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Abstract: As the operational time of the railway increases, rail surfaces undergo irreversible defects.
Once the defects occur, it is easy for them to develop rapidly, which seriously threatens the safe oper-
ation of trains. Therefore, the accurate and rapid detection of rail surface defects is very important.
However, in the detection of rail surface defects, there are problems, such as low contrast between
defects and the background, large scale differences, and insufficient training samples. Therefore, we
propose a rail surface defect detection method based on an improved YOLOv5s in this paper. Firstly,
the sample dataset of rail surface defect images was augmented with flip transformations, random
cropping, and brightness transformations. Next, a Conv2D and Dilated Convolution(CDConv)
module was designed to reduce the amount of network computation. In addition, the Swin Trans-
former was combined with the Backbone and Neck ends to improve the C3 module of the original
network. Then, the global attention mechanism (GAM) was introduced into PANet to form a new
prediction head, namely Swin transformer and GAM Prediction Head (SGPH). Finally, we used the
Soft-SIoUNMS loss to replace the original CIoU loss, which accelerates the convergence speed of the
algorithm and reduces regression errors. The experimental results show that the improved YOLOv5s
detection algorithm reaches 96.9% in the average precision of rail surface defect detection, offering the
accurate and rapid detection of rail surface defects, which has certain engineering application value.

Keywords: rail surface defect detection; YOLOv5s; data augmentation; CDConv; SGPH; Soft-SIoUNMS

1. Introduction

As an important carrier of train operations, rail is also an important part of railroad
system maintenance. As rail service time increases, the rail surface undergoes irreversible
defects, and once these defects are produced, it is easy for them to develop quickly; thus,
seriously threatening the safe operation of trains. If railway staff fail to identify defects and
provide an early warning, it can lead to severe incidents, such as broken rails and other
serious phenomena, which seriously threatens the safety of train operations, potentially
leading to casualties and economic losses [1]. Until recently, the detection of rail surface
defects was mainly dependent on manual detection by railway staff. Although manual
detection has the advantages of being simple and low cost, it also has the disadvantages of
low detection efficiency, high detection omission rate, and poor real-time performance [2].
Subsequently, non-destructive testing technologies were widely applied to railway systems,
with common detection techniques including three-dimensional detection, eddy current
detection, and acoustic wave detection [3]. Ye et al. [4] proposed a novel 3D perceptual
system based on low-cost 2D laser sensors, using 3D reconstruction technology to model rail
surface defect features in 3D through Matlab, and achieved good results in the laboratory
and actual railroad track tests. Wang et al. [5] used magnetic flux leakage (MFL) technology
to study the changes in magnetization and permeability of rail surface defects with dynamic
magnetization time under high-speed motion, realizing damage detection at speeds of
up to 200 km/h. Zhang et al. [6] achieved the rapid detection of rail surface defects by
studying the application of laser ultrasound technology. Firstly, laser ultrasound signals
were excited on both sides of the rail. Then, filtering, image alignment, and other algorithms
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were combined to obtain a rail surface defect image. In addition, a finite element model
was established to simulate the propagation process of laser ultrasound signals in the
rail, obtaining detection signals containing surface defect information to identify defect
detection. However, the above methods are susceptible to interference from various external
signals, which makes it difficult to process the collected signals effectively, resulting in
missed detection, slow detection speed, and poor real-time performance.

