In Silico Analysis of Individual Fractions of Bovine Casein as Precursors of Bioactive Peptides—Influence of Post-Translational Modifications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- -
- Possibility of matching peptide and protein sequences, containing modified amino acids annotated using code available in the database;
- -
- Possibility of proteolysis simulation using sequences with modified residues;
- -
- Possibility of easy translation of sequences into SMILES code, used in chemical databases (e.g., PubChem) and programs from the area of cheminformatics (e.g., SwissTargetPrediction). It is possible due to direct input of modified residues into sequences. For instance, proteins in UniProt database are annotated as sequences containing unmodified proteinogenic amino acid residues, with information about modifications added as a text. Only unmodified sequences in UniProt are available for processing (e.g., sequence alignments).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme (EC 3.4.15.1) |
ACEi | Inhibitor of angiotensin-converting enzyme |
AChE | Acetylcholinesterase (EC 3.1.1.7) |
BChE | Butyrylcholinesterase (EC 3.1.1.8) |
BRCA1 | Breast cancer type 1 susceptibility protein (EC 2.3.2.27) |
<C> | Cysteine involved in formation of disulfide bonds |
CaMPDE | 3′,5′-cyclic-nucleotide phosphodiesterase (Calmodulin-dependent phosphodiesterase 1) (EC 3.1.4.17) |
CID | Compound ID in the PubChem database |
αs1-CN | αs1-Casein |
αs2-CN | αs2-Casein |
β-CN | β-Casein |
κ-CN | κ-Casein |
DLG4 | Disks large homolog 4 |
DPPIII | Dipeptidyl peptidase III (EC 3.4.14.4) |
DPPIIIi | Inhibitor of dipeptidyl peptidase III |
DPPIV | Dipeptidyl peptidase IV (EC 3.4.14.5) |
DPPIVi | Inhibitor of dipeptidyl peptidase IV |
FDPS | Farnesyl pyrophosphate synthase (EC:2.5.1.1) |
FNTA, FNTB | Farnesyltransferase/geranylgeranyltransferase type-1 (EC 2.5.1.58) subunit α and β, respectively |
FPR2 | Formyl peptide receptor 2 |
α-Glu | α-Glucosidase (EC 3.2.1.20) |
α-Glui | Inhibitor of α-Glucosidase |
HLA-A | HLA class I histocompatibility antigen, A α chain |
HMG-CoA | 3-Hydroxy-3-methylglutaryl coenzyme A |
LPAR | Lysophosphatidic acid receptor |
<P[4O]> | L-pyroglutamic acid |
PIN1 | Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (EC 5.2.1.8) |
PLK1 | Serine/threonine-protein kinase PLK1 (EC 2.7.11.21) |
PRKCE | PRKCE Protein kinase C ε type (EC 2.7.11.13) |
S1PR | Sphingosine 1-phosphate receptor |
<S[3*]> | Phosphoserine |
<T[3*]> | Phosphothreonine |
TK1 | Thymidine kinase, cytosolic (EC 2.7.1.21) |
TNFRSF10A | Tumor necrosis factor receptor superfamily member 10A |
UWM | University of Warmia and Mazury in Olsztyn |
XIAP | E3 ubiquitin-protein ligase (EC 2.3.2.27) |
References
- Zhang, J.; Xin, L.; Shan, B.; Chen, W.; Xie, M.; Yuen, D.; Zhang, W.; Zhang, Z.; Lajoie, G.A.; Ma, B. PEAKS DB: De novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics 2012, 11, M111.010587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, P.; Muthu, M.; Chilukuri, Y.; Haga, S.M.; Chun, S.; Oh, J.-W. In silico tools and phosphoproteomic software exclusives. Processes 2019, 7, 869. [Google Scholar] [CrossRef] [Green Version]
- Seymour, R.W.; van der Post, S.; Mooradian, A.D.; Held, J.M. ProteoSushi: A software tool to biologically annotate and quantify modification-specific, peptide-centric proteomics data sets. J. Proteome Res. 2021, 20, 3621–3628. [Google Scholar] [CrossRef] [PubMed]
- Ergin, E.K.; Uzozie, A.C.; Chen, S.; Su, Y.; Lange, P.F. SQuAPP—Simple quantitative analysis of proteins and PTMs. Bioinformatics 2022, 38, 4956–4958. [Google Scholar] [CrossRef] [PubMed]
- Barente, A.S.; Villén, J.A. Python package for the localization of protein modifications in mass spectrometry data. J. Proteome Res. 2023, 22, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Wang, C.; Zhou, J.; Shi, Y.; Ruan, C.; Tu, Y.; Yao, L.; Peng, D.; Xue, Y. EPSD: A well-annotated data resource of protein phosphorylation sites in eukaryotes. Brief Bioinform. 2021, 22, 298–307. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, X.; Lin, S.; Gou, Y.; Han, C.; Zhang, C.; Ning, W.; Wang, C.; Xue, Y. CPLM 4.0: An updated database with rich annotations for protein lysine modifications. Nucleic Acids Res. 2022, 50, D451–D459. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Giri, K.; Behera, R.N.; Maity, S.; Ambatipudi, K. BoMiProt 2.0: An update of the bovine milk protein database. J. Proteom. 2022, 267, 104696. [Google Scholar] [CrossRef]
