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Abstract: In this paper, we research the dynamic car sequencing problem with car body buffer
(DCSPwB) in automotive mixed-flow assembly. The objective is to reorder the sequence of cars in
the paint shop using the post-painted body buffers to minimize the violation of constraint rules and
the time cost of sequencing in the general assembly shop. We establish a mathematical model of
DCSPwB and propose a decomposition-based algorithm based on the dynamic genetic algorithm
(DGA) and greedy algorithm for delayed car release (PGDA). Experiments are conducted based on
production orders from actual companies, and the results are compared with the solution results of
the underlying genetic algorithm (GA) and greedy algorithm (GDA) to verify the effectiveness of the
algorithm. In addition, the effect of buffer capacity on DCSPwB is investigated.

Keywords: mixed-flow assembly; car sorting; decomposition algorithm; genetic algorithm; greedy
algorithm

1. Introduction

The introduction of Henry Ford’s Model T revolutionized automobile manufacturing,
and its creative assembly line has greatly reduced the cost of automobile production.
As the automotive industry continues to evolve, product requirements and production
system requirements have changed dramatically, and orders with “small lot size, multiple
varieties, and customization” have made the mixed-flow production model increasingly
popular. The so-called mixed-flow production model means that different body types,
different colors, and different parts are produced on the same production line, making the
production process more complex. Assembly line balancing and car sequencing are the
two main issues for effective operation of mixed-flow assembly lines [1]. The assembly
line balancing problem has been widely studied since its introduction [2–6]; scholars have
constructed different models for the simple assembly line balancing problem (SALBP) and
the generalized assembly line balancing problem (GALBP) by considering the number of
workstations, productivity, assembly line cost, smoothness index of parts consumption,
and workstation idle time to optimize the solution.

In addition to the assembly line balancing problem, the car sequencing problem (CSP)
of automobiles is equally important. There are usually multiple departments in automobile
production, such as welding shop, painting shop, and final assembly shop, etc. Each shop
has different preferences for the sequence of car production. For example, the painting
shop tends to limit the car production sequence by car color in order to save the cost of
cleaning paint nozzles [7], and the final assembly shop tends to limit the production by
model and configuration based on the consideration of man hours and parts consumption.
Since the constraints of each shop on the mixed-flow assembly line are different, each shop
has different car sequencing goals, which leads to production scheduling that cannot follow
the same sequence of continuous production. In particular, the sequence difference between
the paint shop and final assembly shop is large. For this situation, there are two solutions.
The first one is to generate a fixed compromise sequence by considering the production
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needs of multiple shops simultaneously. Cordeau et al. [8], Gagné et al. [9], Mansouri [10],
Prandtstetter and Raidl [11], and McMullen [12] have described how to generate the initial
production sequence, and it is obvious that the generated such sequences all violate the
constraint rules of each workshop to varying degrees. Another approach is to create a
buffer between these two shops to reorder the cars to obtain the desired sequence, at which
point the CSP evolves into the car sequencing problem with buffer (CSPwB). There are
various forms of buffer zones, and Boysen [13] and Wortmann [14] summarized several
structural forms of buffer zones:

• Pull-out buffer: Cars at any position in the car sequence can be removed and placed
in the backward buffer, and then inserted into the appropriate position as the car
sequence advances, so that cars can be moved to any position later in the sequence,
and the advancement of the car sequence is limited by the number of cars allowed out
of the column.

• Ring buffer: Multiple cars can be selected from the car sequence into the ring buffer,
and cars from any position in the ring buffer can be put back into the sequence.

• Automated storage and retrieval system (AS/RS): Consisting of hundreds of buffer
points, each buffer point can be accessed individually to generate the desired sequence
of cars, and the flexibility of car sequencing is influenced by the number of buffer
point locations.

• Parallel buffer: It consists of multiple parallel lanes (Figure 1), where cars from the
upstream workshop are put into the parallel lanes, and then the first car of a lane is
selected to join the downstream car production sequence according to the needs of the
downstream workshop, and cars can only move in one direction in the lane, following
the “FIFO” principle.

Incoming Line Outgoing Line

Parallel Buffer

Figure 1. Parallel buffer.

Parallel line buffer is a more used class of buffer in automotive companies, and this
paper also deals with solving CSP for parallel line buffer. We propose a decompositional
algorithm to solve DCSPwB and reorder the car sequences in the paint shop using the
post-painted car body buffer to find the optimal car sequences that satisfy all the hard
constraints of the assembly shop as well as the appropriate trade-offs of various soft
constraints, minimizing the violation of the constraint rules and the time cost of sequencing
for the assembly shop. The whole method is divided into two parts: a heuristic inbound
method based on simple rules and an outbound method based on a dynamic genetic
algorithm and a greedy algorithm for delaying car outbound. We consider the time cost of
the car sorting process as a soft constraint.