In recent years, machine vision technology has been increasingly used for rail surface
defect detection by virtue of its unique advantages, such as high detection accuracy, high
speed, and non-contact operation [7]. Machine vision methods for rail surface defect de-
tection can be divided into two approaches: traditional machine learning based detection
methods and deep learning based detection methods. Traditional machine learning based
detection methods are used to automatically detect rail surface defects using cameras.
These methods require manually designed features or predefined features involving hu-
man analysis of rail surface defect images, and then proposing the corresponding feature
learning algorithm for classification. Dubey et al. [8] and Yuan et al. [9] both manually
extracted features for defect detection by analyzing the boundary of rail surface defects. Li
et al. [10] proposed a real-time visual inspection system (VIS) for discrete surface defects,
which to a certain extent solves the problems of uneven illumination and rail surface
reflection characteristics. In addition, He et al. [11] used the inverse P-M (Perona-Malik)
diffusion algorithm to detect rail surface defects, which improved the detection accuracy
by differencing the original image from the diffusion image, highlighting the defects in
the differential image, and removing the noise using a filtering algorithm based on edge
features and the area of the defects. These methods have some effect on rail surface defect
detection; however, their common disadvantage is that detection speed and detection accu-
racy are generally low. Some injuries, including linear injuries, cracks, and micro injuries,
are difficult to detect and distinguish. Later, He et al. [12] proposed an algorithm for rail
surface defect detection based on background difference, which improved the detection
accuracy. Tian et al. [13] improved the Sobel algorithm for rail surface defect detection
to compensate for the lack of sensitivity of the Sobel algorithm in the X and Y directions,
which improved detection accuracy by 10%. Wang et al. [14] used the color characteristics of
rail surface defects, which are very different from normal rust marks, within image blocks
and handled different shapes of defect information very well. Liu et al. [15] performed
gray value correction, binarization processing, and noise filtering on images to achieve fast
and accurate detection of rail surface defects. While traditional machine learning detection
methods have promoted the development of rail surface defect detection technology to a
certain extent, they cannot extract the defect features sufficiently, with detection accuracy
of small size targets being particularly low. In recent years, deep learning has developed
rapidly, and convolutional neural networks (CNNs) have become the obvious choice for
rail surface defect detection due to their unique feature representation advantages and
modeling capabilities. Deep learning based detection methods are mainly divided into two
groups: one-stage detection algorithms and two-stage detection algorithms.

Two-stage object detection algorithms are mainly region-based R-CNN series algo-
rithms [16–18], which have high accuracy but slow speed. Faghih-Roohi et al. [19] proposed
the use of Deep Convolutional Neural Network (DCNN) to classify images of rail surface areas
with defects into six categories and designed three sizes of convolutional neural networks.
The experimental results found that the convolutional neural network with greater depth is
better at classifying images of rail surface defects, but the computation time is correspondingly
longer. Gibert et al. [20] proposed a method to improve object detection performance by com-
bining multiple detectors in a multi-task learning framework, which achieved high accuracy
in the detection of railroad sleeper and fastener defects. Shang et al. [21] focused images
on rail surface defects by cropping them, and then localized the defects using conventional
methods, before feeding them into an improved CNN network for classification. Yu et al. [22]
proposed a method to train a network using migration learning based on Faster R-CNN to
achieve two types of rail surface defect detection. Jin et al. [23] proposed a modified version
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of a Gaussian mixture model for faster segmentation of rail surface defects. The robustness of
the model was improved using Faster R-CNN for precise localization of the defects on the
output of the segmentation model, resulting in more accurate detection results. Although the
above two-stage object detection algorithms achieved higher levels of accuracy in rail surface
defect detection, they both have the disadvantage of slow detection speed.

Single-stage object detection algorithms, as the name suggests, perform object detec-
tion stage in just one stage. The YOLO series [24–27] and SSD [28] are both representatives
of single-stage object detection models. However, the SSD algorithm is poorer for small
size target recognition, mainly because small size targets are mostly trained with lower
level anchors, and the lower level features are not nonlinear enough to be trained with
sufficient accuracy. Meanwhile, the YOLO series uses the idea of regression, which can
directly complete the classification and localization of targets, and has the advantage of
fast speed, so it is widely used in real-time detection systems. Song et al. [29] improved
the loss function of the YOLOv3 algorithm for the characteristics of rail surface defects,
and the experimental results showed that a 97% recognition rate of defects. Wei et al. [30]
proposed various improved models based on the YOLOv3 network and lightweighted the
models to obtain high detection accuracy. Zhao et al. [31] improved YOLOv5 for small
size targets, enhancing the feature extraction capability of small size targets by adding a
micro-scale detection layer and adjusting the confidence loss function of the detection layer
to improve detection accuracy. Zhu et al. [32] proposed the TPH-YOLOv5 network with
an additional layer of micro-detection combined with the CBAM attention mechanism,
to replace the original prediction head with a transformer prediction head, to offer good
dense target detection.

