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Abstract: The accurate calculation of mining-induced surface deformation has important guiding
significance for efficient and safe production in mining areas. The probability integral method (PIM)
is a main prediction method in China, and the selection of its parameters is directly related to the
prediction accuracy of surface deformation in mining areas. To overcome shortcomings of PIM
and other methods, this paper proposed a prediction model of the parameters of PIM combining a
multiple regression model and an extreme learning machine. In this paper, the Huainan mining area
was selected as the research object, the influence factors of PIM parameters were analyzed and the
accuracy of the model was verified. The influence of the number of hidden layer nodes, the selection
of activation function and the proportion of training set and test set in the model were analyzed. The
conclusions suggest that the PIM parameters calculated in this paper could be used to predict mining
subsidence and obtain surface movement and deformation data. The research results provide an
effective method for the selection of surface deformation prediction parameters of new working faces
or faces lacking measured data.

Keywords: mining subsidence; PIM; surface deformation prediction; multiple regression model; ELM

1. Introduction

Mining-induced surface deformation is a worldwide issue [1–4]. After coal mining,
the initial stress state of rock in the goaf will be destroyed, and the overlying strata will
reach a new equilibrium state through bending, caving, spalling and other forms. In this
process, the surface will deform and eventually form collapse pits, which will affect surface
water circulation and destroy the surface ecological environment of the mining area [5–8].
Therefore, accurately predicting surface movement and deformation is meaningful to the
exploitation of coal resources and can support rational relocation, restoration and rebuilding
of the ecological environment in mining areas [9,10].

At present, the prediction methods of mining-induced surface deformation mainly
include the empirical method, the theoretical model method and the influence function
method based on measured data [11–14]. Among them, the PIM has high prediction accu-
racy and simple prediction degree, and has been widely used in China [15–17]. According
to the literature [18–20], the prediction error of the PIM mainly comes from the model error
and calculation parameter error. Model error mainly comes from the disparity between
assumptions derived by the PIM and complex geological and mining conditions, and it
is often difficult to improve. Therefore, an appropriate method is used to determine the
uncertainties in the model parameters of the deformation, which are critical.

The prediction errors of the PIM mainly come from model errors and parameter
errors. Model errors mainly come from the inconsistency between the assumptions of
the PIM and the actual complex geological mining conditions, which are often difficult to
improve. Therefore, reducing parameter errors of PIM is an important means to improve
the prediction accuracy.
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The model parameters of PIM can be obtained by data-based methods and analogy
methods [21,22]. The former use the periodic monitoring data of surface deformation
to invert the surface prediction parameters and predict the surface deformation. These
methods are of high accuracy and reliability. Kwinta [23] proposed the least squares method
based on the measured data to obtain the parameters of the predicted model through the
linearization of the vertical deformation. Wang et al. [24] used the improved fireworks
algorithm to invert deformation parameters for the observation data of a mine in Huainan
over 20 months. However, the measured parameters have a lag in guiding the prediction of
the observed working face. Generally, the observation time is long (2–3 years), which needs
substantial energy to construct and maintain the monitoring station, and it is impossible to
effectively guide the new mining face. The analogy methods are to select statistical analysis
results of parameters to directly determine parameters. The most common methods are
the statistical model method and the neural network method. Hejmanowski [25] used
orthogonal analysis to obtain the horizontal movement value and verified it. Wang et al. [26]
used the measured data to comprehensively study the methods of analogy theory and
fuzzy recognition theory, and a comprehensive analogy method for surface prediction
parameters suitable for the Chongqing mining area was finally proposed. Polanin [27]
obtained the estimated surface parameter values based on the measured deformation
values and geological and mining conditions. The essence of the statistical model is a more
intuitive empirical model, simple and intuitive. It is commonly used to summarize the
characteristics of data rules. However, it considers fewer influencing factors. In some cases,
it cannot obtain satisfactory fitting results, and it lacks generalization ability [28]. As for the
neural network method, although it has high accuracy, it often requires more monitoring
data, and the model is prone to falling into local minima, affecting fitting accuracy [29].