The rest of this paper is organized as follows. A literature review is presented in
Section 2. Section 3 provides a detailed description of DCSPwB and establishes a mathemat-
ical model. In Section 4, a decomposed algorithm is proposed to divide the problem into two
phases: inbound and outbound. A simple rule-based heuristic inbound algorithm, a greedy
algorithm based on the delayed car outbound method, and a dynamic-genetic-algorithm-
based car outbound method are described. The numerical experiments in Section 5 verify
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the effectiveness of the proposed algorithms and investigate the effect of buffer capacity on
the flexibility of car sorting. Section 6 describes the conclusions of this research.

2. Literature Review

CSP exists in a large number of automotive production companies and has gradually
developed into a classical type of planning and scheduling problem. CSP was first proposed
by Parrello et al. [15] and gradually gained attention. Kis et al. [16] proved that CSP
is an NP-hard problem. Solnon et al. [17] divided the methods for solving CSP into
two categories: exact methods (constraint planning, integer planning, etc.) and heuristic
methods (genetic algorithms, ant colony optimization algorithms, etc.). Boysen et al. [1]
classified three types of sorting methods in mixed-flow assembly based on different sorting
objectives: mixed model sorting, car sorting, and level scheduling. Drexl and Kimms [18]
proposed an integer planning model for CSP. Thiruvady et al. [19] solved CSP based on
mixed integer programming (MIP) with large neighborhood search (LNS) by minimizing
the violation of car separation rules. Estellon et al. [20] proposed two local search methods
that use invariants to speed up the search for the optimal solution of the algorithm to solve
the CSP. Prandtstetter and Raidl [11] proposed two methods to solve CSP, i.e., integer linear
programming (ILP) and hybrid variable neighborhood search, and showed the superiority
of the algorithms by experimental examples. Gavranović [21] solved the CSP with color by
improving the variable neighborhood search (VNS) results with the Tabu metaheuristic.
Siala et al. [22] studied the effect of different heuristics on CSP and proposed a slack-based
filtering algorithm.

For CSPwB, Bulgak [23] developed an artificial-neural-network-based metamodel
simulation combined with the genetic algorithm (ANN-GA) to search for optimal solutions.
Muhl et al. [24] investigated the effect of using different metaheuristics on solving CSPwB.
Spieckermann et al. [25] used a branch-and-bound algorithm to solve CSPwB with the
objective of minimizing the number of color switches in the paint shop. Yu et al. [26]
proposed a new algorithm of gravity-like mechanism to achieve the sequencing of cars
in the buffers by encoding them as particles. Moon et al. [27] proposed a store/retrieve
algorithm and simulated the proposed algorithm to verify the effectiveness of the proposed
algorithm. Pereira et al. [28] developed a new branch-and-bound algorithm that exploits
the symmetry of the problem and improves the efficiency of the algorithm.

Currently, these studies on CSP and CSPwB tend to consider only the degree of
violation of the rules and the operational efficiency of the algorithm, and do not consider
the time cost of car sorting. However, in the actual enterprise production, sometimes, there
is a surge of orders and the production beat needs to be accelerated, and the excessive car
sequencing time will affect the production schedule. Furthermore, previous studies were
often based on static reordering [13], i.e., all information is known before car sequencing,
and thus, decomposing the problem into a series of static problems within rolling planning.
The algorithm proposed in this paper is based on the dynamic sequencing of cars, i.e., the
sequence of cars before reaching the buffer is not known, which makes the car sequencing
problem an online problem.

3. Problem Description and Mathematical Model

In this section, we develop a detailed mathematical model for DCSPwB. Consider
an initial sequence of N cars of different models: i = 1, 2, . . . , N, O is the set of options
required for different models of cars, and for any option in the set, the capacity constraint,
i.e., ro : so, is defined, and the number of cars with option o cannot exceed ro in the
sequence so of cars requiring option o. The capacity constraints are determined based on
the production characteristics of the assembly plant downstream of the buffer. Violation
of these constraints can cause problems, such as excessive workload of assembly plant
workers and uneven consumption of parts. The following is a simple example to illustrate
the capacity constraint, as shown in Table 1, which considers a car production schedule
with four types, i.e., A, B, C, and D, for a total of five cars. Different types of cars need to
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satisfy different options; for example, Class A cars need to satisfy options o1 and o2, while
Class B cars only need to satisfy o1. The constraints associated with o1 and o2 are 1/2 and
1/3, respectively. These five cars can generate 5! = 120 kinds of car sequences; here, we
use the “sliding window” method to count the number of violations. This method will be
repeated to amplify the number of violations of the option constraints, which is equivalent
to increasing the weight of the “problem car”, so that the algorithm tends to disperse the
“problem car”. For example, if the sequence of cars after reordering in the buffer is [B, A, A,
C, D], then the subsequence [B, A], [A, A] violates the constraint o1, and the subsequence
[A, C, D] violates the constraint o2, and thus, the total number of violations of the sequence
is three. Here, the second car is a “problem car”, and removing or replacing the second car
will reduce the number of violations by two.

