Adipolin, Chemerin, Neprilysin and Metabolic Disorders Associated with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Examined Population
- -
- normal glucose tolerance (NGT)—glycemia at 120′ OGTT < 7.8 mmol/L
- -
- abnormal glucose tolerance (AGT)—glycemia at 120′ OGTT ≥ 7.8 mmol/L
2.2. Inclusion and Exclusion Criteria
2.3. Anthropometric Testing
2.4. Measurement of Blood Pressure
2.5. Biochemical Tests
2.6. Statistical Analyses
3. Results
3.1. Comparative Analysis of Assessed Parameters
3.2. Adipokines and Anthropometric Parameters
3.3. Adipokines and Parameters of Carbohydrate Metabolism
3.4. Adipokines and Lipid Metabolism Parameters
3.5. Adipokines and Blood Pressure
3.6. Relationships between Concentrations of Individual Adipokines
3.7. Logistic Regression-Based Analyses
4. Discussion
4.1. Adipokines and Anthropometric Parameters
4.2. Adipokines and Glucose Metabolism
4.3. Adipokines and Lipid Metabolism and Hypertension
4.4. Relationships between Concentrations of Particular Adipokines and Other Factors
4.5. Limitations
5. Conclusions
- High plasma concentrations of chemerin are associated with low adipolin and high neprilysin concentrations. Adipolin, neprilysin, and chemerin concentrations are connected with some metabolic parameters, such as fasting and 120′ OGTT glycemia, HOMA-IR, and triglyceridemia, which influence health complications.
- The increasing frequency of high plasma adipolin concentrations with the age of subjects, occurring only in people with a BMI below 30 kg/m2, indicates a particular protective role for this adipokine in an older population without obesity but not in obese patients.
- The plasma chemerin profile in a population with high triglyceride concentrations depends on the sex of the studied subjects. High concentrations of this adipokine in men with high triglyceride concentrations indicate that this adipokine is an additional predictor of changes in lipid metabolism in this group.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 6 March 2023).
- Barchetta, I.; Cimini, F.A.; Ciccarelli, G.; Baroni, M.G.; Cavallo, M.G. Sick fat: The good and the bad of old and new circulating markers of adipose tissue inflammation. J. Endocrinol. Investig. 2019, 42, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Alipoor, E.; Salmani, M.; Yaseri, M.; Kolahdouz-Mohammadi, R.; Esteghamati, A.; Hosseinzadeh-Attar, M.J. Role of type 2 diabetes and hemodialysis in serum adipolin concentrations: A preliminary study. Hemodial. Int. 2019, 23, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, T.; Ohashi, K.; Shibata, R. Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. J. Biol. Chem. 2011, 286, 34552–34558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.Y.; Lei, X.; Little, H.C. CTRP12 ablation differentially affects energy expenditure, body weight, and insulin sensitivity in male and female mice. Am. J. Physiol. Endocrinol. Metab. 2020, 319, E146–E162. [Google Scholar] [CrossRef]
- Tan, S.Y.; Little, H.C.; Sarver, D.C.; Watkins, P.; Wong, G.W. CTRP12 inhibits triglyceride synthesis and export in hepatocytes by suppressing HNF-4α and DGAT2 expression. FEBS Lett. 2020, 594, 3227–3239. [Google Scholar] [CrossRef]
- Helfer, G.; Wu, Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, S.H.; Ahn, K.Y.; Lee, D.H.; Suh, Y.J.; Cho, S.G. Effect of lifestyle modification on serum chemerin concentration band its association with insulin sensitivity in overweight and obese adults with type 2 diabetes. Clin. Endocrinol. 2014, 80, 825–833. [Google Scholar] [CrossRef]
- Roguska, J.; Zubkiewicz-Kucharska, A. Chemerin as an early marker of metabolic syndrome. Pediatr. Endocrino. Diabetes Metab. 2018, 24, 45–51. [Google Scholar] [CrossRef]
- Nalivaeva, N.N.; Zhuravin, I.A.; Turner, A.J. Neprilysin expression and functions in development, ageing and disease. Mech. Ageing Dev. 2020, 192, 111363. [Google Scholar] [CrossRef]
- Zraika, S.; Koh, D.S.; Barrow, B.M.; Lu, B.; Kahn, S.E.; Andrikopoulos, S. Neprilysin deficiency protects against fat-induced insulin secretory dysfunction by maintaining calcium influx. Diabetes 2013, 62, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parilla, J.H.; Hull, R.L.; Zraik, S. Neprilysin deficiency is associated with expansion of islet β-cell mass in high fat-fed mice. J. Histochem. Cytochem. 2018, 66, 523–530. [Google Scholar] [CrossRef]
- Sperling, M.; Grzelak, T.; Pelczyńska, M.; Bogdański, P.; Formanowicz, D.; Czyżewska, K. Association of Serum Omentin-1 Concentration with the Content of Adipose Tissue and Glucose Tolerance in Subjects with Central Obesity. Biomedicines 2023, 11, 331. [Google Scholar] [CrossRef]
- World Health Organization; International Diabetes Federation. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications; World Health Organization: Geneva, Switzerland, 1999; Available online: https://apps.who.int/iris/handle/10665/66040 (accessed on 5 April 2023).