- Tyagi, A.; Tuknait, A.; Anand, P.; Gupta, S.; Sharma, M.; Mathur, D.; Joshi, A.; Singh, S.; Gautam, A.; Raghava, G.P. CancerPPD: A database of anticancer peptides and proteins. Nucleic Acids Res. 2015, 43, D837–D843. [Google Scholar] [CrossRef] [Green Version]
- Mathur, D.; Prakash, S.; Anand, P.; Kaur, H.; Agrawal, P.; Mehta, A.; Kumar, R.; Singh, S.; Raghava, G.P.S. PEPlife: A repository of the halflife of peptides. Sci. Rep. 2016, 6, 36617. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Chaudhary, K.; Dhanda, S.K.; Bhalla, S.; Usmani, S.S.; Gautam, A.; Tuknait, A.; Agrawal, P.; Mathur, D.; Raghava, G.P. SATPdb: A database of structurally annotated therapeutic peptides. Nucleic Acids Res. 2016, 44, D1119–D1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, D.; Mehta, A.; Firmal, P.; Bedi, G.; Sood, C.; Gautam, A.; Raghava, G.P. TopicalPdb: A database of topically delivered peptides. PLoS ONE 2018, 13, e0190134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usmani, S.S.; Agrawal, P.; Sehgal, M.; Patel, P.K.; Raghava, G.P.S. ImmunoSPdb: An archive of immunosuppressive peptides. Database 2019, 2019, baz012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flissi, A.; Ricart, E.; Campart, C.; Chevalier, M.; Dufresne, Y.; Michalik, J.; Jacques, P.; Flahaut, C.; Lisacek, F.; Leclère, V.; et al. Norine: Update of the nonribosomal peptide resource. Nucleic Acids Res. 2020, 48, D465–D469. [Google Scholar] [CrossRef] [PubMed]
- Mathur, D.; Kaur, H.; Dhall, A.; Sharma, N.; Raghava, G.P.S. SAPdb: A database of short peptides and the corresponding nanostructures formed by self-assembly. Comp. Biol. Med. 2021, 133, 104391. [Google Scholar] [CrossRef] [PubMed]
- Balogh, B.; Ivánczi, M.; Nizami, B.; Beke-Somfai, T.; Mándity, I.M. ConjuPepDB: A database of peptide–drug conjugates. Nucleic Acids Res. 2021, 49, D1102–D1112. [Google Scholar] [CrossRef]
- D’Aloisio, V.; Dognini, P.; Hutcheon, G.A.; Coxon, C.R. PepTherDia: Database and structural composition analysis of approved peptide therapeutics and diagnostics. Drug Discov. Today 2021, 26, 1409–1419. [Google Scholar] [CrossRef]
- Li, J.; Yanagisawa, K.; Sugita, M.; Fujie, T.; Ohue, M.; Akiyama, Y. CycPeptMPDB: A comprehensive database of membrane permeability of cyclic peptides. J. Chem. Inf. Model. 2023, 63, 2240–2250. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Tuknait, A.; Chaudhary, K.; Singh, B.; Kumaran, S.; Raghava, G.P.S. PEPstrMOD: Structure prediction of peptides containing natural, non-natural and modified residues. Biol. Direct. 2015, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Frolov, A.I.; Chankeshwara, S.V.; Abdulkarim, Z.; Ghiandoni, G.M. pIChemiSt—Free tool for the calculation of isoelectric points of modified peptides. J. Chem. Inf. Model. 2023, 63, 187–196. [Google Scholar] [CrossRef]
- Gfeller, D.; Michielin, O.; Zoete, V. SwissSidechain: A molecular and structural database of non-natural sidechains. Nucleic Acids Res. 2013, 41, D327–D332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, H.; Xi, H.; Stanton, R.V.; Rotstein, S.H. HELM: A hierarchical notation language for complex biomolecule structure representation. J. Chem. Inf. Model. 2012, 52, 2796–2806. [Google Scholar] [CrossRef] [PubMed]
- Milton, J.; Zhang, T.; Bellamy, C.; Swayze, E.; Hart, C.; Weisser, M.; Hecht, S.; Rotstein, S. HELM software for biopolymers. J. Chem. Inf. Model. 2017, 57, 1233–1239. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Darewicz, M.; Iwaniak, A.; Turło, M. Proposal of the annotation of phosphorylated amino acids and peptides using biological and chemical codes. Molecules 2021, 26, 712. [Google Scholar] [CrossRef] [PubMed]
- Fox, T.; Bieler, M.; Haebel, P.; Ochoa, R.; Peters, S.; Weber, A. BILN: A human-readable line notation for complex peptides. J. Chem. Inf. Model. 2022, 62, 3942–3947. [Google Scholar] [CrossRef] [PubMed]
- David, L.; Thakkar, A.; Mercado, R.; Engkvist, O. Molecular representations in AI-driven drug discovery: A review and practical guide. J. Cheminform. 2020, 12, 56. [Google Scholar] [CrossRef]
- Barłowska, J.; Sawicka-Zugaj, W.; Ślaska, B.; Król, J.; Brodziak, A.; Teter, A.; Chabuz, W. Genetic Analysis of CSN2 in Local and International Cattle Breeds Raised in Poland. Anim. Sci. Papers Rep. 2022, 40, 411–422. Available online: https://www.igbzpan.pl/uploaded/FSiBundleContentBlockBundleModelTranslatableBlockTranslatableFilesElement/filePath/2249/str411-422.pdf (accessed on 4 May 2023).
