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Featured Application: Fast pitch detection algorithm for the real-time estimation of the funda-
mental frequency, optimized for hardware implementation.

Abstract: This paper presents a novel, high-speed, and low-complexity algorithm for pitch (F0)
detection, along with a new dataset for testing and a comparison of some of the most effective
existing techniques. The algorithm, called OneBitPitch (OBP), is based on a modified autocorrelation
function applied to a single-bit signal for fast computation. The focus is explicitly on speed for
real-time pitch detection applications in pitch detection. A testing procedure is proposed using a
proprietary synthetic dataset (SYNTHPITCH) against three of the most widely used algorithms: YIN,
SWIPE (Sawtooth Inspired Pitch Estimator) and NLS (Nonlinear-Least Squares-based). The results
show how OBP is 9 times faster than the fastest of its alternatives, and 50 times faster than a gold
standard like SWIPE, with a mean elapsed time of 4.6 ms, or 0.046 × realtime. OBP is slightly less
accurate for high-precision landmarks and noisy signals, but its performance in terms of acceptable
error (<2%) is comparable to YIN and SWIPE. NLS emerges as the most accurate, but it is not flexible,
being dependent on the input and requiring prior setup. OBP shows to be robust to octave errors
while providing acceptable accuracies at ultra-high speeds, with a building nature suited for FPGA
(Field-Programmable Gate Array) implementations.

Keywords: pitch detection; F0; algorithm; auto-tune; audio signal processing

1. Introduction

A signal is defined as periodic when the same sequence of values re-occurs after a
fixed amount of time, defined as a period, whose inverse is the frequency. By Fourier’s
principles, a real-world signal can be described as a sum of sinusoids (or “pure tones”) that
only carry one frequency [1]. The fundamental frequency, or F0, is defined as the lowest
frequency describing a periodic component of a signal. In the audio domain, F0 is defined
as the pitch, which in music is translated to a specific note.

Detecting the F0 of a signal is a crucial application in many fields, with audio, music,
and speech processing being heavily reliant on pitch-detection-based technologies, as well
as other fields such as fault detection of moving parts, which are related to their resonance
frequency [2], or sonar systems for target detection, classification and localization [3]. More-
over, pitch detection can also be employed in the characterization of accurate sinusoidal
voltages, as described by Krajewski et al. [4].

The problem of pitch detection is crucial in all the applications that rely on knowing
the fundamental frequency in order to perform periodicity-related computations, such
as acoustic feature extraction relying on prosodic metrics such as HNR, jitter or shimmer
that evaluate “cycle-to-cycle” variations [5]. Moreover, professional audio relies on pitch
detection to build tuners for real instruments, or for real-time pitch re-adjusting applications
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especially directed toward vocal tuning. Real-time detectors are thus necessary to enable
performers to monitor pitch accuracy and trigger events in real time, especially related to
MIDI applications [6]. Additionally, fast, real-time pitch detection is valuable in interactive
audio applications, such as games and virtual reality, where it enables dynamic audio
synthesis and effects as well as responsive processing.

The two main characteristics of pitch detection algorithms are speed and accuracy,
which often imply a trade-off depending on the specific application—for example, posterior
analyses do not need real-time F0 estimation, as opposed to live music [6].

With the diffusion of technologies such as “Autotune” for real-time pitch correction in
singers [7], and with the widespread use of MIDI instruments and/or live MIDI transform-
ers to digitalize acoustic instruments, real-time pitch detection sees a crucial application in
the music industry. Especially for MIDI purposes where a sound needs to be translated
into a discrete note, speed is favored over accuracy due to the need for low-latency live
solutions, and thanks to the fact that the detected frequency is discretized into a note of the
tempered system allowing for a certain range for errors. The problem of detecting the fun-
damental frequency in real time is crucial whenever live performances are involved, as even
minuscule latencies of a few milliseconds can be perceived by the musician or operator.

In speech analysis, F0 carries a crucial role as a biometric feature for characterizing
voice impairment, up to singlehandedly being used for pre-diagnostic purposes, where
F0-related features and their variations are used for the detection of respiratory [8], phona-
tory [9,10] or neurodegenerative diseases [11–13].