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. ESC Scientific Document Group, 2018 ESC/ESH Guidelines for the management of arterial hypertension, The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [Green Version]
- Kass, G.V. An exploratory technique for investigating large quantities of categorical data. J. R. Stat. Soc. Ser. C Appl. Stat. 1980, 29, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.W.; Lemeshow, S.A.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013; pp. 153–226. [Google Scholar]
- Bai, B.; Ban, B.; Liu, Z.; Zhang, M.M.; Tan, B.K.; Chen, J. Circulating C1q complement/TNF-related protein (CTRP) 1, CTRP9, CTRP12 and CTRP13 concentrations in type 2 diabetes mellitus: In vivo regulation by glucose. PLoS ONE 2017, 12, e0172271. [Google Scholar] [CrossRef] [Green Version]
- Babapour, B.; Doustkami, H.; Avesta, L. Correlation of serum adipolin with epicardial fat thickness and severity of coronary artery diseases in acute myocardial infarction and stable angina pectoris patients. Med. Princ. Pract. 2021, 30, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Chen, J.; Hu, J. Circulatory changes of the novel adipokine adipolin/CTRP 12 in response to metformin treatment and an oral glucose challenge in humans. Clin. Endocrinol. 2014, 81, 841–846. [Google Scholar] [CrossRef]
- Fadaei, R.; Moradi, N.; Kazemi, T.; Chamani, E.; Azdaki, N.; Moezibady, S.A. Decreased serum levels of CTRP12/adipolin in patients with coronary artery disease in relation to inflammatory cytokines and insulin resistance. Cytokine 2019, 113, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Kasabri, V.; Al-Ghareeb, M.I.; Saleh, M.I. Proportional correlates of adipolin and cathepsin S in metabolic syndrome patients with and without prediabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2403–2408. [Google Scholar] [CrossRef] [PubMed]
- Standeven, K.F.; Hess, K.; Carter, A.M. Neprilysin, obesity and the metabolic syndrome. Int. J. Obes. 2010, 35, 1031–1040. [Google Scholar] [CrossRef] [Green Version]
- Tüten, N.; Malik, E.; Gök, K.; Hamzaoglu, K.; Makul, M.; Öner, Y.Ö. Serum neprilysin levels are elevated in preeclampsia. Taiwan J. Obstet. Gynecol. 2021, 60, 869–873. [Google Scholar] [CrossRef]
- Ghanim, H.; Monte, S.; Caruana, J.; Green, K.; Abuaysheh, S.; Dandona, P. Decreases in neprilysin and vasoconstrictors and increases in vasodilators following bariatric surgery. Diabetes Obes. Metab. 2018, 20, 2029–2033. [Google Scholar] [CrossRef]
- Henke, C.; Haufe, S.; Ziehl, D. Low-fat hypocaloric diet reduces neprilysin in overweight and obese human subjects. ESC Heart Fail. 2021, 8, 938–942. [Google Scholar] [CrossRef]
- Fatima, S.S.; Bozaoglu, K.; Rehman, R.; Alam, F.; Memon, A.S. Elevated chemerin levels in Pakistani men: An interrelation with metabolic syndrome phenotypes. PLoS ONE 2013, 8, e57113. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.S.; Eisenberg, D.; Zhao, L. Chemerin activation in human obesity. Obesity 2016, 24, 1522–1529. [Google Scholar] [CrossRef] [Green Version]
- Aursulesei, V.; Timofte, D.; Tarau, L.M. Circulating chemerin levels, anthropometric indices and metabolic profile in morbid. Obes. Rev. Chim. 2018, 69, 1419–1423. [Google Scholar] [CrossRef]
