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Abstract: Forecasting the final construction contract duration at an early stage plays a vital role in
the progress of a project. An inaccurate project duration prediction may lead to the project’s benefits
being lost. It is essential to precisely predict the duration due to the presence of several different
factors. This paper contributed to developing a model to predict final construction contract duration
(FCCD) in the early stages based on parameters characterized as few and shared for any contract.
(contract cost, contract duration, and sector). This paper developed an Artificial Neural Network
(ANN) model based on 135 Saudi construction project data. The development model has three stages.
The first stage was standardization and augmentation using Zavadskas and Turskis’ logarithmic
and Pasini methods. The second and third stages were the first and second analyses of the ANN
models, respectively. The first analysis aimed to promote the used data and integrate them into the
second analysis to develop the ANN model. The ANN models were compared with three linear
regression (LR) models (LR1, LR2, and LR3) and other models in the literature. The results revealed
that the accuracy of the ANN model provides reasonable accuracy with an average mean absolute
percentage error (MAPE) of 12.22%, which is lower than the LR3′s MAPE by 27.03%. The accuracy of
the ANN model is similar to that of earned value management (EVM) in the previous study. This
paper supports research to deal with relatively little data and integrate them into a neural network.
The ANN model assists the stakeholder in making appropriate decisions for the project during the
pre-tendering phase by predicting the actual contract duration based on the CC, CD, and project ector.

Keywords: duration; contract; logarithmic; transformed; cost; sector; errors

1. Introduction

The construction industry significantly contributes to countries’ economic progress.
Construction is an industry that contributes significantly to the overall Gross Domestic
Product (GDP) and is expected to expand. Delays in construction projects have become
a widespread issue due to the complexity of the construction industry. Despite having
a positive impact on the economy and technological improvements in the sector [1,2],
construction delays have a wide range of social and economic repercussions. These delays
negatively impact sustainability’s social, environmental, and financial triple bottom lines [3].
Delays can lead to schedule and cost overruns, decreased contractor earnings, additional
losses for the owner’s capital due to an extended construction phase, mistrust between the
owner and contractor, legal battles involving many parties, and outright project abandon-
ment. Gebrehiwet and Luo [4] noted that cost overruns, contract cancellation, arbitration,
and litigation are some of a delay’s crucial effects. According to Khattri et al. [5], a delay
can result in disagreements, cost overruns, time overruns, abandonment, negotiation, legal
action, litigation, and complete desertion. Numerous studies have been carried out over
the years to address this significant issue, especially to identify the underlying factors that
increase the probability of a building delay and its adverse effects.
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Researchers in multiple nations have revealed numerous harmful consequences of
delays. Hecker [6] claimed that significant cost overruns ranging from 40% to 400% occurred
on various infrastructure projects in the United States of America. In the United Kingdom
of Great Britain, just 38% of projects were finished within 5% of the contract timeline
program, and only 70% were completed within 5% of the tender cost [7]. Additionally,
according to [8], only one-eighth of Australian building projects were finished by the
deadlines outlined in the contracts, and the typical schedule overrun was greater than 40%.
Moreover, Sodangi and Salman [9] stated that about 70% of projects in Nigeria encountered
delays, demonstrating that delays are a significant issue in Nigerian construction. Only
30% of building projects in the Kingdom of Saudi Arabia (KSA) were finished on time,
while the typical time overrun was up to 30% [10].

Most studies have focused on identifying and analyzing the factors affecting delays in
projects [4,11–13]. They pointed out that the factors that cause poor project performance
still need to be fully understood. The causes of time delays were different from region
to region. There is a need for more studies to predict the final construction contract
duration in the early stages to assist stakeholders in deciding whether to continue or halt
the project. Therefore, this paper aims to develop forecasting models for predicting the final
construction duration project-based Artificial Neural Network (ANN) based on contract
cost, contract duration, and sector type of 135 Saudi Arabia construction project data.
Developing ANN models goes through three processes. This paper contributed to designing
a model to forecast FCCD in the early stages based on parameters represented as few and
shared for any contract. (CC, CD, and sector). The theoretical contribution of the paper is to
utilize small data to develop the ANN model. In addition, the practical implications of the
paper are to forecast the final construction duration at the pre-tendering stage.

2. Literature Review

The forecast construction contract duration studies have been distributed into three
types of models. The first type of model is to predict the final duration based on the causes
of the project delay. The second type of model is based on historical data, such as earned
value management (EVM). The third type of model depends on the characteristics of a
contract (artificial neural network, regression, hybrid models) or on information from the
last completed contract that had the same condition as the required contract (case-based
reasoning, CBS).