Given the multifaceted applications and different industry needs, the state of the art
of pitch detection depends on the application.

From the mathematical point of view, although an ever-growing plethora of algorithms
are being developed, the vast majority can be generally categorized into three approaches:
time-based, frequency or Cepstrum-based, full heuristic. Time domain approaches are gen-
erally based on the mathematical principles behind autocorrelation, which inherently has
peaks every time a signal repeats (maximum correlation with itself): the problem of pitch
detection is thus translated into the problem of finding the maximum of the autocorrelation
function. Frequency domain algorithms are based on Fourier domain or cepstral analysis,
with the Harmonic Product Spectrum (HPS) [14] as a notable example: it computes the
product of the power spectra of a signal and its downsampled versions to emphasize
harmonic components. The fundamental frequency is then estimated by identifying peaks
in the resulting spectrum. In recent years, the research trend was predominantly based on
Deep Learning methods based on Convolutional Neural Networks (CNN) [15], which offer
the advantages of being able to control the size of the computational net and also to specif-
ically train on suitable data, since the problem of pitch detection is data-dependent [16].
However, CNN-based methods are not easily generalizable, and require data and especially
time for training time before they are usable in their “inference” form—which usually
brings high accuracies but slightly less optimal speed [17].

The prior definition of the latency/complexity of a pitch detection algorithm is hard
to determine, since each algorithm and performance inherently depends on the acoustic
and digital nature of the data—such as the number of bits for quantization.

Theoretically, HPS-based methodologies yield a complexity of O(NlogN), and straight-
forward autocorrelation is at O(N2), whereas FFT-based autocorrelation is O(NlogN) yet
again, being comparable to HPS. The Fast Fourier Transform (FFT) algorithm is used to
speed up the computation of autocorrelation. By leveraging the symmetry properties in
the autocorrelation function, the complexity of FFT-based autocorrelation is reduced. The
process involves padding the input signal to the nearest power of 2, computing the FFT
of the padded signal, squaring the magnitude of each frequency bin to obtain the power
spectrum, computing the inverse FFT of the power spectrum and normalizing the result by
dividing it by the length of the input signal.

After a rough estimate of F0, many algorithms have to rely on some corrective heuris-
tics to fine-tune the result and/or avoid octave errors. Common signal processing solutions
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may be employed for this purpose as well, with notable results such as the work by
Khadem-hosseini et al. [18] employing HPS and Euclidean summation. However, although
this results in improved accuracy, it is an inherently computationally expensive mean,
and real-time pitch detectors might choose to avoid relying on correctors—this is also the
approach that we chose in the present paper.

Due to the inherent harmonic nature of most real-world sound signals, especially
when dealing with speech or music analysis, octave errors are a common criticality among
pitch detection algorithms, being triggered by the eventual presence of strong first- or
second-order harmonics and, partially, by aliasing.

Two of the most widely used algorithms, SWIPE [19] and YIN [20], which will be
detailed later in Section 2, are based on autocorrelation. More algorithms are listed in the
works by Camacho and Harris [19] and Ruslan et al. [1].

Attempts at fast pitch detectors are based on the simplification of the transformation
procedures, such as the work by Grinewitschus et al. [21], which leverages the constant-Q
Gabor transform for a threshold-based approach within a four-dimensional logarithmic
harmonic spectrum shift. A work by Mnasri et al. [22] aims to avoid short-time analysis
and thus the underlying approximations about local stationarity by employing the Hilbert
transform to derive “instantaneous” frequency components to contour F0: the performances
might be comparable to YIN or SWIPE, but no indication on speed is given.

In general, the problem of real-time, high-speed pitch detection has to be faced with
the development of a computationally light algorithm that still retains a relative error
suitable for the required application (mainly professional audio and live performances).

The scope of this paper is to propose a novel, high-speed implementation of a pitch
detection algorithm based on a modified version of the autocorrelation, and to assess the
performances of the most highly regarded algorithms in terms of speed and accuracy, on a
suitable dataset purposefully built as a test bench.