- Rowicka, G.; Dyląg, H.; Chełchowska, M.; Weker, H.; Ambroszkiewicz, J. Serum calprotectin and chemerin concentrations as markers of low-grade inflammation in prepubertal children with obesity. Int. J. Environ. Res. Public Health 2020, 17, 7575. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Peterson, J.M.; Lei, X. C1q/TNF-related protein-12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes. J. Biol. Chem. 2012, 287, 10301–10315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.K.; Lewandowski, K.C.; O’Hare, J.P.; Randeva, H.S. Insulin regulates the novel adipokine adipolin/CTRP12: In vivo and ex vivo effects. J. Endocrinol. 2014, 221, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Xu, J.; Wang, X.; Liu, Y.; Zhao, X.; Zhang, H. Reduced serum CTRP12 levels in type 2 diabetes are associated with renal dysfunction. Int. Urol. Nephrol. 2020, 52, 2321–2327. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; Zraika, S. Neprilysin inhibition: A new therapeutic option for type 2 diabetes? Diabetologia 2019, 62, 1113–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moro, C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert. Opin. Ther. Targets 2016, 20, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Li, N.; Guo, S. The changing features of serum adropin, copeptin, neprilysin and chitotriosidase which are associated with vascular endothelial function in type 2 diabetic retinopathy patients. J. Diabetes Complicat. 2020, 34, 107686. [Google Scholar] [CrossRef]
- Hu, J.; Zhu, H.; Dai, Y.; Liu, Y.; Lu, Y.; Zhu, S.; Chen, L.; Zhang, M.; Jiang, T.; Peng, H. Association between soluble neprilysin and diabetes: Findings from a prospective longitudinal study. Front. Endocrinol. 2023, 30, 1143590. [Google Scholar] [CrossRef]
- Roman, A.; Parlee, S.D.; Sinal, C.J. Chemerin: A potential endocrine link between obesity and type 2 diabetes. Endocrine 2012, 42, 243–251. [Google Scholar] [CrossRef]
- Fatima, S.S.; Butt, Z.; Bader, N.; Pathan, A.Z.; Hussain, S.; Iqbal, N.T. Role of multifunctional Chemerin in obesity and preclinical diabetes. Obes. Res. Clin. Pract. 2015, 9, 507–512. [Google Scholar] [CrossRef]
- Cătoi, A.F.; Pârvu, A.E.; Andreicuț, A.D. Metabolically healthy versus unhealthy morbidly obese: Chronic inflammation, nitro-oxidative stress, and insulin resistance. Nutrients 2018, 10, 1199. [Google Scholar] [CrossRef] [Green Version]
- Jialal, I.; Devaraj, S.; Kaur, H.; Adams-Huet, B.; Bremer, A.A. Increased chemerin and decreased omentin-1 in both adipose tissue and plasma in nascent metabolic syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E514–E517. [Google Scholar] [CrossRef]
- Li, X.M.; Ji, H.; Li, C.J.; Wang, P.H.; Yu, P.; Yu, D.M. Chemerin expression in Chinese pregnant women with and without gestational diabetes mellitus. Ann. Endocrinol. 2015, 76, 19–24. [Google Scholar] [CrossRef]