- Cieślińska, A.; Fiedorowicz, E.; Rozmus, D.; Sienkiewicz-Szłapka, E.; Jarmołowska, B.; Kamiński, S. Does a little difference make a big difference? Bovine β-Casein A1 and A2 variants and human health—An update. Int. J. Mol. Sci. 2022, 23, 1563. [Google Scholar] [CrossRef]
- Daniloski, D.; McCarthy, N.A.; Huppertz, T.; Vasiljevic, T. 2022, What is the impact of amino acid mutations in the primary structure of caseins on the composition and functionality of milk and dairy products? Curr. Res. Food Sci. 2022, 5, 1701–1712. [Google Scholar] [CrossRef]
- Nadugala, B.H.; Pagel, C.N.; Raynes, J.K.; Ranadheera, C.S.; Logan, A. The effect of casein genetic variants, glycosylation and phosphorylation on bovine milk protein structure, technological properties, nutrition and product manufacture. Int. Dairy J. 2022, 133, 105440. [Google Scholar] [CrossRef]
- Bielecka, M.; Cichosz, G.; Czeczot, H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates—A review. Int. Dairy J. 2022, 127, 105208. [Google Scholar] [CrossRef]
- Bu, T.; Zheng, J.; Liu, L.; Li, S.; Wu, J. Milk proteins and their derived peptides on bone health: Biological functions, mechanisms, and prospects. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2234–2262. [Google Scholar] [CrossRef] [PubMed]
- Mirzapour-Kouhdasht, A.; Garcia-Vaquero, M. Cardioprotective peptides from milk processing and dairy products: From bioactivity to final products including commercialization and legislation. Foods 2022, 11, 1270. [Google Scholar] [CrossRef] [PubMed]
- Stobiecka, M.; Król, J.; Brodziak, A. Antioxidant activity of milk and dairy products. Animals 2022, 12, 245. [Google Scholar] [CrossRef]
- Tenenbaum, M.; Deracinois, B.; Dugardin, C.; Matéos, A.; Romelard, A.; Auger, J. Identification, production and bioactivity of casein phosphopeptides—A review. Food Res. Int. 2022, 157, 111360. [Google Scholar] [CrossRef]
- Dhar, H.; Verma, S.; Dogra, S.; Katoch, S.; Vij, R.; Singh, G.; Sharma, M. Functional attributes of bioactive peptides of bovine milk origin and application of in silico approaches for peptide prediction and functional annotations. Crit. Rev. Food Sci. Nutr. 2023. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Protasiewicz, M.; Mogut, D. Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J. Funct. Foods 2015, 16, 334–351. [Google Scholar] [CrossRef]
- Iwaniak, A.; Darewicz, M.; Mogut, D.; Minkiewicz, P. Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. J. Funct. Foods 2019, 61, 103486. [Google Scholar] [CrossRef]
- Du, Z.; Comer, J.; Li, Y. Bioinformatics approaches to discovering food-derived bioactive peptides: Reviews and perspectives. Trends Anal. Chem. 2023, 162, 117051. [Google Scholar] [CrossRef]
- Barati, M.; Jabbari, M.; Davoodi, S.H. In-silico methods for milk-derived bioactive peptide prediction. In Enzymes Beyond Traditional Applications in Dairy Science and Technology; Rajput, Y.S., Sharma, R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2023; pp. 137–162. ISBN 978-0-323-96010-6. [Google Scholar] [CrossRef]
- UniProt Website. Available online: https://www.uniprot.org/ (accessed on 31 January 2023).
- The UniProt Consortium UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [CrossRef]
- Rasmussen, L.K.; Højrup, P.; Petersen, T.E. The multimeric structure and disulfide-bonding pattern of bovine κ-casein. Eur. J. Biochem. 1992, 207, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.K.; Højrup, P.; Petersen, T.E. Localization of two interchain disulfide bridges of bovine αs2-casein. Parallel and antiparallel alignments of the polypeptide chains. Eur. J. Biochem. 1992, 203, 381–386. [Google Scholar] [CrossRef] [PubMed]
- BIOPEP-UWM Website. Available online: https://biochemia.uwm.edu.pl/en/biopep-uwm-2/ (accessed on 30 March 2023).
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Virtual—A novel database of food-derived peptides with in silico-predicted biological activity. Appl. Sci. 2022, 12, 7204. [Google Scholar] [CrossRef]
- PubChem Website. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 31 January 2023).
