-hole delay of 100–250 µs, x50 gradually decreased as delay time increased. When the
inter-hole delay reached 250 µs, the median size of BS6 decreased by approximately 48.7%
compared to that of BS3, which means that fragmentation was significantly improved.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

inter-hole delay reached 250 µs, the median size of BS6 decreased by approximately 48.7% 
compared to that of BS3, which means that fragmentation was significantly improved. 

 
Figure 17. Median size of each bench specimen. 

Figure 18 shows the connected scatterplots of the median sizes and blast excavation 
weights of all specimens. The black line of the connected scatterplots represents the vari-
ation in median size, the red line of the connected scatterplots represents the variation in 
blast excavation weight, and the blue dashed square represents the location of the best 
blast excavation quality. As shown in Figure 18, although BS6 produced the smallest me-
dian size, it also obtained the minimum blast excavation weight of 47.2 kg. BS3, with the 
maximum blast excavation weight of 85.2 kg, produced the largest median size, and the 
particle size in the coarse zone was significantly larger than that of the other experiments. 
In the remaining four blasting experiments, BS5 obtained the smallest median size and 
the maximum blast excavation weight of 65.9 kg. Considering the blast excavation weights 
and the obtained fragmentation distribution results of all bench specimens, BS5 recorded 
the best blast excavation quality, with the optimum delay time being 200 µs. 

 
Figure 18. Median sizes and blast excavation weights of all specimens with different delays. 

4. Discussion 

Figure 17. Median size of each bench specimen.

Figure 18 shows the connected scatterplots of the median sizes and blast excavation
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in blast excavation weight, and the blue dashed square represents the location of the best
blast excavation quality. As shown in Figure 18, although BS6 produced the smallest
median size, it also obtained the minimum blast excavation weight of 47.2 kg. BS3, with
the maximum blast excavation weight of 85.2 kg, produced the largest median size, and the
particle size in the coarse zone was significantly larger than that of the other experiments.
In the remaining four blasting experiments, BS5 obtained the smallest median size and the
maximum blast excavation weight of 65.9 kg. Considering the blast excavation weights
and the obtained fragmentation distribution results of all bench specimens, BS5 recorded
the best blast excavation quality, with the optimum delay time being 200 µs.
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4. Discussion

This experimental study of the effect of delay time on rock fragmentation shows there
is a certain delay requirement related to obtaining optimal blast excavation quality in multi-
hole bench blasting. The location of stress waves between boreholes plays an important role
in wave history and possibly influences rock damage and fragmentation. Therefore, a brief
analysis of the stress waves produced by the boreholes was performed in the 2D horizontal
plane. Figure 19 shows the P-wave propagation produced by the borehole at three delays.
The solid line represents the P-wave, and the dashed line represents the reflected P-wave.
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After the explosive column is detonated in the borehole, the stress wave propagates
within the bench specimen. Figure 19a shows the P-wave propagation of simultaneous
detonations, with the most significant superposition of P-waves occurring in the area
between boreholes. The location of the P-wave superposition changes when there is a delay
between the boreholes. P-wave propagation at 50 µs after the detonation of borehole A
is shown in Figure 19b. If the inter-hole delay is 50 µs, the reflected P-wave of borehole
A formed at the free surface will interact with the P-wave generated by borehole B in the
burden. When the inter-hole delay is 100 µs, the P-wave propagation of borehole A when
borehole B is detonated is as shown in Figure 19b. At this time, the reflected wave of
borehole A formed at the free surface propagates to the back of borehole B, indicating that
there is no P-wave superposition in the burden. The same P-wave analysis method can be
applied to bench specimens BS4–BS6. When the inter-hole delay increases, the interaction
of the P-waves in the burden becomes weaker until it disappears.