In this paper, accuracy of regression analysis and easy-to-fall-into-local-extrema neural
networks are enhanced, taking the Huainan mining area as an example. The influencing
factors of the parameters of PIM will be analyzed. On this basis, the relationships between
actual conditions and parameters of the PIM are established. The ELM neural network
method is used to predict the residuals of the statistical model, and then a prediction model
of the relevant parameters of the surface movement basin is constructed by combining the
multiple regression model and ELM. The accuracy and reliability of the model are verified.

Section 2 presents an overview of the study area. Section 3 introduces the main
methods of fusion of multiple regression model(M) and ELM, and discusses the application
steps of the M-CM-GA-ELM integrated method. Section 4 analyzes reliability of the model.
Section 5 verifies accuracy of parameter estimation with examples. Section 6 discusses the
parameters of the ELM neural network, and Section 7 draws the conclusions and prospects.

2. Overview of Huainan Mining Area

The Huainan mining area is at 115◦50′~117◦45′ E longitude and 32◦25′~33◦10′ N
latitude. It is mainly distributed in the north of 27◦40′ N latitude. It starts from the Tanlu
fault zone in the east, ends at Fuyang fault in the west, connects with Minglong Mountain
and Shangyao in the north, and Shungengshan and Bagong Mountain in the south. It
adjoins with Huainan, east of Fuyang, Bozhou and other counties and cities. The mining
area is about 180 km long in EW direction, 15~25 km wide in N-S direction and has a total
area of about 3600 km2 [30–32].

The Huainan mining area lies in the Huaihe alluvial plain; the ground elevation is
about +20~+30 m. It is divided into the old mining area on the south bank of the Huaihe
River and the Panxie mining area on the north bank of the Huaihe River. The mines in
the old area are distributed in the Huainan arc-shaped tectonic belt protruding southward
from the Bagongshan area in the south wing of the Huainan synclinal structure. There are
many faults, the dip angle of the coalfield is generally larger than 20◦, and the geological
and mining conditions are relatively poor. The main mine field of the Panxie mining
area is located in the south wing of Chenqiao anticline and Panji anticline in the Huainan
synclinal structure. The coalfield has a small dip angle of generally less than 15◦, simple
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structure and good mining conditions. The coal-bearing strata are Carboniferous–Permian,
generally containing 40 coal layers, with an average recoverable total thickness of 30 m.
The lithology consists of sandstone, siltstone, clay rock and coal. The coalfield stratum is
a synclinal structure, and a series of thrust faults are developed on the edges of the two
wings, resulting in upright, inversion and napping of some strata.

There are 9~18 minable coal seams in the Panxie mining area, and the total minable
thickness is about 30 m. Coal seams are covered by loose layers whose thickness can reach
140~580 m. According to the statistics of the No.1, No.2 and No.3 mines, and the Xieqiao
Mine and Zhangji Mine in the Panyi mining area, the total amount of coal pressure has
reached 488.803 million tons in the original design of protective coal pillars of industrial
and ventilation wells, accounting for 10.09% of the total reserves. In addition, there are a
lot of coal resources under villages, railways and buildings (structures). The distribution of
mines is shown in Figure 1.
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Figure 1. Distribution of mines in Huainan mining area.

The surface of the Huainan mining area has a thick loose layer with a thickness of
140–564 m. Compared with the conventional mining conditions, the movement mechanism
of the thick loose layer and the temporal and spatial evolution of the surface deformation
are different. Compared with general geological and mining conditions (non-thick un-
consolidated layers), the maximum subsidence value of the working face is larger under
full mining or super-full mining in the trend and inclination and is generally greater than
the mining height; the surface movement changes drastically, and the recession period
is longer; the boundary converges slowly, and the range of surface movement is larger.
In East China, Central China, North China and other regions, the upper strata contain
extremely thick loose layers, and there are many mining subsidence monitoring stations in
the Huainan mining area. Therefore, the research results on the Huainan mining area can
be applied to other mining areas.