2.1. Forecast Model Based on the Causes of the Time Delays

In this section, the researchers tried to find the significant factors that affected the
time delay and integrated them as input data to forecast the final construction contract
duration. In a general project, Al-Gahtani et al. [14] used ten previously discovered criteria
to construct a simulation forecasting model for the delay duration in Saudi projects using
system dynamics. In order to consider the ten factors that influence project delay, they
carried out a systematic, integrated approach using the DEMATEL methodology and
system dynamics (SD). This work solved the challenge of methodically creating a causal
loop diagram inside the SD modeling process using the DEMATEL technique. Next,
consistency and extreme conditions were tested on the generated SD model. Then, it
was implemented and validated using three case studies in KSA by contrasting each case
study’s real and fitted progress curves. In addition, Ajayi and Chinda [2] developed a
model to examine the impact of the factors on the final construction project time. The model
combined two mathematical decision-making techniques, DEMATEL and SD modeling.
The simulation findings highlight the significance of avoiding design errors at the project’s
beginning (or preconstruction stage) to reduce project delays.

For highway projects, Pewdum et al. [15] evolved models to project the final cost and
duration of a highway construction project while it was still in the planning stages. Before
designing the forecasting models, project data were gathered and examined to determine
the variables influencing the project’s ultimate budget and duration. The research for these
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models was based on the ANN. Han et al. [16] examined the influence of the non-value-
adding effort generated from design errors and changes in design on the time delay of the
project using system dynamics.

In order to facilitate reliable project delay risk analysis and forecasting using objective
data sources, Gondia et al. [17] refined and built machine learning (ML) algorithms (decision
tree and naïve Bayesian algorithms). As a result, the relevant delay risk sources and
components were first found. A multivariate data set of past project timeliness and delay-
inducing risk sources was assembled. Exploratory data analysis was then used to reveal the
system’s intricacy and interconnectivity. In order to anticipate the extent of project delays,
the two appropriate algorithms were found and trained using the data set. These models
used decision trees and naive Bayesian classification algorithms. Finally, cross-validation
tests were performed on both models to assess their predictive abilities. The models were
then contrasted using performance metrics pertinent to ML.

2.2. Forecast Model Based on Characteristics of a Contract or Project

Although the earned value management (EVM) approach is a successful project
oversight and management strategy in terms of foretelling the cost performance index and
other cost indicators, the technique may require more improvements to be more effective at
estimating the project’s completion time [18,19]. Vanhoucke and Vandevoorde [19] assumed
that project activities and precedence relations were known to predict the final contract
duration (FCCD). Urgilés et al. [20] examined the adequate EVM and value schedule to
forecast the final duration of hydroelectric power generation projects. Sackey et al. [21]
also developed a new method based on the EVM to forecast the final construction contract
duration (FCCD). They used the actual time spent on each activity. One of the challenges
faced by the users of the management method in predicting the actual duration of the
contract is that the method requires historical data for the project. In other words, EVM also
needs accurate information from a project, such as its cost, earned value, and planned value,
at any given time, and it may not be possible to predict it at an early stage of the contract.

On the other hand, the case-based reasoning method is mainly used to forecast the
construction project cost. However, Jin et al. [22] established a CBR model that can correctly
predict the FCCD at the planning stage.

2.3. Regression and ANN Models

Several studies utilized regression and ANN models to estimate the FCCD. For exam-
ple, Skitmore and Ng [23] developed a regression model based on cross-validation. The
model parameters were project type, sector, contractor selection, and the 93 Australian
building project model. Thomas and Thomas [24] developed a regression model to predict
the building project duration based on 51 historical data. The model parameters were the
area of the building, estimated duration, and estimated cost. The model did not consider
the project sectors, and the model cannot be used for different types of projects, such as elec-
trical or mechanical projects. The artificial neural network method proved more advanced
and performed better than the regression model [25]. The ANN model developed by [26]
was to forecast the duration of building projects. The input data included the number of
floors, foundation type, activities, contractor class and client class, and floor area. The
mean absolute error was 25.9%. Moreover, Gab-Allah et al. [27] established an ANN model
for predicting the building project. The parameters were the type of clients, construction
quality, project location, the total height of the project, client coordination with contractor
staff, contract type (unit price contract/lump sum), contactor selection method, and quality
of project documentation. The maximum error of the model was 20%.