- Alfadda, A.A. Circulating adipokines in healthy versus unhealthy overweight and obese subjects. Int. J. Endocrinol. 2014, 2014, 170434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfadda, A.A.; Sallam, R.M.; Chishti, M.A. Differential patterns of serum concentration and adipose tissue expression of chemerin in obesity: Adipose depot specificity and gender dimorphism. Mol. Cells 2012, 33, 591–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.Y.; Little, H.C.; Lei, X.; Li, S.; Rodriguez, S.; Wong, G. Partial deficiency of CTRP12 alters hepatic lipid metabolism. Physiol. Genom. 2016, 48, 936–949. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Ji, W.; Zhang, Y. Elevated serum chemerin levels are associated with the presence of coronary artery disease in patients with metabolic syndrome. Intern. Med. 2011, 50, 1093–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, H.J.; Choi, H.Y.; Yang, S.J. Circulating chemerin level is independently correlated with arterial stiffness. J. Atheroscler. Thromb. 2012, 19, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Karczewska-Kupczewska, M.; Nikołajuk, A.; Stefanowicz, M.; Matulewicz, N.; Kowalska, I.; Strączkowski, M. Serum and adipose tissue chemerin is differentially related to insulin sensitivity. Endocr. Connect. 2020, 9, 360–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sell, H.; Divoux, A.; Poitou, C. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 2010, 95, 2892–2896. [Google Scholar] [CrossRef] [Green Version]
- Ren, R.Z.; Zhang, X.; Xu, J. Chronic ethanol consumption increases the levels of chemerin in the serum and adipose tissue of humans and rats. Acta Pharmacol. Sin. 2012, 33, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Neves, K.B.; Nguyen, D.; Cat, A.; Lopes, R.A. Chemerin regulates crosstalk between adipocytes and vascular cells through Nox. Hypertension 2015, 66, 657–666. [Google Scholar] [CrossRef]
- Weng, C.; Shen, Z.; Li, X. Effects of chemerin/CMKLR1 in obesity-induced hypertension and potential mechanism. Am. J. Transl. Res. 2017, 9, 3096–3104. [Google Scholar]
- Chu, S.H.; Lee, M.K.; Ahn, K.Y. Chemerin and adiponectin contribute reciprocally to metabolic syndrome. PLoS ONE 2012, 7, e34710. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, G.; Dong, J.; Liu, Y.; Zong, H.; Liu, H. Elevated plasma levels of chemerin in newly diagnosed type 2 diabetes mellitus with hypertension. J. Investig. Med. 2010, 58, 883–886. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Zhang, Y.; Hong, J. The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine 2012, 41, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Shanaki, M.; Moradi, N.; Fadaei, R.; Zandieh, Z.; Shabani, P.; Vatannejad, A. Lower circulating levels of CTRP12 and CTRP13 in polycystic ovarian syndrome: Irrespective of obesity. PLoS ONE 2018, 13, e0208059. [Google Scholar] [CrossRef]
Obesity (n = 51) | No Obesity n = 37 (w = 20, m = 17) | p ** | |||
---|---|---|---|---|---|
NGT n = 24, (w = 15, m = 9) | AGT n = 27, (w = 12, m = 15) | p * | |||
Weight [kg] | 112.71 ± 24.44 | 115.37 ± 24.38 | 0.699 | 72.24 ± 14.778 | <0.001 |
Height [cm] | 172.25 ± 9.87 | 170.89 ± 10.02 | 0.628 | 171.0 ± 10.121 | 0.806 |
BMI [kg/m2] | 37.71 ± 5.98 | 39.34 ± 6.38 | 0.352 | 24.47 ± 3.074 | <0.001 |
Waist circumference [cm] | 117.88 ± 15.55 | 120.19 ± 14.80 | 0.589 | 82.38 ± 10.391 | <0.001 |