3. Methodology
3.1. Introduction to PIM

The PIM, based on the stochastic medium theory, regards the mining-induced surface
movement as a random event and uses the probability integral (or its derivative) to express
the prediction formula (influence function) of the surface movement and deformation
caused by the mining of small mining units, so as to calculate the whole movement and
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deformation by the superposition principle. It was proposed by Liu et al. [33] and has
been extensively used in China. The qualitative random model of granular medium is
shown in Figure 2. The prediction formula of unit basin movement and deformation in
unit mining could be obtained through the random medium theory, and the prediction
formula of deformation at any point on the surface could be further deduced. There are
five parameters in the PIM parameter model, namely subsidence coefficient q, horizontal
movement coefficient b, tangent of major influence angle tanβ, offset of inflection point s
and propagation angle of extraction θ0.
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3.2. Analysis of Influencing Factors of PIM in Huainan Mining Area

Parameters of PIM are mainly affected by geological and mining conditions such
as the structure and lithology of the overlying rock stratum, stratum dip angle, coal
mining method and roof management method. These specific factors include average
mining depth (H0), the thickness of the loose layer (hs), coal seam dip angle (α), etc. If
the relationship between the geological mining conditions and parameters of PIM can be
established according to the existing observation data, parameters of PIM can be obtained
with unknown geological mining conditions. Then, the range of surface mining can be
obtained before mining. The Huainan mining area is taken as an example for the following
research. It was found that under the corresponding geological and mining conditions
in the Huainan mining area, the offset of the inflection point generally fluctuated within
a certain range without obvious rules. Relevant data show that its value is generally
maintained at 0.1 times the mining depth to meet the requirements. Therefore, this paper
ignores it.

3.2.1. Subsidence Coefficient

Many studies have proved that the subsidence coefficient can be affected by the mining
height, the treatment method of the goaf and the nature of the overlying strata. Based
on the surface subsidence coefficients, mining depths and loose layer thickness of some
working faces in the Huainan mining area, the regression formula between subsidence
coefficient and bedrock and mining depth ratio (H0−hs)/H0 can be obtained through
regression analysis, As shown in Equation (1) and Figure 3,

q = −1.0305(H0 − hs)/H0 + 1.3489 (1)

Goodness of fit R2 = 0.7744, showing that the subsidence coefficient is closely related to
the bedrock and mining depth and decreases with the increase in the proportion of bedrock
in the mining depth.

3.2.2. Horizontal Movement Coefficient

The horizontal movement coefficient refers to the ratio between the maximum hor-
izontal surface movement value and the maximum surface subsidence value under the
critical mining of horizontal or nearly horizontal coal seams. It mainly depends on the dip
angle of the coal seam and the thickness of the loose layer. Based on the collected data,
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mining depth and the thickness of the loose layer of some typical working faces in the
Huainan mining area, the regression formula between horizontal movement coefficient b
and loose layer and mining depth ratio hs/H0 could be expressed as Equation (2):

b = −0.2521hs/H0 + 0.4785 (2)
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The fitting results are shown in Figure 4, The goodness of fit R2 = 0.7318. The fitting
results show that the horizontal movement coefficient is closely related to thickness of
unconsolidated layer and mining depth, and decreases with increase of the proportion of
unconsolidated layer in the mining depth.
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3.2.3. Tangent of Major Influence Angle

The main influence angle tangent is used to represent the major influence radius at
different mining depths, which is generally expressed as the ratio of mining depth to major
influence radius. It is related to the roof and overlying strata, mining depth and thickness.
According to the collected information in the Huainan mining area, the regression formula
between the tangent of major influence angle and the unconsolidated layer thickness could
be written as Equation (3):

tan β = 0.0044hs + 0.0932 (3)
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The fitting results are shown in Figure 5, The goodness of fit R2 = 0.6546, showing
that the size of the tangent of major influence angle is proportional to the thickness of the
unconsolidated layer.
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3.2.4. Propagation Angle of Extraction