The previous models required specific information, which varies from one project
to another, such as the model developed by Al-Gahtani et al. [14], Ajayi and Chinda [2],
Pewdum et al. [15], or contract data that should be available through the construction
stage, such as Sackey et al. [23]. Although the CBR method has proven its effectiveness in
predicting the duration of the contract, it requires the availability of a previously completed
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project similar to the one required in terms of characteristics and operational conditions,
which may be difficult to provide. In terms of the regression and ANN models, the above
model was utilized for building project duration and cannot be generalized to other projects.
Therefore, there is a need to develop a predictive model using the ANN model, which
is used for different projects and is based on common and available data. This paper
contributed to the development of a model to predict FCCD in the early stages based on
a few common node criteria (CC, CD, and sector). Those parameters are characterized as
being few and common for any contract. However, the ANN models need extensive data
to provide a reliable and adequate forecast model. In this paper, the available data were
relatively small (135), making it challenging to deal with them using an ANN model. To
address the issue, the relatively small data issue was solved using the two methods that
regard standardization (Zavadskas and Turskis’ logarithmic) and augmentation data by
utilizing the method introduced by [28], which was then utilized in developing the ANN
model. The input data tested consists of contract cost, contract duration, and project sectors.
This study presented a reasonable-accuracy prediction model based on KSA project data.
The analysis approach used to create the model can also be applied to projects from other
areas of the globe.

3. Artificial Neural Network (ANN) Model

This section provides an important and simple introduction to ANN model structures.
The Artificial Neural Network (ANN) is an ML method that emerged from the concept of
biological neural networks in the human brain. In situations where the actual process is
complex and we are unsure of the nature of each phenomenon involved, it is one of the most
excellent tools for value prediction [29]. Civil Engineering is one of the areas that benefits
from ML. Such applications include earthquake engineering, structural health monitoring,
damage identification and detection, and structural design. The VULMA ML-based tool is
an example of such application automation, establishing a seismic vulnerability score for
building structures [30,31].

A model known as an ANN builds an algorithm from any function to estimate the
outcome [29]. The structures of the ANN consist of three layers: input layer, hidden layer
(one or more than one), and hidden layer, as shown in Figure 1. The main aim of the hidden
layer is to extract some of the most relevant patterns from the inputs and send them on to
the next layer for further analysis. The mechanism of each hidden neuron consists of two
sequence functions, S and a, as shown in Figure 2. The hidden layer also accelerates and
improves the efficiency of the network by recognizing just the most essential information
from the inputs and discarding redundant information. The benefit of using an ANN in
Statistical Package for Social Sciences software is its simplicity and ability to handle small
amounts of data, like the sector in this article. Moreover, the IBM SPSS Statistics 20 program
can provide a neat illustration of using the ANN model with the strong relationships
among neurons and the bias values. Additionally, SPSS makes it simple to choose the
percentage of training and testing processes and provides the relative errors of the two
processes together with the expected result values. Moreover, the program can provide
the weighting values among the connections of the neurons and the output computed by
the ANN model. On the other hand, the activation function allows the model to capture
nonlinear relationships between the inputs. In addition, the activation function contributes
to converting the input into a more usable output. The types of activation functions are
hyperbolic tangent functions (Equation (1)), sigmoid functions (Equation (2)),

f =
1− e−2x

1 + e−2x (1)
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f =
1

1 + e−x (2)
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4. Methodology

The methodology is mainly comprised of three stages: data initialization, ANN
development, and an evaluation model. The data initialization consists of data collection,
standardization, and augmentation, while the ANN development includes the first and
second analyses. The first analysis stage represented normalizing and maximizing data
using Zavadskas and Turskis’ logarithmic method and the method introduced by [32].
These methods overcome the issue of relatively small data. Then, the accuracy of the
developed ANN model was determined using the mean absolute percentage error (MAPE).
The second analysis stage is developing the ANN models on the modified data generated
from the first stage, as shown in Figure 3. The ANN models were evaluated by comparing
the results with several other past models in the literature.
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4.1. Data Initialization

The section mainly aimed to collect and prepare data to make them suitable for use in
artificial neural networks. It can be achieved by performing three steps: collecting, standard-
izing, and augmenting the standardized data. Gebrehiwet and Luo [4] and Khattri et al. [5]
pointed out that the time delay had an influence on the cost and time overrun, which
were reflected in the contract by CC and CD, respectively. Therefore, the collected data
parameters were CD, CC, FCCD, contract sector (public, semi-public, private), and contract
type (building, electric, mechanic).

4.1.1. Data Collection

The information from previously finished projects was required to create models
forecasting the final construction duration. A survey was created and sent to numerous or-
ganizations to gather information from the finished building projects in KSA (Appendix A).