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef] [PubMed]
- Caroli, A.M.; Chessa, S.; Erhardt, G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 2009, 92, 5335–5352. [Google Scholar] [CrossRef] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Dziuba, J.; Iwaniak, A.; Minkiewicz, P. Computer-Aided Characteristics of Proteins as Potential Precursors of Bioactive Peptides. Polimery 2003, 48, 50–53. Available online: https://polimery.ichp.vot.pl/index.php/p/article/view/1836 (accessed on 18 June 2023). [CrossRef] [Green Version]
- Minkiewicz, P.; Dziuba, J.; Michalska, J. Bovine meat proteins as potential precursors of biologically active peptides—A computational study based on the BIOPEP database. Food Sci. Technol. Int. 2011, 17, 39–45. [Google Scholar] [CrossRef]
- HeatMapper Website. Available online: http://www.heatmapper.ca/ (accessed on 28 April 2023).
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- SwissTargetPrediction Website. Available online: http://www.swisstargetprediction.ch/ (accessed on 31 March 2023).
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darewicz, M.; Pliszka, M.; Borawska-Dziadkiewicz, J.; Minkiewicz, P.; Iwaniak, A. Multi-bioactivity of protein digests and peptides from oat (Avena sativa L.) kernels in the prevention of the cardiometabolic syndrome. Molecules 2022, 27, 7907. [Google Scholar] [CrossRef]
- Iwaniak, A.; Darewicz, M.; Minkiewicz, P. Peptides derived from foods as supportive diet components in the prevention of the metabolic syndrome. Compr. Rev. Food Sci. Food Saf. 2018, 17, 63–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ChEMBL Website. Available online: https://www.ebi.ac.uk/chembldb/ (accessed on 30 April 2023).
- Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Darewicz, M.; Iwaniak, A.; Sokołowska, J.; Starowicz, P.; Bucholska, J.; Hrynkiewicz, M. Common amino acid subsequences in a universal proteome-relevance for food science. Int. J. Mol. Sci. 2015, 16, 20748–20773. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, S.; Valcárcel, M. Analytical features in qualitative analysis. Trends Anal. Chem. 2005, 24, 477–487. [Google Scholar] [CrossRef]
- Vitale, G.A.; Scarpato, S.; Mangoni, A.; D’Auria, M.V.; Della Sala, G.; de Pascale, D. Enhanced molecular networking shows Microbacterium sp. V1 as a factory of antioxidant proline-rich peptides. Mar. Drugs 2023, 21, 256. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Higgins, D.G. Clustal omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 2014, 1079, 105–116. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [Green Version]
- Jelachich, M.L.; Cowan, E.P.; Turner, R.V.; Coligan, J.E.; Biddison, W.E. Analysis of the molecular basis of HLA-A3 recognition by cytotoxic T cells using defined mutants of the HLA-A3 molecule. J. Immunol. 1988, 141, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Madden, D.R.; Garboczi, D.N.; Wiley, D.C. The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2. Cell 1993, 75, 693–708. [Google Scholar] [CrossRef]
- Song, I.; Gil, A.; Mishra, R.; Ghersi, D.; Selin, L.K.; Stern, L.J. Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Nature Struct. Mol. Biol. 2017, 24, 395–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedeman, P.E. DPPIV inhibition: Promising therapy for the treatment of type 2 diabetes. Progr. Med. Chem. 2007, 45, 63–109. [Google Scholar] [CrossRef]
- Chalichem, N.S.S.; Kiran, P.S.S.; Basavan, D. Possible role of DPP4 inhibitors to promote hippocampal neurogenesis in Alzheimer’s disease. J. Drug Target. 2018, 26, 670–675. [Google Scholar] [CrossRef]
- Kawakita, E.; Koya, D.; Kanasaki, K. CD26/DPP-4: Type 2 diabetes drug target with potential influence on cancer biology. Cancers 2021, 13, 2191. [Google Scholar] [CrossRef]