The propagation angle of extraction is an important parameter in the prediction model
of the probability integration method, and its size is affected by the dip angle of the coal
seam, which determines the degree to which the surface mobile basin deviates from the
goaf. According to collected data, the regression formula between θ0 and α could be
expressed as Equation (4) through regression analysis in Figure 6:

θ0 = −0.5927α + 90.566 (4)
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The goodness of fit R2 =0.8533. The fitting results show that the propagation angle of
extraction decreases with the increase in dip angle.

3.3. Construction of Combined Model
3.3.1. ELM Neural Network

The ELM neural network is a supervised machine learning algorithm, a single hidden
layer feed-forward neural network which overcomes the defect that the BP neural network
gradient algorithm is prone to falling into local extrema, and has the characteristics of high
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classification and regression efficiency and easy programming [34,35]. Based on advantages
of the ELM neural network in regression analysis, the geological and mining conditions
can be used as input and parameters of PIM as output to establish a regression analysis
model. Figure 7 shows the network structure of the ELM neural network, which is similar
to that of the BP neural network. Assuming that there are n neurons in the input layer,
m neurons in the output layer, and one neuron in the hidden layer, and the connection
weight between the input layer and the hidden layer is w, the mathematical model can be
expressed as Equation (5):

l

∑
i=1

βig
(
wixj + bi

)
= tj, j = 1, 2, · · · , n (5)

where wi is the input weight connecting the ith hidden layer node and the input layer node;
βi is the output weight connecting the ith hidden layer node and the output layer node;
bi is the offset of the ith hidden layer node; xj and tj represent the input eigenvector and
output eigenvector of the jth sample, respectively.
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Let β = [β1, β2, · · · , βl ]
T, T = [t1, t2 · · · tn]

T and

H =

g(w1x1 + b1) · · · g(wl x1 + b1)
...

...
...

g(w1xn + b1) · · · g(wnxl + b1)


n×l

(6)

Then, Equation (5) could be simplified as Equation (7):

Hβ = T (7)

where H is the output matrix of the hidden layer, and the least square solution of the output
weight could be easily obtained through the linear Equation (7):

β̂ = H+T (8)

wherein H+ is the Moore-Penrose pseudoinverse of the hidden layer output matrix H.
The above analysis indicates that the network randomly generates weights and thresh-

olds before training, so only the number of hidden layers and activation functions need to
be determined, and the output β̂ can be calculated.

3.3.2. GA-Optimized ELM Neural Network

The ELM neural network has a strong nonlinear fitting ability, but due to the random
generation of the weight matrix between the input layer and hidden layer and that of
the threshold matrix of hidden layer neurons, the prediction fitting ability and prediction
stability of the network model are insufficient. To select a proper ELM simulation model,
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this paper proposed a GA-optimized ELM neural network. The specific modeling process
is as follows:

1. Determine the relevant parameters of the GA algorithm;
2. Carry out coding and population generation, randomly generate weights and thresh-

olds of the ELM neural network, and generate the original population by binary code;
3. Calculate the fitness function value of each individual, calculate RMSE of each indi-

vidual’s test set, and take it as the individual fitness value;
4. Population evolution;
5. Training and prediction of ELM network: Decode the final population after iterative

optimization to obtain the optimized weights and thresholds, and assign to the
ELM; train the ELM network by training samples, and calculate output layer weight
B̂′ = H′+T′ by the least squares method; finally, bring the test samples into the ELM
model for prediction.