Due to the fast running speed of trains, the focus of our research is biased towards the
real-time detection of rail surface defects, which very much requires the detection speed
of the network; thus, we choose a single-stage target detection algorithm. YOLOv5 is
currently one of the best performing models in the YOLO series and while it is constantly
being updated, we choose to use version 6.0. In this paper, we propose a rail surface
injury detection method based on an improved version of YOLOv5s, which was tested
and compared with ablation experiments. The results show that the improved YOLOv5s
detection algorithm achieves 96.7% of the average accuracy mean value mAP_0.5 for
rail surface defect detection. The main contributions of this paper can be summarized
as follows:

1. Due to insufficient rail surface defect image samples, the sample dataset was
augmented with flip transformation, random cropping, and brightness transformation.

2. The CDConv module was designed to replace the original first layer convolu-
tion module of the backbone network of YOLOv5s. It reduces the number of network
parameters and computations while improving detection speed and accuracy.

3. We improved the C3 module of the original network by combining the Swin
Transformer at the tail end of the Backbone and the tail end of the Neck, providing better
access to global information and richer contextual information.

4. The introduction of the GAM into the PANet makes the network pay more attention
to injury-dense area features and forms a new prediction head, SGPH, which improves the
detection accuracy of the network.

5. The original CIoU was replaced with the Soft-SIoUNMS loss function, which speeds
up the convergence of the algorithm and reduces regression errors.

2. Related Works
2.1. YOLOv5s Network Model Structure

As an open source neural network, the YOLOv5 network achieves high performance
in terms of detection speed and accuracy. With different network depths and feature map
widths, the YOLOv5 network has four versions: YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. We experimented with all four deep YOLOv5 networks and found that the
YOLOv5s network performed the best. Furthermore, YOLOv5s is the smallest model. Since
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the release of YOLOv5s, the network has been updated to version 6.2, and our experiments
showed further improvement based on the model using version 6.0. In particular, the
model of YOLOv5s mainly consists of an input (Input), backbone network (Backbone),
neck (Neck), and output (Output). This network model is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 16 
 

2. Related Works 

2.1. YOLOv5s Network Model Structure 

As an open source neural network, the YOLOv5 network achieves high performance 

in terms of detection speed and accuracy. With different network depths and feature map 

widths, the YOLOv5 network has four versions: YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x. We experimented with all four deep YOLOv5 networks and found that the 

YOLOv5s network performed the best. Furthermore, YOLOv5s is the smallest model. 

Since the release of YOLOv5s, the network has been updated to version 6.2, and our ex-

periments showed further improvement based on the model using version 6.0. In partic-

ular, the model of YOLOv5s mainly consists of an input (Input), backbone network (Back-

bone), neck (Neck), and output (Output). This network model is shown in Figure 1. 

==

Concat Upsample CBS CSP2_1 Concat CBS

CBSCSP2_1

Upsample

Concat ConcatCSP2_1 CBS CSP2_1

CBS Conv BN SiLu

CSP1_X = CBS ResNet unit CBS

CBS

CSP2_X = CBS CBS

CBS

CBS

CBS AddCBSResNet unit

Conv                        Conv                      Conv

Output

Backbone

Neck

Input

CBS CBS CSP1_1 CBS CSP1_2 CBS CSP1_3 CBS CSP1_1 SPPF

= CBS MaxPoolSPPF

C
o
n

ca
t

MaxPool MaxPool CBS
C

o
n

ca
t

C
o

n
ca

t

 

Figure 1. Structure diagram of YOLOv5s. 

2.2. Data Enhancement 

In this paper, the performance of the proposed method was verified using the pub-

licly available Rail Surface Defect Dataset (RSDD). The dataset was collected and made 

public by Beijing Jiaotong University and consists of 195 challenging rail surface defect 

images, of which 67 are 160 pixels × 1000 pixels in size and 128 are 55 pixels × 1250 pixels 

in size. In the experiment, 347 rail surface defect images with a size of 160 pixels × 250 

pixels and at least one defect were obtained after segmentation and image resizing, and 

an initial rail surface defect image sample dataset was established. Then, based on the 

initial established dataset, the dataset was expanded using flip transformation, random 

cropping, and brightness transformation. Finally, 3086 rail surface defect images were 

generated, of which we randomly selected 70% as the training set, 10% as the validation 

set, and 20% as the test set. The initial rail surface defect images used in this paper are 

shown in Figure 2, and the images generated using data enhancement methods are shown 

in Figure 3. 