- Schimmer, A.D.; Dalili, S.; Batey, R.A.; Riedl, S.J. Targeting XIAP for the treatment of malignancy. Cell Death Differ. 2006, 13, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Galbán, S.; Duckett, C.S. XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ. 2010, 17, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Abbas, R.; Larisch, S. Killing by degradation: Regulation of apoptosis by the ubiquitin-proteasome-system. Cells 2021, 10, 3465. [Google Scholar] [CrossRef]
- Beck, D.B.; Werner, A.; Kastner, D.L.; Aksentijevich, I. Disorders of ubiquitylation: Unchained inflammation. Nature Rev. Rheumatol. 2022, 18, 435–447. [Google Scholar] [CrossRef]
- Yanagida, K.; Shimizu, T. Lysophosphatidic acid, a simple phospholipid with myriad functions. Pharmacol. Therapeut. 2023, 246, 108421. [Google Scholar] [CrossRef] [PubMed]
- Hunter, T. Why nature chose phosphate to modify proteins. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2513–2516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamerlin, S.C.L.; Sharma, P.K.; Prasad, R.B.; Warshel, A. Why nature really chose phosphate. Q. Rev. Biophys. 2013, 46, 1–132. [Google Scholar] [CrossRef] [PubMed]
- Czegle, I.; Huang, C.; Soria, P.G.; Purkiss, D.W.; Shields, A.; Wappler-Guzzetta, E.A. The role of genetic mutations in mitochondrial-driven cancer growth in selected tumors: Breast and gynecological malignancies. Life 2023, 13, 996. [Google Scholar] [CrossRef]
- Zhu, J.W.; Charkhchi, P.; Adekunte, S.; Akbari, M.R. What is known about breast cancer in young women? Cancers 2023, 15, 1917. [Google Scholar] [CrossRef]
- Malter, J.S. Pin1 and Alzheimer’s disease. Transl. Res. 2023, 254, 24–33. [Google Scholar] [CrossRef]
- Caligiuri, I.; Vincenzo, C.; Asano, T.; Kumar, V.; Rizzolio, F. The metabolic crosstalk between PIN1 and the tumour microenvironment. Sem. Cancer Biol. 2023, 91, 143–157. [Google Scholar] [CrossRef]
- Prevete, N.; Liotti, F.; Marone, G.; Melillo, R.M.; De Paulis, A. Formyl peptide receptors at the interface of inflammation, angiogenesis and tumor growth. Pharmacol. Res. 2015, 102, 184–191. [Google Scholar] [CrossRef]
- Tourkochristou, E.; Mouzaki, A.; Triantos, C. Unveiling the biological role of sphingosine-1-phosphate receptor modulators in inflammatory bowel diseases. World J. Gastroenterol. 2023, 29, 110–125. [Google Scholar] [CrossRef]
- Dumitrescu, L.; Papathanasiou, A.; Coclitu, C.; Garjani, A.; Evangelou, N.; Constantinescu, C.S.; Popescu, B.O.; Tanasescu, R. An update on the use of sphingosine 1-phosphate receptor modulators for the treatment of relapsing multiple sclerosis. Expert Opin. Pharmacother. 2023, 24, 495–509. [Google Scholar] [CrossRef]
- Pan, G.; O’Rourke, K.; Chinnaiyan, A.M.; Gentz, R.; Ebner, R.; Ni, J.; Dixit, V.M. The receptor for the cytotoxic ligand TRAIL. Science 1997, 276, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Desler, C.; Lykke, A.; Rasmussen, L.J. The effect of mitochondrial dysfunction on cytosolic nucleotide metabolism. J. Nucl. Acids 2010, 2010, 701518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigidi, G.S.; Santyr, B.; Shimell, J.; Jovellar, B.; Bamji, S.X. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nature Commun. 2015, 6, 8200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haney, S.L.; Holstein, S.A. Targeting the isoprenoid biosynthetic pathway in multiple myeloma. Int. J. Mol. Sci. 2023, 24, 111. [Google Scholar] [CrossRef]
- Fatoki, T.H.; Aluko, R.E.; Udenigwe, C.C. In silico investigation of molecular targets, pharmacokinetics, and biological activities of chicken egg ovalbumin protein hydrolysates. J. Food Bioact. 2022, 17, 34–48. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Pliszka, M.; Mogut, D.; Darewicz, M. Characteristics of biopeptides released in silico from collagens using quantitative parameters. Foods 2020, 9, 965. [Google Scholar] [CrossRef]