3.3.3. Construction of CM-GA-ELM Model

The initial population of the standard GA is randomly generated, and the coverage of
the generated population is large, which may lead to the initial population not necessarily
containing the optimal solution. If the initial population does not contain the optimal
solution and the genetic algorithm cannot cover the global optimal solution in a certain
algebra, it is bound to cause premature convergence and affect the regression accuracy of
the model. In order to eliminate the outliers caused by model parameters in the GA-ELM
prediction model and improve the accuracy and reliability of the prediction model, this
paper proposes a linear-weighted combination prediction method (CM), which is simple
and can solve the above problems. The solution is as follows:

1. Elimination of abnormal predicted values

Assuming that n times of GA-ELM prediction models were operated and n groups
of GA-ELM prediction models were established, different solutions were obtained. The
ith prediction value was xi, and the average value of n times of prediction value was x.
Equation (9) was used for calculation. To improve the reliability of prediction results,
abnormal values in the results were eliminated. First, Equation (10) was used to calculate
the mean square error R of multiple prediction results, and the results greater than 3 times
the mean square error were eliminated.

x =
x1 + x2 + · · ·+ xi + · · ·+ xn

n
(9)

R = ±

√
[vivi]

n− 1
(10)

where vi = x− xi.

2. Combination of predicted values

Assuming that M predicted values were excluded, the average of the remaining
J (J = n −M) predicted values could be calculated, and the final predicted value could be
obtained by Equation (11):

x =
1
J

J

∑
i=1

xi (i = 1, 2, · · · , J) (11)

Above all, the CM-GA-ELM combined prediction model could be used to predict the
subsidence coefficient of the surface movement basin.
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3.3.4. Construction of M-CM-GA-ELM Neural Network Integrated Model

Figure 8 shows the calculation process of the M-CM-GA-ELM model, and the following
are the specific steps:

1. The multiple linear regression model of the relationship between the relevant parame-
ters of the surface movement basin and conditions of geological and mining (such as
mining height, dip, mining degree, advance speed, rock stratum lithology, thickness
of unconsolidated layer, etc.) was constructed, and the trend term and residual term
of the prediction model were calculated;

2. The GA-ELM neural network prediction model was constructed with geological and
mining conditions as the input layer and the residual term as the output layer;

3. Errors of the GA-ELM prediction model obtained from prediction were eliminated,
and the CM-GA-ELM prediction model was built;

4. At the same time, the multiple linear regression model and the CM-GA-ELM predic-
tion model were used for prediction, and the final predicted value was obtained.
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In summary, the essence of the fusion model is to use the prediction method of the
ELM neural network to compensate errors of the linear regression model. After the error
compensation, M-CM-GA-ELM has both the experience of linear regression and the strong
nonlinear mapping ability of neural networks.

4. Model Verification

To verify the generalization performance of the M-CM-GA-ELM model, the subsidence
coefficient q was taken as an example for analysis. There were few measured data (nearly
20) collected in the Huainan mining area, so it was difficult to meet the data requirements of
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the neural network. In this paper, some measured data were collected from Reference [36].
In addition, there are 70 sets of subsidence coefficient values from observation stations in
the Huainan mining area. According to the analysis of Section 3.2, the factors affecting the
subsidence are mining depth, thickness of bedrock and thickness of unconsolidated layer.
Similar to Section 3.2, this paper constructed a multivariate linear fitting model based on
70 sets of data from observation stations. The fitting results are shown in Figure 9.
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Figure 9. Relationship between subsidence coefficient and mining depth ratio of bedrock.

In order to establish the fusion model, 70 groups of data were divided into two groups
in this paper. Eighty percent of the measured data (56 groups) were used for modeling, and
twenty percent of the data (14 groups) were used to verify the prediction performance of
the model.