The project’s scheduled start and finish dates were compared with the actual dates to
determine the projected and real project durations. The data were collected, reviewed, and
the invalid ones were eliminated. Models for predicting real construction duration were
developed and validated using data from 135 projects completed in KSA. The frequencies
of public, semi-public, and private were 80 (59.26%), 49 (36.30%), and 5 (4.44%), respectively.
In addition, the CC ranges from 18,200 SAR to 650,000,000 SAR. On the other hand, the CD
varied from 0.47 months to 138.30 months, while the FCCD changed from 0.37 months to
146.00 months. The frequencies of building, electric, and mechanic were 66 (48.89%), 14
(10.37%), and 55 (40.74%), respectively.

4.1.2. Sample Size Examine

The sample size of 135 projects can be examined by calculating the minimum size
that follows the normal distribution using Equation (3), which is based on the confidence
level (95%), probability value choice (p), which is set at 0.5, and confidence interval, which
should be less than 0.2 [33].

Sample size =
Z2 p(1− p)

C2 (3)
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where Z is a value corresponding to a 95% confidence level equal to 1.96. By setting the C
and p to 0.10 and 0.50, respectively, the minimum sample was 49 projects, which was less
than the collected projects (135). Therefore, the collected data was adequate.

4.1.3. Data Parameters Examination

This section aims to examine the impact of CC, CD, project sector, and project type on
the FCCD by performing the correlation test between the FCCD and the other parameters.
The results of the test are shown in Table 1. The CD, CC, and project sectors correlated with
FCCD with Pearson coefficients of 0.784, 0.424, and 0.520, respectively. However, the project
type did not correlate with FCCD, where the p-value of the test and Pearson coefficient
were 0.666 (more than 0.05) and 0.037 (very weak correlation), respectively. Therefore, the
parameters considered as the ANN model’s input layer were CD, CC, and project sector
(public, semi-public, and private).

Table 1. Correlation test results for different parameters.

Parameters Pearson Correlation
Coefficient p-Value N

1 FCCD CD 0.784 <0.0001 135
2 FCCD CC 0.424 <0.0001 135
3 FCCD Project sector 0.520 <0.0001 135
4 FCCD Project types 0.037 0.666 135

4.1.4. Data Standardization

Anysz et al. [28] stated that several approaches to standardizing input data for ANN
result in varied values for accuracy metrics. They examine the six normalized methods
(vector, Manhattan, maximum, Weitendorf’s linear, Peldschus’ nonlinear, Zavadskas and
Turskis’ logarithms, and Jüttler–Korth linear). Anysz et al. concluded that the Zavadskas
and Turskis’ logarithms provide tiny errors between the actual and computed output.
Therefore, the method was considered to standardize the 135 data sets. The standardized
formula is shown in Equation (4).

xi =
ln xi

ln ∏n
i=1 xi

(4)

where xi is the standardized variable, xi is variable, and n represents the total data sets (135).
The xi was set as either CC, CD, or FCCD. However, the sector variable cannot be dealt
with in the standardized method because it is a nominal data type. Therefore, the sector
components (public, semi-public, and private) were considered in the ANN as factors. The
names of the public, semi-public, and private were set as PUB, SPUB, and PRI, respectively.
Depending on the data collection, the factors’ values were changed to zero or one.

4.1.5. Data Augmentation

The ANN methods involve vast data to obtain a reliable forecasted model. However,
the data sets were relatively small and may need to be improved. Pasini [28] innovated an
“all frame” method to overcome small data issues. The method maximizes the small data
by dividing them into N sets. The total data is divided into ten subsets. One is considered
testing data, indicated as a blue element in Figure 4. At the same time, the remainder
subsets represent training data, shown as white elements in Figure 2. The ten-training data
set (ten groups) was generated by the relative positions of the testing data set, shown in
Figure 4. The ten ANN models were developed with the same ANN structure based on the
number of training data sets.
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4.2. ANN Model Development

The ANN model was developed by performing two analyses (first and second), as
shown in the following section.

4.2.1. First Analysis

The first analysis aims to detect the data that had significant differences between
the observed and computed FCCD. It was accomplished by running ANN models and
promoting the data, as detailed in the following section.