- Fatoki, T.H.; Chukwuejim, S.; Udenigwe, C.C.; Aluko, R.E. In silico exploration of metabolically active peptides as potential therapeutic agents against amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2023, 24, 5828. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Hrynkiewicz, M. Food protein-originating peptides as tastants—Physiological, technological, sensory, and bioinformatic approaches. Food Res. Int. 2016, 89, 27–38. [Google Scholar] [CrossRef]
- Weimann, C.; Meisel, H.; Erhardt, G. Bovine kappa-casein variants result in different angiotensin I converting enzyme (ACE) inhibitory peptides. J. Dairy Sci. 2009, 92, 1885–1888. [Google Scholar] [CrossRef]
- Pauciullo, A.; Giambra, I.J.; Iannuzzi, L.; Erhardt, G. The β-casein in camels: Molecular characterization of the CSN2 gene, promoter analysis and genetic variability. Gene 2014, 547, 159–168. [Google Scholar] [CrossRef]
- Erhardt, G.; Shuiep, E.T.S.; Lisson, M.; Weimann, C.; Wang, Z.; El Zubeir, I.E.Y.M.; Pauciullo, A. Alpha S1-casein polymorphisms in camel (Camelus dromedarius) and descriptions of biological active peptides and allergenic epitopes. Tropic. Anim. Health Prod. 2016, 48, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Iwaniak, A.; Mogut, D.; Minkiewicz, P.; Żulewska, J.; Darewicz, M. Gouda cheese with modified content of β-casein as a source of peptides with ACE- and DPP-IV-inhibiting bioactivity: A study based on in silico and in vitro protocol. Int. J. Mol. Sci. 2021, 22, 2949. [Google Scholar] [CrossRef] [PubMed]
- Iwaniak, A.; Mogut, D.; Minkiewicz, P.; Żulewska, J.; Darewicz, M. An integrated approach to the analysis of antioxidative peptides derived from Gouda cheese with a modified β-casein content. Sci. Rep. 2022, 12, 13314. [Google Scholar] [CrossRef] [PubMed]
- Darewicz, M.; Borawska, J.; Pliszka, M. Carp proteins as a source of bioactive peptides—An in silico approach. Czech J. Food Sci. 2016, 34, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Borawska-Dziadkiewicz, J.; Darewicz, M.; Tarczyńska, A.S. Properties of peptides released from salmon and carp via simulated human-like gastrointestinal digestion described applying quantitative parameters. PLoS ONE 2021, 16, e0255969. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, D418–D427. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Mattison, C.P.; Darewicz, M. Quantitative in silico evaluation of allergenic proteins from Anacardium occidentale, Carya illinoinensis, Juglans regia and Pistacia vera and their epitopes as precursors of bioactive peptides. Curr. Issues Mol. Biol. 2022, 44, 3100–3117. [Google Scholar] [CrossRef]
- Bougatef, H.; de la Vega-Fernández, C.; Sila, A.; Bougatef, A.; Martínez-Alvarez, O. Identification of ACE I-inhibitory peptides released by the hydrolysis of tub gurnard (Chelidonichthys lucerna) skin proteins and the impact of their in silico gastrointestinal digestion. Mar. Drugs 2023, 21, 131. [Google Scholar] [CrossRef]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Shen, S.; Yang, Z.; Ji, X.; Wang, X.; Liao, X.; Zhang, Y. More simple, efficient and accurate food research promoted by intermolecular interaction approaches: A review. Food Chem. 2023, 416, 135726. [Google Scholar] [CrossRef]
- Siani, M.A.; Weininger, D.; Blaney, J.M. CHUCKLES: A method for representing and searching peptide and peptoid sequences on both monomer and atomic levels. J. Chem. Inf. Comput. Sci. 1994, 34, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. Annotation of peptide structures using SMILES and other chemical codes–practical solutions. Molecules 2017, 22, 2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | Symbol | ID in BIOPEP-UWM 1 Database | CID in PubChem 2 Database |
---|---|---|---|
Phosphoserine | <S[3*]> | 108 | 68,841 |
Phosphothreonine | <T[3*]> | 109 | 3,246,323 |
L-Pyroglutamic acid | <P[4O]> | 110 | 7405 |
Cysteine constituting disulfide bridges | <C> | 111 | 5862 |