Figure 1. Structure diagram of YOLOv5s.

2.2. Data Enhancement

In this paper, the performance of the proposed method was verified using the publicly
available Rail Surface Defect Dataset (RSDD). The dataset was collected and made public
by Beijing Jiaotong University and consists of 195 challenging rail surface defect images,
of which 67 are 160 pixels × 1000 pixels in size and 128 are 55 pixels × 1250 pixels in
size. In the experiment, 347 rail surface defect images with a size of 160 pixels × 250
pixels and at least one defect were obtained after segmentation and image resizing, and an
initial rail surface defect image sample dataset was established. Then, based on the initial
established dataset, the dataset was expanded using flip transformation, random cropping,
and brightness transformation. Finally, 3086 rail surface defect images were generated, of
which we randomly selected 70% as the training set, 10% as the validation set, and 20% as
the test set. The initial rail surface defect images used in this paper are shown in Figure 2,
and the images generated using data enhancement methods are shown in Figure 3.
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3. Methodology

Rail surface defects are often small targets and the original YOLOv5s model cannot
fully meet the detection needs, leading to low detection accuracy and leakage detection.
Therefore, this paper proposes to improve the YOLOv5s network model in several ways.
Firstly, the backbone network is modified and the CDConv module replaces the original
first layer convolution module of the Backbone network. Secondly, the original convolution
prediction head is replaced with the Swin Transformer attention prediction head, and the
GAM is introduced into the PANet to make the network focus on injury-dense region
features. Finally, the original CIoU is replaced with the Soft-SIoUNMS loss function. Our
improved network structure is shown in Figure 4.
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3.1. CDConv

The traditional convolutional module of YOLOv5s performs Conv2D convolution,
BN, and SiLU activation function operations on the input feature map, which greatly affect
the speed. The CDConv designed by us changes the single channel into two channels: one
channel represents the original Conv2D convolution, while the other channel represents the
dilated convolution. The original 6× 6 convolution is replaced with 3× 3 convolution with
the same step size; the padding of the Conv2D convolution is removed; and the padding of
the dilated convolution is set to 2, so that the size of the output image remains the same as
that of the Conv2D convolution. Finally, the two sides perform an Add operation to output
the image feature map. The CDConv convolution module is shown in Figure 5.
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3.2. C3STR Module

Due to the problem of small target sizes in the dataset, the detection of small object
location information in the object detection layer of the downsampling of the original
YOLOv5s network is limited. This makes the detected target not obvious and the detection
accuracy is low. Therefore, background features should be reduced and target features
should be highlighted in the detection process; using self-attention is a good method
to achieve this. The transformer [33] is a method used in the field of natural language
processing, and the Swin Transformer [34] is a modified network of the transformer. In this
paper, we integrate the Swin Transformer module into the improved YOLOv5s network by
combining the C3 module of the original network into the Backbone tail and the Neck tail.
This is performed in order to improve the localization of rail surface defects by exploiting
both the high-resolution spatial information of the CNN features and the global semantic
information encoded by the Swin Transformer. The Swin Transformer Block (STB) consists
of two subunits in pairs: the window-based multi-head self-attention (W-MSA) module
and the sliding window-based multi-head self-attention (SW-MSA) module. Each subunit
is composed of a layer normalization (LN), an attention module, a normalization layer, and
a multi-layer perceptron (MLP). The computational procedure of the Swin Transformer
Block is shown in Figure 6.
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3.3. SGPH

In this paper, we add the global attention mechanism (GAM) [35] to PANet to form
a new prediction head called SGPH, based on the C3STR module. The GAM reduces
the network information and amplifies the global dimensional interaction features. This
attention mechanism is based on the sequential channel-space attention mechanism in
convolutional block attention module (CBAM) [36] with optimized improvement of its
submodules. CBAM uses sequential embedding of channel attention and space attention
to improve the accuracy of the model, but does not consider the interaction between the
two dimensions, which may lead to the separation of feature vectors and, thus, the loss of
cross-dimensional information. To solve this problem, the GAM uses three-dimensional
alignment to extract features in all three dimensions in the channel attention submodule, as
well as grouped convolution with channel mixing wash to reduce the number of parameters
in the spatial attention submodule. Pooling operations are removed from both submodules
of the GAM, and this approach can effectively extract the interactions between feature
vectors to improve the detection performance of the model. This procedure is shown in
Equations (1) and (2). The structure of the GAM is shown in Figure 7.