For the purposes of testing pitch detection algorithms on sheer speed or recognition
capabilities, a custom dataset named SYNTHPITCH was built by producing synthetic
signals so that the original pitch/F0 is objective and priorly known.

Other algorithms such as YAAPT [23], SHRP [24] or the CREPE [25] CNN approach
have been experimented with, but their preliminary results were not notable with respect to
the others considered, especially for the speed vs. accuracy tradeoff. With speed being the
main characteristic to search for, non-notable algorithms that provide high accuracies but
poor speed have not been included in the present assessment although experimentations
were made on them in order to rule them out, and synthetic signals are employed to
evaluate the sheer computational complexity, while not forgoing the ability to infer pitch.

The main contributions of this paper lie in the presentation of a novel pitch detection
algorithm, based on a partially unexplored approach focused on high-speed and low bit
depth, very suitable for hardware implementations. All of these characteristics make it
a good candidate for live performance applications or MIDI instruments, which rely on
real-time note detection. The mathematical and signal processing theories behind our novel
algorithm explore the characteristics of the autocorrelation function, its maximization and
its approximations, as well as the effect of quantization on the fundamental frequency of
a signal.

Along with the new algorithm, a testing paradigm for evaluating the speed and com-
putational complexity of pitch detection algorithms is proposed, and a custom, synthetic
dataset is produced and made available to the public. State-of-the-art, pre-existing pitch de-
tection algorithms, especially those focusing on speed, are thoroughly explored and tested.
The article is organized as follows. Section 2 presents the OneBitPitch algorithm along with
its mathematical discussion, theoretical derivation and implementation, as well as three
other algorithms (YIN, NLS, SWIPE) used for comparison and the custom SYNTHPITCH
dataset produced and used in this paper. Section 3 presents the numerical results obtained
from the simulations, as well as a statistical analysis. Then, Section 4 provides an in-depth
discussion of the obtained results, especially focusing on real-time implementation and
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runtime speed, which are the main focuses of the analyses. The strengths and weaknesses
of every algorithm are analyzed along with practical situations where each algorithm is
best suited. Limitations and future works, especially regarding hardware solutions, are
presented at the end of the Discussion and before the Conclusions.

2. Materials and Methods

This paper proposes a novel pitch detection algorithm called OneBitPitch, in short,
OBP, based on a modified autocorrelation function applied to a one-bit version of the
original signal, for maximum speed and hardware implementation capabilities. In order
to evaluate the performance of the OneBitPitch algorithm, a custom synthetic dataset
(SYNTHPITCH) was built and 4 different algorithms were compared on it.

The choice of the algorithms was based on well-known, state-of-the-art pitch estima-
tors especially directed toward high speed or high accuracy. The main focus is the sheer
algorithmic performance, although it is well known that the effectiveness of any pitch
detection model is inherently dependent on the dataset and purpose (i.e., pure signals,
voice data, etc.).

This section first presents the public dataset built for the purpose of this study, then
details the OBP algorithm along with its mathematical basis and briefly presents the three
algorithms used for comparison: YIN, SWIPE and NLS.

2.1. SYNTHPITCH Dataset

The SYNTHPITCH dataset was purposefully built for the scope of the analyses pre-
sented in this work, i.e., for testing pitch detection algorithms on arbitrarily complex signals
in terms of fundamental frequency intelligibility, and to evaluate their computational com-
plexity/speed.

All signals were sampled at 96 ksps and represented in floating points. A typical audio
setup was reproduced, so a 20 kHz low-pass filter was applied. Twelve different categories
are present, with each one encompassing 99 signals with increasing fundamental frequency,
starting from 100 Hz up to 5000 Hz with a 50 Hz step size.