Relevant parameters of the M-CM-GA-ELM model were set as follows. The number
of input layer neurons was 2 (H0 and hs), the number of hidden layers was 12, the number
of output layers was 1, and the activation function adopted the sig function. To reduce the
running time, the running times were set to 50 in the CM model. To verify the prediction
effect of the M-CM-GA-ELM model, the regression formula of the subsidence coefficient
q with H0 and hs was q = −0.5114(H0 − hs)/H0 + 1.174, and the CM-GA-ELM model,
CM-ELM model, ELM model, and GA-ELM model were applied for comparison. The
results are shown in Figure 10.
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In Figure 10, the violin chart is used to compare the accuracy of five prediction models.
It is usually used to show the distribution state and probability density of multiple groups of
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data, mainly to show the distribution shapes of data. The white dot on the chart represents
the median, the black bar represents the range of quartiles, the thin black line represents the
95% confidence interval, and the width of the violin represents the value taking probability
of the observed value. The violin chart can show the overall distribution of data in addition
to the above statistics. Therefore, Figure 10 can explain different prediction accuracy of
the five models. The M-CM-GA-ELM model has the smallest black bar and black line,
and the center is around 0, indicating that the error range between the predicted value
and the actual value is the smallest. On the other hand, the width of the M-CM-GA-ELM
model is relatively wide near 0, where most of the errors are distributed. To sum up, the
M-CM-GA-ELM combined model has the highest prediction accuracy.

In order to quantitatively analyze differences between the prediction performance of
the improved ELM neural network prediction model and that of the conventional ELM
neural network model, evaluation indexes of the prediction of the ELM prediction model,
the CM-ELM prediction model, the GA-ELM prediction model and the CM-GA-ELM
prediction model were calculated, respectively. In this paper, the average relative error and
the RMSE of the prediction results were taken as evaluation indexes:

MeaRE =
1
n

n

∑
i=1

∣∣∣∣ x′ i − xi
xi

∣∣∣∣× 100% (12)

RMSE =

√
1
n

n

∑
i=1

(x′ i − xi)
2 (13)

where x′ i is the ith predicted value; xi is the ith measured value; n is the number of
predicted samples.

Among them, MeaRE represents the stability of the prediction results. The smaller
the value, the higher the stability of the prediction model. RMSE can effectively show the
degree of deviation between the predicted value of the model and the true value. The
smaller the RMSE value, the closer the predicted value will be to the true value. Table 1
shows the accuracy index:

Table 1. Accuracy of prediction model (unit: mm).

Prediction Model M-CM-GA-ELM CM-GA-ELM GA-ELM CM-ELM ELM

MeaRE 5.509 5.719 6.066 8.131 8.752
RMSE 0.050 0.052 0.054 0.074 0.079

In Figure 10, the M-CM-GA-ELM prediction model has good generalization perfor-
mance. Although some points have slight fluctuations, the overall prediction accuracy
is high. Table 1 shows that the prediction results are M-CM-GA-ELM > CM-GA-ELM >
GA-ELM > CM-ELM > ELM. Compared with M-CM-GA-ELM, CM-GA-ELM, GA-ELM
and CM-ELM, the GA algorithm has greater advantages in improving accuracy. The M-CM-
GA-ELM and CM-GA-ELM precision comparison shows that the precision of the combined
model is significantly enhanced.

5. Engineering Application

The 1613 (1) working face of the Guqiao Coal Mine in Huainan is flat. The comprehen-
sive mechanized coal mining method was adopted. The average mining height was 2.9 m,
the working face was 1528 m long, the width was 251 m and the average mining speed
was 5.56 m/d. The average dip angle of coal seam was 3◦, which belonged to a nearly
horizontal coal seam. The average mining depth was 668 m, and the average thickness of
unconsolidated layer was 420 m. Figure 11 shows the layout of the monitoring points, and
half a strike line and a tendency line were set up. The surface movement observation time
was from 2 May 2017 to 7 January 2019.The subsidence and horizontal movement values
above the 1613 (1) working face were obtained by leveling and RTK surveying.
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The model constructed in this paper was used to calculate parameter values of the PIM
of the 1613 working face, and the results are shown in Table 2. GA was used to calculate
the measured PIM of the surface [17]. The values were compared. Based on the absolute
errors in Table 2, the difference between the measured PIM parameters and the predicted
PIM parameters is small. They were applied to predict mining subsidence, respectively. It
can be seen from Figure 12 that the subsidence and horizontal movement values calculated
by the predicted parameters are in good agreement with the actual surface deformation
values. The actual surface deformation values calculated by the parameters are in good
agreement. Therefore, from Table 2 and Figure 12, the model constructed in this paper
provides a novel way to predict surface deformation in the Huainan mining area.