Protein | Variant | I [%] 1 | Percentage of Activities in the Case of Which Modifications Affect the Value of Parameter A [%] 2,3 | Percentage of Activities in the Case of Which Modifications Affect the Value of Parameter AE [%] 3,4 |
---|---|---|---|---|
αs1-CN | A | 95.70 | 13.04 | 33.33 |
B | 95.98 | 12.50 | 33.33 | |
C | 95.98 | 12.50 | 33.33 | |
D | 95.48 | 12.50 | 33.33 | |
αs2-CN | A | 94.20 | 26.32 | 20.00 |
B | 94.69 | 22.22 | 20.00 | |
C | 94.20 | 26.32 | 20.00 | |
D | 95.45 | 26.32 | 20.00 | |
β-CN | A1 | 97.61 | 17.86 | 37.50 |
A2 | 97.61 | 16.13 | 44.44 | |
A3 | 97.61 | 16.13 | 44.44 | |
B | 97.61 | 16.13 | 44.44 | |
κ-CN | A | 97.63 | 17.39 | 12.50 |
B | 97.63 | 13.04 | 12.50 | |
B2 | 97.63 | 13.04 | 12.50 | |
C | 97.63 | 13.04 | 12.50 |
Peptide | Protein—Peptide Precursor | ACEi 1 | DPPIVi 2 | Antioxidative 3 | DPPIIIi 4 | α-Glui 5 | Others |
---|---|---|---|---|---|---|---|
IA | κ-CN A; B; B2; C | 7562 | 8525 | ||||
IE | β-CN A1; A2; A3; B κ-CN A; B; B2; C | 7827 | |||||
IG | αs1-CN A; B; C; D; αs2-CN A; B; C; β-CN A1; κ-CN B | 7595 | |||||
IH | αs1-CN A; B; C; D; β-CN A1; A2; A3; B | 8800 | 9497 | 8323 6 | |||
IL | κ-CN A; B; B2; C | 9079 | 8802 | ||||
IN | αs2-CN A; B; C; D; β-CN A1; A2; A3; B; κ-CN A; B; B2; C | 8804 | |||||
IP | κ-CN A; B; B2; C | 7581 | 8501 | ||||
IPY | αs2-CN A; B; C; D | 7803 | |||||
IQ | αs1-CN A; B; C; D; αs2-CN A; B; C; D; β-CN A1; A2; A3; B; κ-CN A; B; B2; C | 8805 | |||||
IR | κ-CN A; B; B2; C | 3258 | 8806 | 8215 | 8246 7; 8247 8 | ||
PA | κ-CN A; B; B2; C | 3179 | |||||
PE | αs1-CN A; B; C; D; β-CN A1; A2; A3; B | 9504 | 9694 | ||||
PF | αs1-CN A; B; C; D; β-CN A1; A2; A3; B | 8854 | 9505 | ||||
PG | β-CN A1; A2; A3; B | 7625 | 8855 | 2754 9; 3285 10; 3460 11 | |||
PH | β-CN A1; A2; A3; B; κ-CN A; B; B2; C | 7843 | 8856 | ||||
PK | αs1-CN A; B; C; D; αs2-CN A; B; C; D; β-CN A1; A2; A3; B | 8858 | |||||
PL | αs1-CN A; B; C; D; β-CN A1; A3; B | 7513 | 8638 | ||||
PM | αs1-CN A; B; C; D | 8859 | |||||
PPL | β-CN A1; | 7513 | |||||
PQ | αs1-CN A; B; C; D; αs2-CN A; B; C; D; β-CN A1; A2; A3; B | 7837 | 8861 | ||||
PSY | κ-CN A; B; B2 | 7559 | |||||
PT | αs2-CN A; B; C; D; κ-CN A; B; B2; C | 7833 | 8638 | ||||
PW | αs2-CN A; B; C; D | 8865 | 8190 | ||||
PY | κ-CN A; B; B2; C | 8866 | 9856 12 | ||||
SE | αs1-CN A; B; C; D; αs2-CN A; B; D | 8330 13 | |||||
SF | κ-CN A; B; B2; C | 7685 | 8891 | 9432 7 | |||
SG | αs1-CN C | 7618 | |||||
SK | αs1-CN A: B; C; D; αs2-CN A; B; C; D; β-CN A1; A2; A3; B | 8894 | |||||
SL | β-CN A1; A2; A3; B | 8560 | 9955 14 | ||||
SM | αs1-CN A; B; C; D | 9507 | |||||
ST | αs2-CN A; B; D; κ-CN A; B; B2; C | 9184 | |||||
SW | β-CN A1; A2; A3; B | 8896 | |||||
VA | αs1-CN B; C; D; αs2-CN A; B; C; D; κ-CN A; B; B2 | 3172 | |||||
VD | αs2-CN A; B; C | 8915 | |||||
VE | αs1-CN A; B: C; D; β-CN A1; A2; A3; B; κ-CN A; B; B2; C | 7829 | 8916 | 9693 | |||
VF | αs1-CN A; B; C; D; αs2-CN A; B; C; D | 3384 | 8917 | ||||
VK | αs2-CN A; B; D; β-CN A1; A2; B | 7558 | 8921 | ||||
VL | αs1-CN B; C; D; αs2-CN A; B; C; D; β-CN A1; A2; A3; B; κ-CN A; B; B2; C | 8922 | 8320 6 | ||||
VM | β-CN A1; A2; A3 | 9882 | 8923 | ||||
VN | αs1-CN A: B; C; D | 8924 | |||||
VP | αs2-CN A; B: C; D | 7587 | 3181 | ||||
VPL | αs1-CN A; B; C; D | 8347 | 3166 11; 3350 13 | ||||
VQ | β-CN A1; κ-CN A; B; B2; C | 8925 | |||||
VR | αs2-CN A; B: C; D; β-CN A1; A2; A3; B κ-CN B2; C | 7628 | 8594 | ||||
VT | κ-CN A; B; B2; C | 8927 | |||||
VY | αs2-CN A; B; C; D; β-CN A1; A2; B | 3492 | 8929 | 8224 | 9509 |
Peptide 1 | Protein—Peptide Precursor | Protein Whose Predicted Ligand Is a Peptide 2,3,4 |
---|---|---|
<P[4O]>E | κ-CN A; B; B2; C | HLA-A (UniProt: P04439; ChEMBL: CHEMBL2632); p = 0.0989 DPPIV (UniProt: P27487; ChEMBL: CHEMBL284); p = 0.0989 XIAP (UniProt: P98170; ChEMBL: CHEMBL4198); p = 0.0989 |