The categories were built with increasing pitch complexity, the simplest one being pure
sine waves, to which multiple artifacts have been applied to generate sounds of increasing
complexity. There are also two categories encompassing square waves; the amplitude of
each starting wave is normalized to have a peak of 1. Table 1 details the characteristics of
each category and its name, as well as the number of artifacts applied, with the following
macroscopic characteristics:

• Harmonics: Addition of a number of harmonic frequencies, i.e., integer multiples of F0.
The amplitude of each harmonic is a random number between 0 and 1, sampled from
the Gaussian distribution, and eventually re-scaled if more/less amplitude is needed;

• Partials: Addition of non-integer, random multiples of F0, with random starting
amplitude linearly scaled according to the order, and random phase. The following
formula explains the construction of an i-th order partial, with Ai, fi and ϕi being
random amplitude (scaled according to the order), random frequency obtained by
multiplying F0 by a random number between 0 and 1 (scaled according to the order)
and random phase. All random quantities are obtained by sampling a Gaussian
distribution with max = 1, and the formula is as follows:

Partiali(t) =
Ai
i
·sin(2πi fit + ϕi); (1)

• White Gaussian Noise: Addition of white Gaussian noise of a given SNR, after mea-
suring the power of the signal with added harmonics/partials;

• Reverb: Addition of a reverberated copy of the signal with amplitude equal to 0.1 of
the measured amplitude of the starting signal.
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Table 1. Name and description of the signal categories making up the SYNTHPITCH dataset. The
order is alphabetical.

Name Description

2harm Pure sine waves plus the first two harmonics with random amplitude between 0 and 1

2harm_wgn15 Pure sine waves plus 2 harmonics (random amplitude between 0 and 1) plus white Gaussian noise
with SNR = 15

4harm Pure sine waves plus 4 harmonics with random amplitude between 0 and 1

4harm_4part_wgn15 Pure sine waves plus 4 harmonics (random amplitude between 0 and 1) and 4 partials (linearly
decreasing amplitude)

4harm_high Pure sine waves plus 4 harmonics with random amplitude between 0 and 3

4harm_wgn15 Pure sine waves plus 4 harmonics with random amplitude between 0 and 1 plus white Gaussian
noise with SNR = 15

full1 Pure sine waves plus 10 harmonics (random amplitude between 0 and 2) and 10 partials (maximum
amplitude = 2), plus white Gaussian noise with SNR = 1 and reverb (0.1 RMS)

full2 Pure sine waves plus 10 harmonics (random amplitude between 0 and 2) and 10 partials (maximum
amplitude = 2), plus white Gaussian noise with SNR = 10 and reverb (0.1 RMS)

pure Pure sine waves
pure_wgn0P3 Pure sine waves plus white Gaussian noise with SNR = 0.3
square_pure Square waves

square_wgn10 Square waves plus white Gaussian noise with SNR = 10

Figure 1 details some examples of signals found on the SYNTHPITCH dataset; notice
how, with complex/dirty signals such as those present in the “full1” category, pitch and
sinusoidal behavior become very hard to infer. The dataset is free to use for the public.
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Figure 1. Sample signals from the SYNTHPITCH dataset (F0 = 100 Hz): (a) “2harm” sample (blue);
(b) “4harm_high” sample (red); (c) “full1” sample (black); (d) “square_wgn10” sample (green).

2.2. OneBitPitch Algorithm

The algorithm proposed in this paper is aimed at ultra-fast pitch detection, for real-
time usage, and was developed as a starting point for future hardware implementation and
for heavy-duty, latency-free live use.
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With these premises, our proposed algorithm aims to reduce the computational com-
plexity to its bare minimum, sacrificing accuracy while still staying in acceptable territories,
to provide the highest possible speed performances.

The OneBitPitch (OBP for short) algorithm exploits a modified version of the autocorre-
lation in time approach highly optimized for execution time and computational complexity.

The basic idea is that reducing the resolution of a signal, i.e., the number of quantiza-
tion bits, worsens the signal but retains its periodicity. Taking this idea to its limit, we can
state the following:

Proposition 1. Let x be a digital signal modeled as a zero-average periodic sequence quantized with
N bits and with F0 being its fundamental frequency. Re-quantizing x with M < N bits, the original
F0 is preserved in the re-quantized signal.