Table 1. A simple example of a car sequencing problem.

Car Type A B C D

o1 X X 1/2
o2 X X X 2/3

Amount 2 1 1 1

The buffer consists of L parallel lanes, each of which can hold up to V cars. The
initial sequence of cars is reordered through the buffer to generate a new sequence into
the downstream shop, and only one car can enter and leave the buffer at a time, so the
flexibility of reordering is related to the buffer capacity. We also consider the time cost
of DCSPwB and add it to the objective function. In addition, the following assumptions
are made:

1. Each car takes the same amount of time to move one space in either lane of the buffer
and can only move in one direction.

2. The buffer continues to function normally, regardless of fault conditions.

According to the above expression and the definition of symbols in Table 2, DCSPwB
is defined as follows:
Min:

F = ∑
oεO

wo ·
min(j+so−1,N)

∑
j=1

zoj

+ wt · sct

N

∑
i=1

L

∑
l=1

yil [(V − 1) · TL + tel + t fl ] (1)

Subject to:
L

∑
l=1

yil = 1, ∀i = 1, . . . , N (2)

N

∑
i=1

yil 6 V, ∀l = 1, . . . , L (3)

N

∑
i=1

cil = 1, ∀j = 1, . . . , N (4)
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N

∑
k=1

cik · k−
N

∑
k=1

cjk · k 6 MI
(

2− yil − yjl

)
,

∀i = 1, . . . , N − 1, j = i + 1, . . . , N, l = 1, . . . , L (5)

N

∑
i=1

j+s0−1

∑
τ=j

aio · ciτ 6 r0 + M · zoj,

∀oεO, j = 1, . . . , N − so + 1 (6)

Table 2. Variable and parameter definitions.

N Total number of cars, index i.
O Collection of options, index o.
L Number of lanes in the buffer, index l.
V Capacity per lane.
wo Option weights.
so A continuous sequence of cars, some of which require the option o.
ro The maximum number of cars with option o allowed in a continuous sequence of cars so.

so : ro
Capacity constraint, i.e., the maximum number of cars with option o allowed in a contin-
uous sequence of cars so.

zoj
Binary variable: 1, if the car sequence so starting from position j satisfies the constraint
so : ro, 0, otherwise.

M Scaling for (so : ro).
yil Binary variables: 1, if car i is in lane l, 0, otherwise.
cij Binary variables: 1, if car i is in position j of the sequence, 0, otherwise.
MI Large integers.
aio Binary variables: 1, if car i needs option o, 0, otherwise.
TL The time it takes for a car to move one space in the buffer lane.
tel Time it takes for a car to enter the buffer lane l.
t f l Time it takes for a car to exit from the buffer lane l.

The objective Equation (1) is to minimize the number of violations of the car sequence
in all options and the time cost of car sorting, balancing the importance of time by the weight
coefficient wt. sct is the time scale scaling factor, because the time cost of car sorting is not
consistent with the scale of the number of violations and the degree of variation is different,
and the scaling of sorting time is needed. Constraint Equation (2) ensures that each car can
only be assigned to one lane in the buffer. Constraint Equation (3) ensures that the number
of cars in each lane of the buffer does not exceed its capacity. Constraint Equation (4)
guarantees that each car can only appear once in the car sequence. Constraint Equation (5)
guarantees that for any two cars i and j, if they are assigned to the same lane, the position
of car i in the lane of the buffer, and in the sequence of cars after reordering, is before car j.
Constraint Equation (6) checks whether rule violations occur, while allowing these rules
to be violated when there is no feasible solution. Constraints Equations (2)–(5) are hard
constraints, i.e., constraints that need to be fully satisfied, and constraint Equation (6) is a
soft constraint, i.e., a constraint that is allowed to be violated at some cost. Therefore, the
essence of the optimization process for this problem is to satisfy the soft constraints at the
least costly expense while satisfying all hard constraints.

The next section gives our proposed decomposition approach to solve the prob-
lem, which divides the problem into two phases to solve: the inbound phase (cars enter
the buffer) and the outbound phase (cars exit the buffer), for which different heuristics
are applied.

4. DCSPwB Decompositional Algorithm

Since the whole sorting process is dynamic and is a continuous input–output process,
the sequence of cars after reordering is subject to both the constraints of the paint shop and
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the rules of the final assembly shop, and both car inbound and outbound affect the number
of rule violations as well as the time cost of car sequencing. In dynamic sequencing, since
the sequence of cars before arriving at the buffer is not known, we use a simple rule-based
heuristic algorithm to fill the buffer in the car-in phase; in the car-out phase, we propose
two different algorithms: a greedy algorithm to delay the car-out (PGDA), and a dynamic
genetic algorithm (DGA) to release the cars from the active sequence in the buffer to the
final assembly plant. The so-called active sequence is the sequence consisting of the cars in
the first position of all lanes [1].