Table 2. Comparison of parameters of PIM.

Parameter Values q b tanβ θ0

Measured parameters 1 0.32 1.76 85
Calculated parameters 0.97 0.31 1.84 87.5

Absolute error 0.03 0.01 0.08 2.5
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In order to further illustrate the method of predicting mining subsidence by using the
PIM parameters calculated by the M-CM-GA-ELM model, the surface movement and defor-
mation values of the 1613 working face after mining were calculated by using the predicted
PIM parameters in Table 2. The surface subsidence contour line is shown in Figure 13. The
same method could be used to obtain other movement and deformation contours.
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6. Discussions
6.1. Influence of Hidden Layer Nodes on the Prediction of Subsidence Coefficient

The number of hidden layer neurons plays a key role in the prediction accuracy of the
M-CM-GA-ELM neural network model. Too many or too few hidden layers will directly
affect the prediction results. Repeated experiments and their own experience are generally
used to determine the number of hidden layer neurons. The experiment found that when
nodes of the hidden layer are greater than 30, the error has a large mutation. The range of
nodes selected in this paper was 1 to 30. The number of hidden layer nodes was judged by
the size of the predicted average relative error MeaRE value of the test set. The prediction
results are given in Figure 14.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19 
 

 
Figure 14. Selection of the number of hidden layer nodes. 

In Figure 14, the prediction accuracy of the test set varies greatly with the number of 
hidden layers. Through multiple experiments, when the number of hidden layers was 14, 
the average relative mean square error of the test set reached the minimum of 5.699%, and 
the accuracy was the highest. Therefore, the number of hidden layers was 14 in this paper. 

6.2. Influence of Activation Function Selection on Predicted Results 
Common activation functions are Sigmaid (sig), Sin (sin) and hardlim, in the forms 

of 
(1) sig function 

( ) ( )( )
1, ,

1 ax b
f a b x

e − +
=

+
 (14)

(2) sin function 

( ) ( ), , sinf a b x ax b= +  (15)

(3) hardlim function 

( ) 1  0
, ,

0
if ax b

f a b x
otherwise

− ≥
= 


 (16)

Three kinds of functions were used to construct the prediction model, and other pa-
rameters were constant. The M-CM-GA-ELM prediction model was used to predict sub-
sidence coefficient. Figure 15 and Table 3 show the prediction results. 

Table 3. The accuracy of the prediction model (unit:mm). 

Activation Function sig sin Hardlim 
Subsidence fac-

tor 
MeaRE 5.509 6.321 11.296 
RMSE 0.050 0.059 0.110 

Figure 14. Selection of the number of hidden layer nodes.



Appl. Sci. 2023, 13, 8030 14 of 17

In Figure 14, the prediction accuracy of the test set varies greatly with the number of
hidden layers. Through multiple experiments, when the number of hidden layers was 14,
the average relative mean square error of the test set reached the minimum of 5.699%, and
the accuracy was the highest. Therefore, the number of hidden layers was 14 in this paper.

6.2. Influence of Activation Function Selection on Predicted Results

Common activation functions are Sigmaid (sig), Sin (sin) and hardlim, in the forms of

(1) sig function

f (a, b, x) =
1

1 + e(−(ax+b))
(14)

(2) sin function

f (a, b, x) = sin(ax + b) (15)

(3) hardlim function

f (a, b, x) =
{

1 i f ax− b ≥ 0
0 otherwise

(16)

Three kinds of functions were used to construct the prediction model, and other
parameters were constant. The M-CM-GA-ELM prediction model was used to predict
subsidence coefficient. Figure 15 and Table 3 show the prediction results.
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Table 3. The accuracy of the prediction model (unit:mm).