This can be easily proven by considering that, for a periodic signal in which F0 is the
reciprocal of a period T0, the time duration of such a period does not change with truncation
(re-quantization), although the exact timeframe can be anticipated/delayed according to
rounding conventions [26–28]. With the assumption of no aliasing (anti-aliasing has been
performed priorly), this holds true for any amount of bits, up to the minimum limit of
1-bit quantization, which basically results in the sign function. Although discretizing
the amplitudes might indeed insert artifacts that generate new periodicities, the original
frequency that acted as a fundamental is ultimately preserved. No matter how coarsely
quantized, a sequence will still be repeating itself regardless of the discretization steps.
Figure 2 explains this by showing an infinite precision signal, a down-quantized version
and a “sign” signal quantized with 1 bit. With the period starting at 0, it can be shown
that all signals re-start at the exact same moment, despite the quantization error being
increasingly high.
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The mathematical principles for pitch detection are based on the intuition that the
maximum of the autocorrelation [29] of a signal is when such a signal repeats itself, i.e., at
its fundamental frequency.

The common definition for the autocorrelation of a signal x is [30]:

rxx(l) =
1
N
·

N

∑
k=1

x(k)x(k + l) (2)



Appl. Sci. 2023, 13, 8191 7 of 20

With l being the “lag” (progressive shift of a signal to have it slide on the other), N
is the length of the signal in terms of the number of samples, and k is the discrete time
(number of samples).

Implementing a full autocorrelation function has some drawbacks: it is relatively
computationally expensive due to the need for reiterated multiplications, leading to a
complexity of O(N2), and further normalization is required because the output is heav-
ily dependent on the magnitude of the input signal and its variations, which skew the
autocorrelation [20].

However, for a periodic signal, which can be defined as x(k), which repeats after a
period of T samples, so that x(k) = x(k + T), a “difference function” can be defined so that
its minimum corresponds to the period. The formula, expressed in terms of the lag l as
the independent variable (in a digital sequence simply refers to the sample number), is
the following:

dxx(l) =
N

∑
k=1
|x(k)− x(k + l)| (3)

with l being the lag (sample), and N is the length of the signal x in samples. This formula will
be referred to, for simplicity, as “modified autocorrelation”, with the basic idea that instead
of searching for the maximum of the product like pitch detection algorithms employing
“usual” autocorrelation, we can search for the minimum of the difference. Moreover, this
function is inherently independent of the input amplitude and its variations [31].

Figure 3 displays an example comparing the autocorrelation and the difference func-
tion (“modified autocorrelation”), showing how the maxima of the first roughly correspond
to the minima of the latter.
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The operation to make the sum independent from negative values can be the square,
as implemented by de Cheveignè and Kawahara [20], or the absolute, as we chose. In
our specific case, this actually becomes irrelevant due to the 1-bit quantization, which
essentially renders this formula into an XOR operation, which is inherently optimized for
hardware implementations and parallelization.

However, for more than 1-bit quantization, the absolute is still more efficient, especially
for FPGA implementations, because it can essentially be realized with a multiplexer for the
MSB and a conditioned re-assign of the sign.
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From the O(N2) computational complexity of the normal autocorrelation function, a
single-bit XOR implementing the difference autocorrelation yields a theoretical constant
complexity of O(1), being essentially a binary addiction without carry [32,33].

The idea behind the OBP algorithm is thus to apply an optimized autocorrelation-
based pitch detection to a 1-bit version of the original signal, which drastically decreases
computation complexity, especially considering that common bit depths employ 16 to 64
bits. Within this picture, Kawecka and Podahjecki explored the probabilistic properties of
quantizers [34]. The operation of using 1 bit is logically equal to the “sign” operation. In
the most common digital representations (two’s complement, floating-point IEEE-754 [35],
sign/magnitude [36]), the MSB (most significant bit) is used as the sign and thus a sim-
ple truncation of the original sequence is required—this could also be performed in the
hardware domain for maximum speed.

The building blocks of the OBP algorithm are represented in Figure 4 and described
as follows:

• Input: The input signal is assumed to be limited in band, with no DC components,
which can be obtained before ever entering the digital realm by analog filtering; this
also guarantees the zero average.