4.1. Simple Rule-Based Heuristic Entry Algorithm

In the car entry phase, we introduce a scoring model, where the level of the score
represents the magnitude of the match, and the scoring model is as in Equation (7). Where
fi(l) denotes the matching degree of car i with lane l, n denotes the number of rules,
r denotes the priority of the rules, I is a positive integer determined by the number of
rules, and the rules are formulated based on the attributes of the car. For example, if the
configuration of a car is 4WD and hybrid, then the attributes of the car are {4WD, hybrid}.
Here, we only care about the attributes related to the constraints of the final assembly
plant, such as the driving mode and power source of the car, etc. The attributes related to
the paint shop, such as the color of the car, are not relevant to the optimization objective
Equation (1) and are not considered here.

Max
l=1,...,L

fi(l) = ∑n
r=1 [u(r) · 2n−r], if lane l is not empty

∑n
r=1 2n−r − I, if lane l is empty

0, if l = x and arg Max fi−1(l) = x
(7)

u(r) =
{

1, if dlr = carir
0, if dlr 6= carir

(8)

where u(r) is the attribute consistency metric and dlr and carir denote the attributes of lane
l and car i, respectively, when based on rule r. Once a car enters in a lane, the attributes
of the lane remain consistent with that car. We also consider the time problem when cars
enter the buffers. Different lanes have different distances from the entrance of the buffers;
if a certain lane is close to the entrance of the buffers, the time for a car to enter that lane
is shorter than the time for a car to move one space in that lane, which will result in a car
waiting situation and increase the time cost of the car sorting process, so we avoid this
situation by setting the matching degree of that lane to 0. According to the matching degree
scoring model, the inbound heuristic rules in order of priority from highest to lowest are:

1. Select the lane with the best match.
2. Select the lane with the largest remaining capacity.
3. Select the lane that takes the shortest amount of time to enter the buffers.

A simple rule-based heuristic entry is shown in Algorithm 1. Algorithm 1 uses the
car i that needs to enter the buffers and the set T of the time it takes for the car to enter
each lane of the buffers as input. In line 1, the highest match maxScore of all lanes with car
i is initialized to 0. In line 2, the set BL consisting of the lanes with the highest matching
degree is initialized to empty. The loop in rows 3–7 updates the highest matching maxScore
of all lanes with car i. The loop in lines 8–12 updates the set BL consisting of the lanes
with the highest matching degree. If the lane with the highest matching degree is not
unique, in line 14, the function choic_margin(BL) is used to calculate the lane with the
largest remaining capacity and update BL. If the lane with the largest remaining capacity is
not unique, the lane that takes the shortest time for car i to enter the buffer is calculated
by the function choic_time(BL, T) and BL is updated, the lane assigned to car i is returned
at the end of the algorithm. The time complexity of this algorithm is O(L). The algorithm
matches different lanes for cars with different attributes based on the information of cars
that are about to be warehoused and the information of the buffers, and does not depend
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on the information of car sequences in the upstream workshops to meet the dynamic
sequencing requirements of cars.

Algorithm 1: Heuristic storage algorithm for simple rules
Input: A car i, Set of time required for car to enter each lane of buffer T.
Output: The set of lanes with the highest matching degree BL.
maxScore←− 0
BL←− ∅
for l = 1, . . . , L do

if fi(l) > maxScore then
maxScore←− fi(l)

end
end
for l = 1, . . . , L do

if fi(l) = maxScore then
append l to BL

end
end
if length(BL) > 1 then

BL←− choicmargin(BL)
if length(BL) > 1 then

BL←− choictime(B, T)
end

end
return BL

4.2. Dynamic Genetic Algorithm

Genetic algorithms (GA) were first proposed by Holland and have been shown to
be used to solve different types of optimization problems [29–32]. In this paper, a novel
dynamic genetic algorithm (DGA) is proposed to solve the vehicle outgoing problem by
improving the crossover and variation operators of the GA to dynamically adjust the
crossover and variation probabilities during the iteration process, and thus, adjust the
search range of the algorithm. This section is organized according to the main steps of
the genetic algorithm: (1) the way of encoding the solution and population initialization,
(2) selection, (3) dynamic crossover algorithm, and (4) dynamic mutation algorithm.

4.2.1. Encoding Method of Solution with Population Initialization

Before using the genetic algorithm, the encoding of the solution is first determined.
The encoding of the solution proposed in this paper is shown in Figure 2. The encoding
shown here is for the active sequence of a buffers with six parallel lanes. The position
of the gene represents the order in which the cars exit the buffer, and the value of the
gene indicates the lane number in which the car exiting the buffer is located. For example,
the first gene of the chromosome has a characteristic value of 5, indicating that the car in
the first position of lane 5 exits the buffer first, followed by the car in the first position
of lane 3. This encoding ensures that the cars in the active sequence of the buffer are
exited sequentially.