Running ANN Models

As illustrated in the main components of the ANN in the previous section, the input
layer consists of two patterns of data: scale data (CCi, and CDi) and factors data (PUB,
SPUB, and PRI). The CCi and CDi represent the standardized contract cost and standard-
ized contract duration, respectively. The number of hidden layers was set to two, the
greatest option in the SPSS-IBM program. In terms of the number of neurons in the hidden
layers, they were set as (2m + 1) [34], where m is the number of the input layer neurons,
which were five. Therefore, the number of neurons per hidden layer was eleven. Because
the hyperbolic activation function is better than the sigmoid activation function [35], the
activation function was set as hyperbolic. The output was set to one neuron (FCCDi). The
ANN model’ structure is shown in Figure 5.

Ten sets (groups) were considered for the ANN model based on the number of training
data sets. Therefore, ten ANN models were developed. Each ANN model was run several
times to monitor the Relative Error (RE). It should be close to a constant value to avoid
overfitting [36,37]. The RE depended on the observed and computed FCCDi Table 2 shows
a portion of the input and output data used in ANN model 2.

Enhance the Used Data Accuracy

Some abnormal data have a detrimental effect on the accuracy of ANN models. There
are tools to quality-check used data, such as residual error or APE. This paper identified
abnormal data detection using an APE value of more than 35%. The modified training data
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set was generated and will be used in the second analysis by deleting these data from the
training data set. The APE can be computed using Equation (5).

APEI =
|FCCDobs−i − FCCDcom−i|

FCDobs−i
(5)

where FCCDobs−i and FCCDcom−i are observed in the FCCD. FCCDcom−i is computed from
the FCCD based on the ANN model’s outputs FCCDi. It should be noted that per the
ANN model, there were several output values of the FCCDi depending on the number of
times the models were run after taking an average of the FCDi values (FCCDaverage−i). The
FCCDcom−i is computed using Equation (3).
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Table 2. Illustrative example of input and output data used in ANN model 2.

NO
Input Output

CC CD Public Semi-Public Private FCCD

1 20.66 13.01 0 1 0 14.90
2 33.08 0.05 0 1 0 0.04
3 20.20 12.68 0 1 0 10.86
4 27.01 14.46 0 1 0 17.03
5 35.23 15.22 0 1 0 13.85
6 22.57 14.77 0 1 0 15.72
7 21.58 16.81 0 1 0 17.60
8 32.86 15.92 0 1 0 15.82
9 34.51 14.39 0 1 0 17.46

10 29.65 14.95 0 1 0 15.77
11 24.43 14.77 0 1 0 15.04
12 30.00 14.95 0 1 0 16.25
. . . . . . .
. . . . . . .

122 33.68 16.38 1 0 0 16.36

4.2.2. Second Analysis

The ten ANN models—the same ANN model in the first analysis—were run several
times based on the modified training data sets (ten modified data groups).

4.3. Evaluation Model

The results of the ANN models that were carried out on the modified data were
utilized to measure the accuracy of each model using the mean absolute percentage error
(MAPE). It can be computed using Equation (6)

MAPE =
1

nm
∑nm

i=1
|FCCDobs−i − FCCDcom−i|

FCDobs−i
(6)

where nm is the number of modified data used in the ANN model. After that, the average
of the ten MAPEs was computed. In addition, each model was tested with its test data to
check the validity of the models for new data by measuring MAPE for each model.

5. Results and Discussions

Figure 6a,b shows the distribution frequency of the APE for the first and second
analyses, respectively. Although the data for APE greater than 35% were deleted in the first
analysis, there were some data for APE greater than 35% in the second analysis. In addition,
the positive promotes data not only on essential data with high error (APE > 35%) but also
on data with low error, as shown in Figure 6b. The trend of APE’s frequency decreased
with the APE value increase in the second analysis. In the first analysis, some data had a
greater difference between the observed and computed FCCD than the observed FCCD, as
shown in Figure 6a. This difference means that the data may contain a significant number
of abnormal data.

Figure 5 shows the MAPE of the ten ANN models for the first and second analyses.
The MAPE ranged from 27.5% to 32% for the first analysis. On the other hand, it ranged
from 9.68% to 15.84% for the ANN models in the second analysis. The percentage removing
data that had a significant difference between observed and computed FCCD (APE > 35%)
was significant, with minimum and maximum values of 28% and 42%, respectively, as
shown in Figure 7. Although the removing data percentage was high, the MAPE value
decreased from 29.9% for the first analysis to 12.22% for the second analysis on average,
which was close to the MAPE of the high accuracy models (MAPE ≤ 10%), as illustrated
by [25,32,38].
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Figure 6. Frequency of APE of the first and second analysis for ten ANN models. (a) for first analysis
(b) for second analysis.
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Figure 8 shows the accumulative frequency of the APE; the data that had APE less
than 10% varies from 48% to 65% among the ten ANN models. Moreover, the percentage
of data that had APE less than 20% ranged from 75% to 81%. The difference ranges of the
accumulative frequency decreased with increasing APE.
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The MAPE results of the ten models for testing data are shown in Figure 9. The MAPE
value ranges from 3.47% (ANN-8) to 26.91% (ANN-3). The average MAPE of the ten models
was 14.92%, less than the allowable standard value of 20% [27].
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Figure 9. MAPE of ANN models for test data.