F2 = Mc(F1)⊗F1 (1)

F3 = Ms(F2)⊗F2 (2)

where F1 represents the input feature, F2 represents the intermediate state, F3 represents the
output feature, Mc is the channel attention module, and Ms is the spatial attention module.
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3.4. Soft-SIoUNMS

A loss function is a method to measure the accuracy of model prediction results. The
original YOLOv5s network uses CIoU Loss as a loss function of the bounding box. Many
IoU loss functions, such as GIoU, DIoU, and CIoU, do not take into account the direction
between the real frame and the predicted frame. The predicted frame may have a large
position deviation in the training process and eventually produce a worse model, resulting
in slow convergence speed. To solve this problem, SIoU Loss [37] was used in this paper
to replace CIoU Loss. The SIoU redefines the correlation loss function by introducing the
vector angle between the real box and the prediction box. Considering that rail surface
defects are characterized by a small target scale and high density, the YOLOv5s network
may cause missed detection, thus reducing the recall rate of the model. In this paper,
Soft-NMS [38] was combined to further improve the YOLOv5s network. Furthermore,
Soft-SIoUNMS was combined with SIoU Loss and Soft-NMS, used as the loss function of
border regression. The SIoU calculation method is shown in Equation (3) and the Soft-NMS
calculation method is shown in Equation (4).

SIoU = 1− IoU + ∆+Ω
2

Ω = ∑
t=w,h

(1− e−wi )
θ

∆ = ∑
t=x,y

(1− e−γρt)

(3)

Si = Sie−
iou(M,bi)

2

σ , ∀bi /∈ D (4)

where Ω represents the shape cost, ∆ represents the redefined distance cost after considering
the angle cost, bi represents the i-th anchor box, and Si represents the score of the i-th
anchor box.

4. Experiments
4.1. Experimental Environment

The experimental environment in this paper was built on a server workstation with
the following hardware configuration: 3.5 GHz Inter i7-7800XCPU, NVIDIA GeForce RTX
2080 graphics card, and 32 Gb memory. The server configuration uses Ubuntu version
16.04, CUDNN version 7.6, and CUDA Toolkit version 10.1. The deep learning framework
platform is Pytorch version 1.8.

4.2. Evaluation Indicators

In order to verify the effectiveness of the model, we used three indicators: precision,
recall, and mean average precision (mAP) for comprehensive evaluation. Their calculation
is shown in Equations (5)–(7). Precision is used to measure the ability to predict positive
samples and predict them correctly, recall is used to measure the ability to detect all positive
samples, and mean average precision is calculated by averaging the average precision and
is used to evaluate the overall detection performance of the model.

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

mAP =
∑c

c−1 AP
C

(7)
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4.3. Analysis of Experimental Results
4.3.1. Ablation Experiments

In this paper, ablation experiments of the Backbone, Head, and loss function were
carried out in turn. The experimental results are shown in Table 1.

Table 1. Comparison of results of ablation experiments.

Model Name P R mAP@0.5

YOLOv5s 0.965 0.933 0.954
YOLOv5s + CDConv (Method1) 0.968 0.936 0.961

YOLOv5s + CDConv + C3STR (Method2) 0.951 0.936 0.963
YOLOv5s + CDConv + C3STR + CBAM (Method3) 0.963 0.938 0.964
YOLOv5s + CDConv + C3STR + GAM (Method4) 0.967 0.940 0.965