P<S[3*]>K | αs2-CN A; B; C; D | LPAR3 (UniProt: Q9UBY5; ChEMBL: CHEMBL3250); p = 0.1453 PLK1 (UniProt: P53350; ChEMBL: CHEMBL3024); p = 0.1133 LPAR1 (UniProt: Q92633; ChEMBL: CHEMBL3819); p = 0.1133 BRCA1 (UniProt: P38398; ChEMBL: CHEMBL5990); p = 0.1133 PIN1 (UniProt: Q13526; ChEMBL: CHEMBL2288); p = 0.1133 FPR2 (UniProt: P25090; ChEMBL: CHEMBL4227); p = 0.1133 S1PR5 (UniProt: Q9H228; ChEMBL: CHEMBL2274); p = 0.1133 S1PR2 (UniProt: O95136; ChEMBL: CHEMBL2955); p = 0.1133 HLA-A (UniProt: P04439; ChEMBL: CHEMBL2632); p = 0.1133 PRKCE (UniProt: Q02156; ChEMBL: CHEMBL3582); p = 0.1133 TNFRSF10A (UniProt: O00220; ChEMBL: CHEMBL3551); p = 0.1133 |
<S[3*]>A | αs1-CN A; B; C;α s2-CN A; B; C; D | S1PR5 (UniProt: Q9H228; ChEMBL: CHEMBL2274); p = 0.0604 S1PR2 (UniProt: O95136; ChEMBL: CHEMBL2955); p = 0.0604 S1PR3 (UniProt: Q99500; ChEMBL: CHEMBL3892); p = 0.0604 S1PR1 (UniProt: P21453; ChEMBL: CHEMBL4333); p = 0.0604 LPAR3 (UniProt: Q9UBY5; ChEMBL: CHEMBL3250); p = 0.0604 |
<S[3*]>G | κ-CN A; B2; C | S1PR (UniProt: Q9H228; ChEMBL: CHEMBL2274); p = 0.0429 S1PR2 (UniProt: O95136; ChEMBL: CHEMBL2955); p = 0.0429 S1PR3 (UniProt: Q99500; ChEMBL: CHEMBL3892); p = 0.0429 S1PR1 (UniProt: P21453; ChEMBL: CHEMBL4333); p = 0.0429 LPAR3 (UniProt: Q9UBY5; ChEMBL: CHEMBL3250); p = 0.0429 |
<S[3*]>E | αs1-CN A; B; C; D; β-CN A1; A2; A3; B | LPAR3 (UniProt: Q9UBY5; ChEMBL: CHEMBL3250); p = 0.1006 S1PR5 (UniProt: Q9H228; ChEMBL: CHEMBL2274); p = 0.1006 S1PR2 (UniProt: O95136; ChEMBL: CHEMBL2955); p = 0.1006 S1PR3 (UniProt: Q99500; ChEMBL: CHEMBL3892); p = 0.1006 S1PR1 (UniProt: P21453; ChEMBL: CHEMBL4333); p = 0.1006 HLA-A (UniProt: P04439; ChEMBL: CHEMBL2632); p = 0.1006 |
<S[3*]>L | β-CN A1; A2; A3; B | LPAR3 (UniProt: Q9UBY5; ChEMBL: CHEMBL3250); p = 0.1120 S1PR5 (UniProt: Q9H228; ChEMBL: CHEMBL2274); p = 0.1120 S1PR2 (UniProt: O95136; ChEMBL: CHEMBL2955); p = 0.1120 S1PR3 (UniProt: Q99500; ChEMBL: CHEMBL3892); p = 0.1120 S1PR1 (UniProt: P21453; ChEMBL: CHEMBL4333); p = 0.1120 TK1 (UniProt: P04183; ChEMBL: CHEMBL2883); p = 0.1120 |
<S[3*]><S[3*]>E | αs2-CN B | LPAR3 (UniProt: Q9UBY5; ChEMBL: CHEMBL3250); p = 0.1062 PLK1 (UniProt: P53350; ChEMBL: CHEMBL3024); p = 0.1062 BRCA1 (UniProt: P38398; ChEMBL: CHEMBL5990); p = 0.1062 HLA-A (UniProt: P04439; ChEMBL: CHEMBL2632); p = 0.1062 LPAR1 (UniProt: Q92633; ChEMBL: CHEMBL3819); p = 0.1062 DLG4 (UniProt: P78352; ChEMBL: CHEMBL5666); p = 0.1062 PIN1 (UniProt: Q13526; ChEMBL: CHEMBL2288); p = 0.1062 |
<S[3*]>T | αs1-CN A; B; C; D; αs2-CN A; B; C; D | LPAR3 (UniProt: Q9UBY5; ChEMBL: CHEMBL3250); p = 0.0536 S1PR5 (UniProt: Q9H228; ChEMBL: CHEMBL2274); p = 0.0536 S1PR2 (UniProt: O95136; ChEMBL: CHEMBL2955); p = 0.0536 S1PR3 (UniProt: Q99500; ChEMBL: CHEMBL3892); p = 0.0536 S1PR1 (UniProt: P21453; ChEMBL: CHEMBL4333); p = 0.0536 |
<T[3*]>M | αs1-CN D | FNTA; FNTB (UniProt: P49354; P49356; ChEMBL: CHEMBL2094108); p = 0.1006 TK1 (UniProt: P04183; ChEMBL: CHEMBL2883); p = 0.1006 FDPS (UniProt: P14324; ChEMBL: CHEMBL1782); p = 0.1006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minkiewicz, P.; Darewicz, M.; Iwaniak, A. In Silico Analysis of Individual Fractions of Bovine Casein as Precursors of Bioactive Peptides—Influence of Post-Translational Modifications. Appl. Sci. 2023, 13, 8091. https://doi.org/10.3390/app13148091
Minkiewicz P, Darewicz M, Iwaniak A. In Silico Analysis of Individual Fractions of Bovine Casein as Precursors of Bioactive Peptides—Influence of Post-Translational Modifications. Applied Sciences. 2023; 13(14):8091. https://doi.org/10.3390/app13148091
Chicago/Turabian StyleMinkiewicz, Piotr, Małgorzata Darewicz, and Anna Iwaniak. 2023. "In Silico Analysis of Individual Fractions of Bovine Casein as Precursors of Bioactive Peptides—Influence of Post-Translational Modifications" Applied Sciences 13, no. 14: 8091. https://doi.org/10.3390/app13148091
APA StyleMinkiewicz, P., Darewicz, M., & Iwaniak, A. (2023). In Silico Analysis of Individual Fractions of Bovine Casein as Precursors of Bioactive Peptides—Influence of Post-Translational Modifications. Applied Sciences, 13(14), 8091. https://doi.org/10.3390/app13148091