The MAPE of the three types of linear regression models (LR1, LR2, and LR3) was
compared with the average MAPE of the ANN models in the first and second analyses. The
LR1 represents linear regression performed on the 135 data sets without any transformed
functions. LR2 and LR3 are linear regressions on the 135 data sets transformed by the
square root and logarithmic function, respectively. The equations for LR1, LR2, and LR3
are shown in Table 3. The results indicate that the LR1 provides a high MAPE value of
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143%, which indicates a low-accuracy model. On the other hand, the LR2 and LR3 models
gave MAPEs of 43.6% and 39.23%, respectively, as shown in Figure 10. The results agreed
with the results of [23,39]. They stated that the regression model of transformed data by
the logarithmic function provides more accuracy than the other function. However, the
three linear regressions had low accuracy due to the high value of the MAPE, as shown in
Figure 10. The average value of the MAPE for the first and second analyses was 29.9% and
12.22%, respectively. They are lower than the LR3 by 9.3% and 27.03%, respectively. The
paper’s contribution is to increase the accuracy of the ANN model in predicting the FCCD
based on relatively small data by using the three methods of preparation (standardize,
augment, and promote data).

Table 3. Description of the different regression models.

Model Regression Formula

LR1 FCD = −5.898 + 1.227CD + 0.085CC + 7.532Sector
LR2 FCD =

(
−5.898 + 1.227

√
CD + 0.085

√
CC + 7.532Sector

)2

LR3 FCD = Exp(−5.898 + 1.227 ln CD + 0.085 ln CC + 7.532Sector)
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first and second analyses.

To study the performance of FCCD, the ANN-5 was considered because the MAPE of
the model for training and testing stages for the second analysis provides an average value
among the models. Figure 11 shows the variation of the FCCD with CD for public, semi-
public, and private. The FCCD value of the public and semi-public has been overestimated.
However, the FCCD value for private is underestimated. To compare these results with a
study by Skitmore and Ng [23] for residential Australian construction projects, the type
of contract is a lump sum, similar to Saudi construction. The Skitmore and Ng curve was
between the public and semi-public curves for CD for more than ten months. On the other
hand, the previous study curve was close to the semi-public curve for CD for less than
ten months.

The accuracy of ANN models was compared with different studies. The CBR model
developed by Jin et al. [22] considered geometry, building information, foundation system,
subsoil condition, and roof type. The average APE was 5.74%. The value was smaller than
the MAPE of the ANN model. The CBR model was used for building projects, while the
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ANN model utilized projects such as building, highway, electric, and mechanic projects.
Therefore, the margin of error may be increased. To compare the accuracy of the ANN
model with the EVM developed by [21], the EVM provides a MAPE value of 12.96%, which
is close to the MAPE of the ANN model (12.22%) for this paper. On the other hand, the
MAPE of the ANN model performed by Pewdum et al. [15] was 6.2% on average. It was
less than the developed ANN’ MAPE. It is assumed that the Pewdum ANN model’s input
parameters represent the working start date, CD, % actual completion, evaluating date,
and % planned completion. These parameters were closely related to the FCCD. However,
some parameters were not available in the pre-tendering phase.
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Figure 11. FCCD vs. CD for three types of sectors with the curve obtained by Skitmore and Ng for
CC of AUS$ 100 million.

6. Conclusions

Early-stage estimation of the final construction contract duration is crucial for the
progress and success of a project. The 135 data sets from Saudi projects were used to create
the ANN models in the paper. The ANN model’s development consists of three phases.
The first phase was to collect the data, process the data using Zavadskas and Turskis’
logarithmic standardization method, augment the data using the method introduced
by [33], and generate ten training data sets. In the first analysis, ten ANN models were
developed to detect the data with a significant value of APE. These data were then deleted
to obtain the modified ten training data sets used in the second analysis. The main findings
revealed that the average MAPE of the ANN models in the second analysis was 12.22%,
and the model accuracy was high to good. In addition, the ANN model provides better
performance than the LR model, especially the linear model that transforms data by a
logarithmic function. The paper supports the research using comparatively little data and
neural network integration.
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Appendix A

Table A1. Table Data of 136 projects.