Activation Function sig sin Hardlim

Subsidence
factor

MeaRE 5.509 6.321 11.296
RMSE 0.050 0.059 0.110

In Figure 15, the box graph with normal distribution is used to describe errors. When
the activation function was sig, the error was between −0.075 and 0.1. When the activation
function was sin, the error was between−0.075 and 0.125. When the activation function was
hardlim, the error was mainly distributed between −0.25 and 0.2. The sig function had the



Appl. Sci. 2023, 13, 8030 15 of 17

highest accuracy. The same conclusion could be drawn from the probability curve and box
graph in Figure 15. At the same time, according to MeaRE and RMSE values corresponding
to different activation functions in Table 3, when the activation function was a sig function,
the model had the best generalization performance, followed by the sin function, and
the hardlim function was the worst. This shows that when the activation function of the
M-CM-GA-ELM model is sig, it can achieve better generalization performance during the
prediction of subsidence coefficient.

6.3. Influence of the Number of Test Sets on Training Results

Reasonable allocation of the proportion of training set and test set has a certain
influence on the results. This paper discusses how to set the proportion of test set and
training set. The training set and test set are usually divided into 7:3; with a validation
set, they are divided into 6:2:2. When the data magnitude is below ten thousand, or for
a specific problem to be solved, appropriately changing the ratio of the test set and the
training set can improve the accuracy of the prediction model to some extent.

Taking the M-CM-GA-ELM solution model as an example, the number of test samples
was set to 14 (20% of the total sample), 21 (30% of the total sample), 28 (40% of the total
sample), and 35 (50% of the total sample). The prediction results are in Table 4.

Table 4. Prediction results (unit:mm)

Parameters
Number of Test Samples

14 21 28 35

Subsidence
coefficient

MeaRE 5.509 5.588 6.236 7.824
RMSE 0.050 0.051 0.059 0.072

When the subsidence coefficient was estimated, under a certain data level, the MeaRE
value and RMSE value showed an increasing trend with the decrease in learning samples,
indicating that the prediction performance was reduced, which shows that at a limited
data level under the circumstances, increasing the number of learning samples can greatly
improve the expected effect.

In general, it takes 1–2 years of observation to obtain the surface subsidence coefficient,
so it is difficult to obtain more training samples. If a better distribution ratio can be obtained,
it is of great significance to improve the prediction efficiency.

7. Conclusions

The selection of parameters of subsidence prediction lacks theoretical basis in mining
areas without measured data or with special geological and mining conditions. In this
paper, the Huainan mining area was chosen as the object of research. The mechanism of the
influence of geological and mining conditions on parameters of PIM was deeply analyzed.
Then, a combined prediction model was constructed by integrating the parameters of the
multiple regression model and the extreme learning machine with the parameters of PIM.
The measured surface subsidence values in mining areas were taken as the learning, train-
ing, and testing samples of the network to verify the accuracy and reliability of the model.
The effects of the number of nodes in the hidden layer, the selection of activation function,
and the ratio of training set to test set on the results were illustrated. It provides an effective
way to select related parameters of the surface movement basin of new working faces.

It needs to be explained that the verification of the CM-GA-ELM model in this paper
is mainly aimed at the Huainan mining area, so the results are better applicable to this
mining area; further verification is still needed for other thick-, loose-layered mining areas.
The gaps between the rocks left after coal mining will be gradually compacted by the
overlying rocks, and the surface will slowly deform during the compaction process. The
probability integral method model assumes that the overlying rocks have been compacted.
The parameters were obtained under compaction conditions, but with the passage of time
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they will still cause a slight subsidence of the surface. and we will carry out related research
in the future.
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