YOLOv5s + CDConv + C3STR + GAM + Soft-SIoUNMS (Ours) 0.971 0.945 0.969

The first row of Table 1 shows the unimproved YOLOv5s model, where the mean av-
erage precision of rail surface defects is 95.4%. Then, the trunk and header were improved,
respectively. After the addition of the CDConv module and C3STR in the second and third
lines, the mAP was significantly improved, reaching 96.1% and 96.3%, respectively. The
reason is that the CDConv module greatly reduces the calculation amount of network pa-
rameters, and the model detection speed is improved; however, some information may be
lost. The Swin Transformer combined with the C3 module completed the global information
and richer context information. Then, the attention mechanisms, CBAM and GAM, were
added to the Head for comparison. It was found that the network model with the GAM
achieved better detection accuracy. Although both CBAM and GAM are mixed attention
mechanisms, CBAM does not consider the interaction between the two dimensions, which
may lead to the separation of feature vectors and the loss of inter-dimensional information.
Therefore, we chose the GAM for its superior performance. Finally, the Soft-SIoUNMS
loss function, which is a combination of SIoU and Soft-NMS, was added, providing a
better effect than a single loss function. The experimental results showed that the mAP of
our proposed method reached 96.9%, achieving the best detection results. The detection
diagram in Figure 8 corresponds to the different methods used in the ablation experiments
in Table 1. In order to better demonstrate the benefits of the improved model on the rail
surface defect dataset, each improvement point will be validated separately.
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4.3.2. Improved Model Comparison Experiments

In order to prove the superiority of our proposed method in rail surface defect detec-
tion, we will verify each improvement point in turn, as follows:

• The number of C3STRs

Table 2 represents the influence of successively adding different amounts of C3STRs
to the network model on the experimental results.

Table 2. The influence of the number of C3STRs on the model.

Model Number of
C3STRs P R mAP@0.5

YOLOv5s + CDConv + C3STR 1 0.943 0.933 0.950
YOLOv5s + CDConv + C3STR 2 0.944 0.935 0.948
YOLOv5s + CDConv + C3STR 3 0.951 0.936 0.951
YOLOv5s + CDConv + C3STR 4 0.951 0.936 0.963
YOLOv5s + CDConv + C3STR 5 0.949 0.934 0.953

Due to the excellent performance of the CDConv, we directly improved the network
by adding the CDConv and sequentially comparing the detection results of different
numbers of C3STRs added to the network. We sequentially tested adding 1–5 C3STRs to
the Backbone and Head, and the experimental results showed that although each addition
of a C3STR module would increase the computational load of the network in turn, the
detection accuracy gradually increased, reaching the highest detection accuracy with the
addition of four modules. At the fifth point, the detection accuracy began to decrease, and
the network model was already very large. Taking this into account, we chose to add four
C3STR improved models in this paper.

• Attention mechanism

Table 3 shows the influence of adding CBAM, ECA, CA, SE, and GAM to the network
model on the experimental results.

Table 3. Comparison of the results of different attention mechanisms.

Model P R mAP@0.5

YOLOv5s + CDConv + C3STRs + CBAM 0.963 0.938 0.964
YOLOv5s + CDConv + C3STRs + ECA 0.964 0.935 0.961
YOLOv5s + CDConv + C3STRs + CA 0.951 0.936 0.963
YOLOv5s + CDConv + C3STRs + SE 0.962 0.938 0.960

YOLOv5s + CDConv + C3STRs + GAM 0.967 0.940 0.965

After confirming the optimal number of C3STRs, this paper further improved the
model by adding different attention mechanisms to the Head to make the network more
focused on the injury concentration area. In Table 3, the experimental comparison of
multiple attention mechanisms in this paper shows that mixed attention achieves the
highest detection accuracy than single-channel attention mechanisms, among which GAM
has a higher comprehensive performance than CBAM.

• Loss function

Table 4 shows the effects of adding different loss functions to the network model on
the experimental results.

This paper compares several mainstream loss functions, including the latest AlphaIoU
and SIoU, and finds that the combination of SIoU and Soft-NMS to make the function,
Soft-SIoUNMS, achieves the best detection effect through experiments. The comparison of
defect detection loss values of different loss functions is shown in Figure 9. In order to more
intuitively reflect the difference between the improved loss and the original loss function,
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we compare them. Figure 10 is a comparison of the original CIoU and the improved
Soft-SIoUNMS.

Table 4. Comparison of the results of different loss functions.