CC (SAR) CD (Month) FCCD (Month) Public Semi-Public Private

1,500,000 138.30 134.83 0.00 1.00 0.00

68,460,000 33.00 33.47 0.00 1.00 0.00

51,438,229 23.97 77.83 0.00 1.00 0.00

15,499,528 23.60 75.87 0.00 1.00 0.00

11,739,569 10.13 34.33 0.00 1.00 0.00

42,791,190 30.42 30.33 0.00 1.00 0.00

27,490,435 33.80 37.87 0.00 1.00 0.00

3,889,500 14.77 76.10 0.00 1.00 0.00

62,974,880 23.60 23.60 0.00 1.00 0.00

19,265,430 20.47 36.67 0.00 1.00 0.00

27,058,829 14.77 28.77 0.00 1.00 0.00

21,520,394 24.00 23.93 0.00 1.00 0.00

79,890,345 20.17 28.23 0.00 1.00 0.00

73,802,382 29.50 48.13 0.00 1.00 0.00

23,106,764 17.23 44.80 0.00 1.00 0.00

152,539,013 1.00 1.00 0.00 1.00 0.00

21,520,394 16.03 15.97 0.00 1.00 0.00

60,606,426 23.63 77.10 0.00 1.00 0.00

211,300,000 27.93 34.23 0.00 1.00 0.00

30,851,600 25.33 55.23 0.00 1.00 0.00

26,562,763 39.50 89.23 0.00 1.00 0.00

147,451,259 32.53 56.70 0.00 1.00 0.00

189,342,875 23.27 86.10 0.00 1.00 0.00

90,562,500 26.30 56.00 0.00 1.00 0.00

40,948,000 25.30 46.43 0.00 1.00 0.00

95,500,000 26.30 63.23 0.00 1.00 0.00

6,535,200 12.10 12.10 0.00 1.00 0.00

57,382,472 36.50 94.60 0.00 1.00 0.00

101,852,500 24.00 84.37 0.00 1.00 0.00

103,084,608 29.50 78.10 0.00 1.00 0.00
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Table A1. Cont.

CC (SAR) CD (Month) FCCD (Month) Public Semi-Public Private

110,906,432 29.50 67.90 0.00 1.00 0.00

35,840,000 17.67 52.83 0.00 1.00 0.00

39,473,010 22.97 45.07 0.00 1.00 0.00

42,585,725 22.97 66.80 0.00 1.00 0.00

63,554,955 22.97 82.23 0.00 1.00 0.00

26,787,515 24.33 37.80 0.00 1.00 0.00

1,976,113 24.33 37.80 0.00 1.00 0.00

22,321,935 24.33 37.80 0.00 1.00 0.00

4,827,143 12.20 17.80 0.00 1.00 0.00

4,908,491 5.90 5.43 0.00 0.00 0.00

8,705,670 3.03 6.03 0.00 1.00 0.00

60,170,000 24.33 31.83 0.00 1.00 0.00

95,154,746 30.42 35.33 0.00 1.00 0.00

51,711,016 24.33 72.80 0.00 1.00 0.00

52,922,740 24.33 72.80 0.00 1.00 0.00

45,947,586 24.33 42.63 0.00 1.00 0.00

5,530,000 35.10 63.33 0.00 1.00 0.00

17,202,401 18.23 46.73 0.00 1.00 0.00

14,486,980 11.20 16.50 0.00 1.00 0.00

30,771,774 15.13 24.23 0.00 1.00 0.00

651,000,000 12.00 13.00 1.00 0.00 0.00

103,040,000 36.00 39.00 1.00 0.00 0.00

86,400,000 3.00 32.00 1.00 0.00 0.00

12,000,000 12.00 15.00 1.00 0.00 0.00

82,351,564 6.50 30.42 1.00 0.00 0.00

90,060,950 16.30 33.33 1.00 0.00 0.00

8,850,000 14.00 9.00 1.00 0.00 0.00

21,491,170 30.00 29.00 1.00 0.00 0.00

13,957,188 11.00 11.00 1.00 0.00 0.00

72,990 30.00 28.00 1.00 0.00 0.00

207,475 2.00 2.00 1.00 0.00 0.00

140,726,856 27.00 41.00 1.00 0.00 0.00

22,259,958 13.00 22.00 1.00 0.00 0.00

154,600 2.00 1.90 1.00 0.00 0.00

39,704,154 42.00 48.00 1.00 0.00 0.00

3,454,386 12.00 12.00 1.00 0.00 0.00

74,700 1.00 0.73 1.00 0.00 0.00

213,500 3.00 2.60 1.00 0.00 0.00

299,250 1.00 1.17 1.00 0.00 0.00

32,142,222 18.00 34.00 1.00 0.00 0.00
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Table A1. Cont.