As described in Section 3, each car has a different option o and needs to satisfy
different capability constraints so : ro, so the encoding of the solution also needs to be
able to represent the configuration of the car. We use a multi-layer code to indicate the
configuration information such as the driving method and power source of the car. As in
Figure 3, it can be indicated that the car in the first position of lane 5 has drive mode 1 and
power source 2. For population initialization, we generate the initial population using a
prior knowledge-based guided population initialization method. From the encoding of the
solution, it is known that the eigenvalues of each gene of the chromosome are mutually
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exclusive, and based on this prior knowledge, the individuals that meet the requirements
are selected among the randomly generated population individuals to ensure the feasibility
of the initial population. Using the population initialization method guided by prior
knowledge will speed up the convergence of the algorithm as well as improve the stability
of the algorithm [33].

Figure 2. The way the solution is encoded.

5 3 6 1 4 2

1 2 1 2 2 1

2 1 2 1 2 2

… … … … … …

Figure 3. Coding method for solutions with car configuration.

4.2.2. Selection

Selection is the process of selecting the best individuals from an old population to
form a new population in order to reproduce the next generation of individuals. Here,
we use binary tournament selection (TS), which is based on the idea that two individuals
are randomly selected from the population at a time, and the individual with the highest
fitness is chosen to enter the next generation population. TS has been widely used because
of its low time complexity (O(n)) and the fact that it can be parallelized. Algorithm 2
shows the general process of TS. It can be seen that the selection is based on the fitness
of individuals, so we need to define the fitness function. Each chromosome represents
a set of car outgoing sequences, and adding different outgoing sequences to the already
outgoing car sequences will increase the number of violations and time cost differently,
i.e., cause different degrees of increase in the objective function Equation (1). We use the
inverse of the amount of change in the objective function Equation (1) caused by different
chromosomes as the fitness function:

Fitness =
1
4F

(9)

where the larger the MF of an individual, the lower its fitness and the lower the probability
that the individual will continue to the next generation.
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Algorithm 2: GA TS
Input: Num of chromosomes in the population n, vector of chromosomes fitness

values v, number of parental chromosomes m.
parentIndex = randi(n, 1, m)
vParent = v(parentIndex)
[vParentSort, vParentIndex] = sort(vParent, “descend′′)
idx = vParentIndex(1)
return idx

4.2.3. Dynamic Crossover Algorithm

The crossover operator in GA replaces and recombines part of the structure of two
parent chromosomes to generate a new chromosome. The new chromosome retains some
of the original features of the parent chromosome and generates new features, thus im-
proving the search ability of the genetic algorithm. In the traditional genetic algorithm,
the crossover probability is fixed during the iteration; we propose a dynamic crossover
algorithm that dynamically adjusts the crossover probability according to the number of
iterations and the fitness of the population. The crossover probability is calculated as in
Equations (10) and (11):

Pg
c = pmax

c −
(g− 1)γ ·

(
pmax

c − pmin
c
)

(gmax − 1)γ (10)

γ = kc ·
(

Fitnessmax
g − Fitnessavg

g

)
(11)

where pg
c denotes the crossover probability of the gth generation, pmax

c denotes the maxi-
mum crossover probability, pmin

c denotes the minimum crossover probability, gmax denotes
the maximum number of iterations, Fitnessmax

g denotes the maximum fitness value of the
gth generation population, Fitnessavg

g denotes the average of the fitness values of the gth
generation population, and kc is a constant coefficient. As the number of iterations increases,
the crossover probability decreases continuously, which reduces the abrupt changes of
unsuitability in the population and ensures the convergence ability of the algorithm. Mean-
while, the speed of crossover probability reduction is adjusted by the difference between
the maximum value of population fitness and the mean value of fitness to ensure the global
optimization-seeking ability of the algorithm.

For the crossover method, we use the PMX crossover operator [34], a crossover opera-
tor that is guaranteed to produce valid chromosomes. PMX determines the crossover region
by randomly selecting two crossover points, and the crossover region is populated directly
to the offspring chromosome, for genes outside the crossover region in the offspring, which
needs to be determined based on the mapping relationship established by the crossover
region. Figure 4 shows an example of the PMX crossover operator, using the crossover
region of Parent 2 to populate Offspring 1, and for genes outside the crossover region of the
Offspring 1 chromosome, Parent 1 is used to populate. Finally, if there is an overlap with a
gene in the crossover region in Offspring 1, the mapping relationship is used. For Figure 4,
the mapping relationships established through the crossover region are 5-4, 1-2, and 3-6,
and these mapping relationships ensure the validity of the chromosomes generated after
the crossover.
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2 4 5 1 3 6

5 1 4 2 6 3

Parent 1

Parent 2

1 5 4 2 6 3

4 2 5 1 3 6

Offspring 1

Offspring 2

5 1 3

4 2 6

Figure 4. Partial match crossover (PMX).