Hips circumference [cm] | 123.25 ± 14.25 | 122.11 ± 11.89 | 0.757 | 99.59 ± 6.829 | <0.001 |
WHR | 0.96 ± 0.08 | 0.99 ± 0.08 | 0.237 | 0.82 ± 0.062 | <0.001 |
Fat mass [%] | 44.93 ± 7.82 | 45.45 ± 7.40 | 0.807 | 24.54 ± 6.40 | <0.001 |
Lean mass [%] | 55.08 ± 7.82 | 54.49 ± 7.28 | 0.781 | 75.46 ± 6.40 | <0.001 |
Obesity (n = 51) | No Obesity (n = 37) | p | |
---|---|---|---|
Fasting glucose [mmol/L] | 5.65 (5.15; 6.12) | 4.99 (4.55; 5.38) | <0.001 |
Fasting insulin [µU/L] | 12.3 (8.95; 18.45) | 6.4 (4.1; 8.4) | <0.001 |
HOMA-IR | 3.12 (2.22; 4.38) | 1.37 (0.91; 1.92) | <0.001 |
Total cholesterol [mmol/L] | 5.58 ± 1.35 | 5.33 ± 0.86 | 0.339 |
Triglycerides [mmol/L] | 1.89 (1.38; 2.67) | 1.06 (0.78; 1.38) | <0.001 |
LDL cholesterol [mmol/L] | 3.67 (2.83; 4.38) | 3.31 (2.66; 3.90) | 0.124 |
HDL cholesterol [mmol/L] | 1.11 (0.94; 1.30) | 1.78 (1.34; 1.94) | <0.001 |
SBP [mm Hg] | 140 (137.5; 154) | 125 (106; 132) | <0.001 |
DBP [mm Hg] | 90 (80; 100) | 80 (75; 91) | <0.001 |
Adipolin [ng/mL] | 0.60 (0.14; 1.33) | 1.08 (0.13; 3.29) | 0.354 |
Neprilysin [pg/mL] | 810.63 (736.56; 1131.56) | 785.94 (637.81; 1304.38) | 0.736 |
Chemerin [ng/mL] | 47.71 (35.50; 68.48) | 44.59 (28.33; 74.20) | 0.853 |
Parameters | High CRP Group | Low CRP Group | p |
---|---|---|---|
Glycemia in 120′ OGGT [mmol/L] | |||
AGT group | 40.00% | 60.00% | 0.561 |
NGT group | 43.76% | 56.14% | |
Fast insulinemia [µU/L] | |||
≥12 | 50.00% | 50.00% | 0.437 |
<12 | 33.33% | 66.67% | |
Triglycerides [mmol/L] | |||
≥1.7 | 41.18% | 58.82% | 0.924 |
<1.7 | 40.00% | 60.00% | |
HDL cholesterol [mmol/L] | |||
≥1.0 (m) and ≥1.3 (w) | 41.18% | 58.82% | 0.924 |
<1.0 (m) and <1.3 (w) | 40.00% | 60.00% | |
Blood pressure (BP) [mmHg] | |||
systolic BP ≥ 130 and/or diastolic BP ≥ 85 | 39.29% | 60.71% | 0.376 |
systolic BP < 130 and/or diastolic BP < 85 | 66.67% | 33.33% |
Factors | Model 1 | Model 2 |
---|---|---|
R2 Nagelkerke | 0.468 | 0.00003 |
LRT | ||
Χ2 | −17.364 | 0.0001 |
p | 0.00007 | 0.991 |
AUC | 0.844 | 0.504 |
SE (AUC) | 0.062 | 0.085 |
p | 0.00004 | 0.962 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sperling, M.; Grzelak, T.; Pelczyńska, M.; Bogdański, P.; Czyżewska, K.; Formanowicz, D. Adipolin, Chemerin, Neprilysin and Metabolic Disorders Associated with Obesity. Appl. Sci. 2023, 13, 8005. https://doi.org/10.3390/app13148005
Sperling M, Grzelak T, Pelczyńska M, Bogdański P, Czyżewska K, Formanowicz D. Adipolin, Chemerin, Neprilysin and Metabolic Disorders Associated with Obesity. Applied Sciences. 2023; 13(14):8005. https://doi.org/10.3390/app13148005
Chicago/Turabian StyleSperling, Marcelina, Teresa Grzelak, Marta Pelczyńska, Paweł Bogdański, Krystyna Czyżewska, and Dorota Formanowicz. 2023. "Adipolin, Chemerin, Neprilysin and Metabolic Disorders Associated with Obesity" Applied Sciences 13, no. 14: 8005. https://doi.org/10.3390/app13148005
APA StyleSperling, M., Grzelak, T., Pelczyńska, M., Bogdański, P., Czyżewska, K., & Formanowicz, D. (2023). Adipolin, Chemerin, Neprilysin and Metabolic Disorders Associated with Obesity. Applied Sciences, 13(14), 8005. https://doi.org/10.3390/app13148005