• Sign: From the original signal, only the sign is extracted; in any common digital
environment, this is obtained by just retaining the MSB. For different kinds of repre-
sentation, a comparator would be required.

• Buffer: It is needed to store a fixed amount of the previous samples of the signal and
its length is related to the minimum frequency that needs to be detected (Fmin). With
Fs being the sampling rate, a buffer length of Fs/Fmin samples is required.

• Modified autocorrelation: The difference autocorrelation previously defined is applied
to the sign signal within the buffer. Instead of performing a circular correlation, like
other algorithms (namely, YIN), a linear correlation is applied on a total frame length
of one buffer and a half to avoid phase jumps. For periodic signals, autocorrelation
tends to rise and fall from/to the minimum symmetrically: for this reason, the center
of the minimum is to be considered to evaluate the period.

• Threshold: The search for the minimum of the difference autocorrelation function
is simply performed by thresholding the signal with a fixed threshold. This can be
visualized with a “Thresholding” logical signal that is 1 only when the autocorrelation
is under the threshold. Although more sophisticated methods can be implemented,
such a naïve implementation is computationally efficient and has been empirically
observed to be a good trade-off between accuracy and speed.

• Output: As previously stated, the very minimum point is the center of the sections
below the thresholds, which is equal to a logical 1 in the “Thresholding” signal. The
frequency result is simply obtained by counting the number of samples between
two minima.
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2.3. YIN Algorithm

The YIN algorithm [20] is an autocorrelation-based pitch estimator allegedly bringing
high speed and good accuracy with few parameters to tune. It utilizes a modified auto-
correlation difference function called Cumulative Mean Normalized Difference Function,
used iteratively to avoid zero lag and to normalize the difference function with respect to
large lags. Parabolic interpolation is then employed to obtain sub-sampling resolutions. In
order to reduce octave errors and optimize the result, the search for the pitch candidate is
aided by a heuristic based on range reduction. As for many algorithms, additional tuning
possibilities are forecasted for unclean signals (i.e., presence of additive noise or additive
frequencies/harmonics), such as comb filtering.

2.4. SWIPE (Sawtooth-Inspired Pitch Estimator) Algorithm

SWIPE was developed by Camacho and Harris [19]. It consists of measuring the
average distance between valleys and peaks on the spectrum, at harmonics of the pitch.
After the first estimation, SWIPE tries to refine the output by exploiting a variable window
size and evaluating the best pitch candidate.

The pitch is estimated by comparing the spectrum of the signal to the sawtooth
waveform whose spectrum is most similar. This is achieved by calculating a normalized
inner product between the signal spectrum and a modified cosine. The analysis window
size is adjusted to align the main lobes of the spectrum with the positive lobes of the cosine
and parabolic interpolation is employed for added accuracy. SWIPE’ (or SWIPE prime or
SWIPEP) is a variant of SWIPE built to minimize subharmonic errors, which the original
algorithm was prone to, by only employing the first harmonic and the prime ones. It is
the most widespread version, present in advanced libraries such as Tsanas’ Voice Analysis
Toolbox [37], and will thus be the one used in this paper.

2.5. NLS (Nonlinear Least Squares) Algorithm

The Nonlinear Least Squares (NLS) principle is based on a statistical Maximum
Likelihood (ML) candidate research [38,39]. This class of algorithms can theoretically
achieve the highest degree of accuracy, especially on discretized pitches, at the cost of
greater computational complexity.

The algorithm proceeds by iteratively minimizing the cost function for the estimation error.
The algorithm starts by selecting a range of pitch candidates that cover the expected

range of the fundamental frequency: this operation requires a prior setup of the algorithm,
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which adds latency before being usable. For each candidate, a synthesized signal is gen-
erated with harmonics or sinusoids at that pitch frequency. The objective is to find the
pitch candidate that best matches the observed signal by minimizing the sum of squared
differences between the observed and synthesized signals. Optimization techniques like
gradient descent are used to update the pitch candidates iteratively until convergence.
Finally, the pitch candidate with the minimum objective function value is selected as the
estimated fundamental frequency or pitch of the signal.