Model P R mAP@0.5

YOLOv5s + CDConv + C3STRs + EIoU 0.965 0.933 0.954
YOLOv5s + CDConv + C3STRs + GIoU 0.968 0.936 0.961

YOLOv5s + CDConv + C3STRs + AlphaIoU 0.951 0.936 0.963
YOLOv5s + CDConv + C3STRs + SIOU 0.963 0.938 0.964

YOLOv5s + CDConv + C3STRs + Soft-NMS 0.965 0.938 0.962
YOLOv5s + CDConv + C3STRs + Soft-SIoUNMS 0.972 0.950 0.965
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4.3.3. Performance Comparison Experiments

In order to fully evaluate the improved YOLOv5s detection algorithm in this paper,
six algorithms were selected for experimental comparison, including the unimproved
YOLOv5s, the earlier YOLOv4, and the updated YOLOX. Meanwhile, Faster-RCNN with
the highest two-stage accuracy, and a lightweight network, EfficientDet, were compared.
The mean average precision (mAP) was selected as the evaluation index of different
detection algorithms, which can scientifically and reasonably evaluate the target detection
and positioning ability of different detection algorithms. The experimental comparison
results are shown in Table 5.

Table 5. The results of comparison experiments.

Model Name P R mAP@0.5 Times/ms

YOLOv4 92.05 78.74 90.37 38.4
YOLOv5s 96.55 93.34 95.43 16.3
YOLOX 96.95 91.62 95.84 22.7

Faster-RCNN 94.39 74.61 94.43 160.3
EfficientDet 96.49 71.20 90.81 54.1

Ours 97.13 94.53 96.90 29.2

In this paper, the performance of the proposed algorithm and some other classical
algorithms for rail surface defect detection were compared experimentally. The experi-
mental results are shown in Table 5, where it can be seen that the improved YOLOv5s
algorithm proposed in this paper achieved the highest detection accuracy. Compared with
YOLOv4 [27], the unimproved YOLOv5s algorithm, YOLOX [39], Faster R-CNN [18], and
EfficientDet, the improved YOLOv5S algorithm achieved the highest detection accuracy,
with mAP increased by 6.53, 1.47, 1.06, 2.47, and 6.09 percentage points, respectively.

The prediction results in Figure 11 show the detection effects of YOLOv4, the unim-
proved YOLOv5s, YOLOX, Faster R-CNN, EfficientDet, and the improved YOLOv5s of this
paper. It can be seen from the figure that YOLOv5s and Faster R-CNN both have missed
detections, while YOLOv4 has inaccurate positioning. The improved YOLOv5s algorithm
proposed in this paper detects all the defects in the obtained images, and compared with
the unimproved YOLOv5s algorithm, the accuracy of the predicted border is higher. Thus,
a better detection effect is achieved.
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5. Conclusions

In this paper, the problems of low contrast between defects and the background, the
large scale difference, and insufficient training samples in the detection of rail surface
defects are studied. To address these problems, the YOLOv5s method was improved and
the following research was carried out. Firstly, in view of the problem of low contrast
between defects and the background as well as insufficient training samples, the rail surface
defect image dataset was augmented with flip transformation, random cropping, bright-
ness transformation, and a generative adversarial network. Then, the CDConv was added
into the backbone network to reduce the number of network parameters and the number
of calculations, while improving detection speed and accuracy. Targeting the problem of
large scale differences in defects, the Swin Transformer module was combined with the
Backbone and Neck end to improve the C3 module of the original network. Furthermore,
the GAM was introduced in PANet to form a new detection head, SGPH, to expand the
global dimension interaction across the spatial channel dimension. It enables the network to
obtain better global information and rich context information, while improving the ability
of the model to capture different dimensions of information. Finally, the Soft-SIoUNMS loss
function replaced the original CIoU loss function, which accelerated the model convergence
speed and achieved different levels of bounding box regression accuracy. The experimental
results show that the mAP of our improved YOLOv5s rail surface defect detection method
reached 96.9% with a detection time of 29.2 ms. This meets the requirements for accurate,
real-time rail surface defect detection. Future research will study rail surface defect de-
tection in complex environments and improve on the lightweight nature of the network
model while maintaining detection accuracy.
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