BS1, with the most significant stress wave superposition in the blasting experiments,
did not produce the smallest median size. When the inter-hole delay was increased to
50 µs, BS2 produced an x50 value similar to that of BS1. In the coarse zone, the particle size
of BS2 was decreased compared to BS1, which means rock fragmentation was improved in
this zone. Unfortunately, the further increase in delay time did not continue to improve
fragmentation, and BS3 obtained the worst fragmentation results. Although BS3 recorded
the maximum blast excavation weight, the particle size in the coarse zone of BS3 was
also significantly increased, with the xmax value increasing by nearly 21.3% compared to
that of BS1. In the blasting experiments of BS4–BS6, the interaction of the stress waves
gradually became weaker until it disappeared, and the particle size in 1–80% mass passing
decreased with the increased inter-hole delay. BS6, having the longest delay time of all
experiments, obtained the smallest x50 value, i.e., the best fragmentation result. Compared
to BS1 with simultaneous detonation, the x50 value of BS6 was improved by nearly 46%. In
this study, simultaneous detonation and short delays did not obtain excellent fragmentation
results. When the inter-hole delay was longer than 100 µs, fragmentation was improved
with increased delay time, even though stress wave interaction gradually disappeared.
This indicates that other factors besides stress wave interaction should be considered in
multi-hole delay blasting to control fragmentation.

In studying stress wave propagation in rock using different delay times, the rock
medium is usually treated as an intact continuum, and the propagation of cracks in the
rock mass is often ignored. During blasting, the velocity of the blast-induced crack is
lower than that of the stress wave. By conducting model blast tests, Bergmann et al. [52]
found that the crack velocity of granite is about one-third of its P-wave velocity. In short
delays, the cracks around the borehole do not have enough time to grow. When the delay
time between boreholes increases, the propagation time of the cracks produced by the first
borehole that is detonated also increases. According to the longitudinal wave velocity
of the granite in this paper, the blast-induced crack velocity in the bench specimen is
approximately 1128 m/s. As the inter-hole delay increases, the crack around the first
borehole that is detonated propagates outward. For example, at 150 µs, the blast-induced
crack propagation distance reaches approximately 169 mm. The rock around the borehole
at this time is already a discontinuous medium, which affects the propagation of stress
waves generated by subsequent boreholes. For the subsequent boreholes, the blast-induced
cracks from adjacent boreholes provide more complex boundary conditions for blasting.
For long delay times, the blast-induced crack propagation time should be considered as an
influential factor when choosing the optimal delay time in bench blasting, which may be
beneficial for better understanding of the effect of delays on rock fragmentation.

5. Conclusions

Six blasting experiments were conducted using bench specimens with four boreholes.
The following conclusions can be made:
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1. Delay time markedly influenced full-field strain on the monitored front surface of the
bench specimen. The strain field results analyzed using the 3D-DIC technique show
that the surface strain field transformed from horizontal strain concentration zone
dominated to vertical strain concentration zone dominated as the delays increased.

2. It was observed that short delays with a stress wave superposition produced a larger
range of toe rock above the bench floor compared to long delays. The maximum blast
excavation weight of 85.2 kg was obtained for BS3 with an inter-hole delay of 100 µs,
while the smallest blast excavation weight of 47.1 kg was obtained for BS6 with the
longest inter-hole delay.

3. The fragment size distributions were well constructed by the extended Swebrec
function. The fragmentation results indicate that stress wave superposition had a
limited effect on improving rock fragmentation. For long delay times without stress
wave interaction, rock fragmentation improved as delay time increased. BS6, with the
longest delay time, obtained the best fragment size distribution.

4. By combining blast excavation weights and the fragment size distribution of all
experiments, BS5 produced the best blast excavation quality, and the optimum delay
time was 200 µs.

5. This study investigated the effect of delay time on rock fragmentation through model
blasting. In the future, full-scale benches should be used to conduct similar exper-
iments. Furthermore, the influence of crack propagation on fragmentation can be
further investigated by combining numerical simulations, which is instrumental for
understanding the effect of the mechanism of delay time on rock fragmentation.
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