4.2.4. Dynamic Mutation Algorithm

If there is only selection and crossover without mutation, it will not be possible to
search in the space beyond the initial gene combination, making the algorithm fall into
a local optimum solution and stop early in the iteration, so the mutation operator is nec-
essary for the algorithm. The mutation operator in GA generates new chromosomes by
changing some genes on the chromosome, which can improve the diversity of the popu-
lation and reduce the risk of the algorithm falling into a local optimum solution. For the
mutation probability, similar to the crossover probability, we propose a dynamic mutation
algorithm that dynamically adjusts the mutation probability according to the number of
iterations and the fitness of the population. The mutation probability is calculated as in
Equations (12) and (13):

Pg
m = pmax

m −
(g− 1)γ ·

(
pmax

m − pmin
m
)

(gmax − 1)γ (12)

γ = km ·
(

Fitnessmax
g − Fitnessavg

g

)
(13)

where pg
m denotes the mutation probability of the gth generation, pmax

m denotes the max-
imum mutation probability, pmin

m denotes the minimum mutation probability, and km is
a constant coefficient. As the number of iterations increases, the mutation probability
decreases continuously, while the rate of crossover probability reduction is adjusted by
the difference between the maximum value of the population fitness and the mean value
of the fitness, which ensures the convergence ability and global merit-seeking ability of
the algorithm. In the mutation method, we use the swap mutation operator, which swaps
two genes on the chromosome according to the mutation probability, as in Figure 5, and
the resulting new chromosome is genetically identical to the original chromosome, which
ensures the validity of the new chromosome generated after the mutation.

2 4 5 1 3 6

2 3 5 1 4 6

Figure 5. Exchange mutation.
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4.3. Greedy Algorithm for Postponed Car Release

The greedy algorithm (GDA) is an algorithm that takes the best or optimal choice in the
current state at each step of selection, and thus, hopes that the result is the best or optimal.
GDA is not considered in terms of overall optimality, and the solution obtained each
time is a local optimal solution based on some strategy [35,36]. GDA has been studied in
solving static car sequencing problems [37], but its performance on dynamic car sequencing
problems still needs to be further explored. Here, the GDA-based outbound method
requires releasing the car in the active sequence of the buffer that causes the minimum sum
of the number of new violations and the sorting time cost of the outbound car sequence.
The number of new violations of the outgoing car sequence caused by the outgoing car
is the sum of the number of violations for each option. For option o, if the outgoing car
requires option o and the number of cars requiring option o in the outgoing car sequence
so is equal to ro, then the outgoing car causes one violation of option o. The number of
additional violations caused by the outgoing car i is calculated according to Equation (14),
where x denotes the position of the outgoing car in the sequence of already outgoing cars.
The time cost of the outgoing car increase is calculated according to t f l .

Vio(i) = ∑
o∈O

wo ·min
{

aio,zoq
}

q = max{0, x− so + 1}
(14)

Here, we improve the GDA and propose a greedy algorithm (PGDA) for delaying
car exiting by setting the parameter M. Only when the number of cars in the buffer is
larger than (L×V −M) are the cars allowed to exit the buffer, and the optimal exit of cars
is solved by the greedy algorithm. The specific setting of parameter M needs to be obtained
by simulation experiments.

5. Experiments and Results

We use two datasets to test the performance of the algorithm, based on data pro-
vided by a car manufacturer, and divide the dataset according to the total number of cars,
N ∈ {60, 120, 180, 240, 300, 360}. Thus, a total of 12 sets of experimental arithmetic, denoted
as I_60, II_60, I_120, II_120. . . , are obtained for the relevant configuration of the buffers,
as described in more detail in Section 5.1. We compared the GDA-, PGDA-, GA-, and
DGA-based methods for outbound cars. Section 5.2 shows the results of the numerical
experiments.

5.1. Dataset

Table 3 shows some of the information of the dataset. For each dataset, we determine
the order of the outgoing cars in the paint shop, i.e., the order of incoming cars in the buffers,
the model information, and the options needed for different models, where each option is
o1 : 1/3, o2 : 2/3, o3 : 1/2. Parameters of the buffer are shown in Table 4. For the
car sequencing problem in both datasets, violation of the constraint is unavoidable, i.e.,
Equation (1) ∑o∈O wo ·∑min(j+so−1,N)

j=1 zoj > 0. We set different weights w1, w2, w3 for the
violation of different options. The weights represent the priority of different options and
will be considered at different factories or at different times in the same factory. The value
of the weights need to be determined according to the assembly capacity of the factory
assembly plant, the order situation, etc. Here, the weights of options o1, o2, o3 are w1: 0.4,
w2: 0.3, and w3: 0.2 and the weighting factors for time cost are wt: 0.1 and sct: 0.01.
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Table 3. Dataset introduction.