CC (SAR) CD (Month) FCCD (Month) Public Semi-Public Private

289,217 1.00 0.37 1.00 0.00 0.00

92,694 1.50 0.80 1.00 0.00 0.00

18,200 1.00 0.70 1.00 0.00 0.00

352,685 3.00 2.83 1.00 0.00 0.00

226,653 4.00 12.00 1.00 0.00 0.00

105,000 1.00 0.90 1.00 0.00 0.00

87,034 1.50 0.90 1.00 0.00 0.00

496,000 0.50 1.03 1.00 0.00 0.00

480,000 0.50 0.37 1.00 0.00 0.00

256,800 1.50 2.50 1.00 0.00 0.00

574,590 6.00 8.93 1.00 0.00 0.00

690,450 2.00 1.70 1.00 0.00 0.00

488,775 4.00 4.00 1.00 0.00 0.00

491,400 4.00 4.00 1.00 0.00 0.00

481,950 6.00 13.00 1.00 0.00 0.00

489,510 3.00 2.70 1.00 0.00 0.00

444,000 3.00 3.67 1.00 0.00 0.00

11,835,120 22.00 20.00 1.00 0.00 0.00

232,281 3.00 10.93 1.00 0.00 0.00

296,100 3.00 2.97 1.00 0.00 0.00

287,000 2.00 2.00 1.00 0.00 0.00

285,100 2.00 2.00 1.00 0.00 0.00

296,500 1.00 1.00 1.00 0.00 0.00

297,000 1.00 1.00 1.00 0.00 0.00

285,000 1.00 1.00 1.00 0.00 0.00

247,800 2.00 2.00 1.00 0.00 0.00

299,810 2.00 2.00 1.00 0.00 0.00

299,907 2.00 2.00 1.00 0.00 0.00

96,200 1.50 1.50 1.00 0.00 0.00

295,750 2.00 2.00 1.00 0.00 0.00

230,000 2.00 2.00 1.00 0.00 0.00

299,700 2.00 2.00 1.00 0.00 0.00

247,300 6.00 6.00 1.00 0.00 0.00

76,000 1.50 1.50 1.00 0.00 0.00

469,000 3.00 3.00 1.00 0.00 0.00

33,500,000 6.00 6.00 1.00 0.00 0.00

6,974,000 6.00 7.50 1.00 0.00 0.00

15,996,979 6.00 6.00 1.00 0.00 0.00

499,000 3.00 3.00 1.00 0.00 0.00

478,000 3.00 3.00 1.00 0.00 0.00
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Table A1. Cont.

CC (SAR) CD (Month) FCCD (Month) Public Semi-Public Private

451,000 3.00 3.00 1.00 0.00 0.00

50,000,000 8.00 8.13 0.00 0.00 1.00

190,000,000 12.47 14.17 0.00 0.00 1.00

20,000,000 6.00 24.33 0.00 0.00 1.00

35,000,000 11.93 11.17 0.00 0.00 1.00

11,000,000 12.00 5.00 0.00 0.00 1.00

291,000 1.00 1.00 1.00 0.00 0.00

259,500 1.00 1.00 1.00 0.00 0.00

260,000 1.00 1.00 1.00 0.00 0.00

295,576 0.93 0.93 1.00 0.00 0.00

259,259 0.93 0.93 1.00 0.00 0.00

61,380 1.00 1.00 1.00 0.00 0.00

35,500 0.50 0.50 1.00 0.00 0.00

50,000 0.47 0.47 1.00 0.00 0.00

221,250 4.00 4.00 1.00 0.00 0.00

90,000 1.00 1.00 1.00 0.00 0.00

119,333 3.00 3.00 1.00 0.00 0.00

593,295 6.00 6.00 1.00 0.00 0.00

120,000 1.00 1.00 1.00 0.00 0.00

390,000 2.00 2.70 1.00 0.00 0.00

64,000,000 30.50 36.50 1.00 0.00 0.00

49,998,494 18.25 19.00 1.00 0.00 0.00

24,756,246 18.25 19.00 1.00 0.00 0.00

173,000,000 14.00 68.00 1.00 0.00 0.00

470,000,000 36.00 146.00 1.00 0.00 0.00
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