Order of Entering the Car Car Type o1 o2 o3

1 K1 X
2 K2 X X
3 K2 X X
4 K1 X

. . . . . . . . . . . . . . .
22 K3 X
23 K1 X
. . . . . . . . . . . . . . .

Table 4. Buffer parameters.

Parameters Value Unit

L 6
V 10
TL 9 s
tel [18, 12, 6, 0, 12, 18] s
t f l [18, 12, 6, 0, 12, 18] s

5.2. Experimental and Computational Results

As described in Section 4.3, for PGDA, the value of the parameter M needs to be
obtained by evaluating the quality of the solution for different experimental arithmetic
cases. First the number of violations VioP for the sequence of cars in the paint shop are
counted before reordering, and the number of violations VioM and the time cost tm of the
sorting are obtained by the statistical algorithm when M takes different values on different
test arithmetic cases, until the values of VioM and tm values do not vary with M. The
detailed results are shown in Figure 6, and it can be seen that when M = 2, VioM tends to
achieve the minimum value, tm is within an acceptable range, and the value of the objective
function Equation (1) is optimal.

There is usually a range of values for each parameter of the genetic algorithm and
different combinations of these parameter values greatly affect the performance of the
algorithm. Here, the solution quality of the algorithm is evaluated by different experiments
with different combinations of parameter values, and better values of the genetic algorithm
parameters are obtained. In all experimental arithmetic cases using the genetic algorithm,
the population size is 50, pmax

c is 1, pmin
c is 0.6, kc is 3, pmax

m is 0.1, pmin
m is 0.01, km is

2, and the maximum number of iterations is 100. Based on the proposed simple rule-
based heuristic entry algorithm and four different heuristic exit algorithms, i.e., GDA,
PGDA, GA, and DGA, experiments were conducted on DCSPwB of different sizes, and
the number of violations VioP for the sequence of cars in the paint shop before reordering,
Vio_GDA/Vio_PGDA/Vio_GA/Vio_DGA for the sequence of cars after reordering by
each algorithm, and the time cost t_GDA/t_PGDA/t_GA/t_DGA were counted. The
experimental results are shown in Table 5 and Figure 7. In Table 5, the first column
identifies the test arithmetic, the next column shows the number of violations of the car
sequence in the paint shop, and the next eight columns show the results of GDA, PGDA,
GA, and DGA. Due to the random nature of the genetic algorithm, the results of the genetic
algorithm are the average of five runs.

According to Table 5, we can see that PGDA, GA, and DGA all have a substantial
reduction in the number of violations for the reordered car sequence, while GDA does
not work well in solving the dynamic car sequencing problem. In Figure 7, we see the
comparison between these four algorithms in different test cases. PGDA outperforms
the other algorithms in terms of solution quality as well as time cost of sorting, and the
objective function value F reaches the optimum. However, the choice of its parameter M
often requires several experiments based on the buffer capacity and upstream workshop
car sequences to evaluate the solution quality obtained with different parameters. The
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solution quality of DGA and GA is comparable, but the convergence of DGA is better than
GA. Figure 8 shows the convergence curves of several groups of genetic algorithms in the
solution process. It can be seen that the DGA outperforms the GA in terms of convergence
on both the population optimum and the mean value, and there is no risk of falling into a
local optimum solution. Figure 7 also reflects that the algorithm performs differently on
different datasets, and the sorting effect of the buffers is more influenced by the upstream
shop, and the sequencing effect of the buffers will be reduced if the outgoing sequence of
the paint shop differs significantly from the target sequence of the final assembly shop.

Figure 6. The quality of the PGDA-based solution when M takes different values.
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Table 5. Calculation results of the four algorithms’ examples.

Example VioP
GDA PGDA GA DGA

Vio_GDA t_GDA Vio_PGDA t_PGDA Vio_GA t_GA Vio_DGA t_DGA

I_60 15.6 13.1 1.2 8.3 1.8 5.6 2.2 5.1 2.2
I_120 29.1 24.3 2.3 9.3 2.9 12.2 3.5 10.1 3.5
I_180 43 38.9 3.4 14.1 4.0 19.1 4.6 19.5 4.8
I_240 57.4 53.7 4.5 22.1 5.1 27.4 6.3 25.2 6.2
I_300 73.7 71.2 5.5 34.5 6.1 39.6 7.3 37.8 7.6
I_360 89.3 85.6 6.6 46.9 7.1 50.6 8.7 48.1 8.8
II_60 13.6 13 1.2 1.2 1.9 3.2 2.3 2.8 2.2

II_120 24.8 24.8 2.1 4.2 3.0 5.6 3.4 7.6 3.5
II_180 38.2 38.8 3.1 8.6 4.2 12.6 4.9 13.2 4.7
II_240 52.1 53.4 4.1 14.2 5.6 20.8 6.1 22.8 6.3
II_300 67.1 69.5 5.2 19.8 6.9 26.2 7.4 28.1 7.5
II_360 80.7 81 6.1 25.4 8.1 33.4 9.1 35.8 8.8

Figure 7. (a) Number of violations and objective function values after reordering of dataset I for each
algorithm. (b) Number of violations and objective function values after reordering of dataset II for
each algorithm.

5.3. The Effect of Buffer Capacity on Car Resequence

As the number of cars increases, the resequencing capability of the buffers is dimin-
ishing, as shown in Figure 9. It is not difficult to understand that since the capacity of the
buffers is limited, their resequencing capability for cars is also limited. Here, we investigate
the effect of the buffers capacity on its resequencing capability. Figure 10 shows the change
of the average objective function value F on the test instances I_360 and II_360 using PGDA
as the number of lanes L in the buffers increases. It can be seen that increasing the number
of lanes improves the sequencing capability of the buffers, but this improvement in se-
quencing capability diminishes rapidly when the number of lanes in the buffer area reaches



Appl. Sci. 2023, 13, 7336 15 of 18

a certain number. As the number of lanes continues to increase, the time cost of sorting
increases, the objective function value F increases instead, and the sequencing ability of the
buffer is weakened.

Figure 8. Convergence curves of GA (left) and DGA (right).

It can be seen that a certain number of lanes can already guarantee the sequencing
capability of the buffer, and an excessive number of lanes will not only mismatch with the
construction cost of the buffer, but even reduce the sequencing capability of the buffer.
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Figure 9. The percentage difference in the resequencing capacity of the buffer with different number
of cars; Gap(%) is computed as Gap(%) = VioP−Vio_PGDA

VioP .
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Figure 10. Effect of number of lanes on sequencing capability.

6. Conclusions

With the continuous development of the automotive industry, the mixed-flow pro-
duction model is becoming more and more popular. In this paper, a decomposition-based
algorithm is proposed to solve DCSPwB in automotive mixed-flow assembly, a mathemat-
ical model of DCSPwB is established, and the time cost of car sequencing is considered.
Using the post-painted car body buffer, the car sequences in the paint shop are reordered
to find the optimal car sequences that satisfy all hard constraints in the general assembly
shop as well as properly trade-off various soft constraints, minimizing the violation of
the constraint rules and the time cost of sequencing in the general assembly shop. The
algorithm consists of two heuristic phases, a simple rule-based heuristic inbound phase
and a PGDA-based as well as a DGA-based car outbound phase. In addition, we explore
the effect of buffer capacity on DCSPwB.

To evaluate the performance of the proposed algorithms, 12 test examples are provided.
The results show that car sequencing methods based on different exit algorithms are all
effective in reducing the violation of downstream workshop constraint rules and that
the time cost of car sequencing is acceptable. PGDA tends to achieve better results, but
the determination of its parameter M needs to be obtained by evaluating the quality of
different solutions. The quality of the solution of DGA is not as good as that of PGDA,
but its parameters are easier to obtain. Meanwhile, our research shows that in DCSPwB,
the sequencing ability of the buffers is weakened as the number of cars increases, and
increasing the number of lanes improves the sequencing ability of the buffers, but this
improvement is tiny and even reduces the sequencing ability of the buffers when the
number of lanes in the buffers reaches a certain number, and a certain number of lanes is
already able to guarantee the sequencing ability of the buffers.

Although the research in this paper is for a specific car sequencing problem, the
solution is flexible enough to be extended to a wide range of reordering problems in reality.
The general reordering rules are divided into hard and soft constraints, and modifying
the weights of the different soft constraints while the determined compliance with the
hard constraints can apply this method to other problems. In actuality, any problem
with buffers and with resequencing nature can refer to this approach; for example, in the
cross-docking distribution problem in supply chain logistics, how to plan the order of
incoming and outgoing vehicles is the key to improve the efficiency of the distribution
system. This is where cross-docking distribution becomes an online scheduling problem,
with the warehouse serving as temporary storage with a buffers area. If different types
of products unloaded are reordered within the warehouse, the scheduling difficulty of
incoming and outgoing vehicles can be reduced. The object of resequencing here is different
types of products, and the optimization goal can be the matching degree of products and
shipping vehicles, while the effectiveness of the method can be tested on relevant types
of instances in the future, such as cross-docking distribution problems in supply chain
logistics. In this paper, the parameter M of PGDA is obtained by evaluating the quality of
the solution on different test cases, and the possibility of determining the parameter M by
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some other methods can be investigated in the future. In addition, the buffers discussed
in this paper do not have return lanes, and future research can consider the problem of
dynamic sequencing of buffers with return lanes.
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