The NLS algorithm is known for its ability to handle complex harmonic structures,
variable pitch signals, and noisy environments. It is particularly effective when the signal
contains multiple overlapping or interfering harmonic components.

For the purpose of this study, a fast implementation of an NLS-based algorithm by
Wang et al. [40] is employed, shown to reduce the complexity by solving two Toeplitz-plus-
Hankel systems of equations and using the recursive-in-order matrix structures.

2.6. Test Conditions

All the algorithms were tested on the same set of signals from the SYNTHPITCH
dataset. The sampling rate was 96 KHz, the considered duration of the signals was 100 ms
(9600 samples) and the frequency limits for algorithms that require it (e.g., YIN needs to
set the minimum detectable frequency) were between 50 and 5000 Hz, in order to also
observe eventual subharmonic errors on even the lowest of the frequencies in the dataset
(which is 100 Hz). This resulted in buffer lengths of Fs/Fmin = 1920 samples. The following
hyperparameters and setup were employed for each algorithm under test:

• OBP: Our algorithm is used with a fixed threshold at 400. Tuning the threshold,
predictably, allows us to adapt to different input classes or characteristics.

• YIN: The resolution for the parabolic interpolation is 1 cent, the fixed threshold is
at 0.1.

• SWIPE: The resolution for the parabolic interpolation is 1 cent, the harmonics con-
sidered are only the first and the prime ones (making it SWIPEP), the timeframe is
at 10 ms and the final result is the mean of the tracked frequencies. Using a bigger
or smaller timeframe does not sensibly change the elapsed time due to the inherent
nature of SWIPE and it being reliant on generating sawtooth waves.

• NLS: An NLS-based model is generated from a synth sample having a number of
harmonics equal to 4. Increasing the number of harmonics, in the case of the present
study, leads to sensibly higher elapsed times while not improving accuracy. The
time needed to generate the model, i.e., the unavoidable latency at the beginning,
is on average around 40 ms. For simplicity and uniformity, this latency will not be
considered when discussing elapsed times, with the assumption that in a real-world
scenario, the model is pre-made. However, this is a small disadvantage.

The test involves running all of the algorithms on each signal (duration = 100 ms) in
each category of the SYNTHPITCH dataset. The main metrics are time elapsed in seconds
(TE) and relative absolute error (RAE) computed by comparing the estimated frequency
with the known F0 of each signal according to the following formula:

RAE =

∣∣∣∣yE − y
y

∣∣∣∣ (4)

with yE being the estimated value and y being the real/target one.
Both the RAE and the TE are averaged for each category. Due to the real-world

applications of pitch detection algorithms, and also taking into account the fact that real-
world signals might not present a discrete F0, the accuracy within a certain range is also
presented. Specifically, the ranges 1%, 2% and 10% of the true F0 are considered, producing
the metrics ACC-1, ACC-2 and ACC-10. These accuracies are presented as averages over
categories as well.
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The ranges were chosen empirically, with 2% being a truly “acceptable” error in most
music/MIDI-related applications, and with 10% ruling out octave errors, which inherently
produce 100% or above errors. Acceptable RAE values can be approximately below 0.025,
because most musical applications use discretized pitches that do not result in note errors
if within a range < 2.5% around the starting pitch. We chose 2% as a safety measure: this
range is well represented by the “ACC-2” metric, which is the percentage of instances
in which the algorithm brings an error equal to or lower than 2%. Section 4 will further
detail this.

In order to assess the statistical validity of the results, a Mann–Whitney U-test was
performed on each table reporting RAE, TE and ACC metrics within the results [41]. With
OBP as the main algorithm under test, U, Pearson’s p (or “rho”) and the z-score were derived
for each one-vs.-one comparison, with p < 0.05 used as the significant threshold [42].

3. Results

Tables 2 and 3 show the performances of each algorithm in terms of time elapsed
(TE) and relative absolute error (RAE). Tables 4–6 detail the accuracy with acceptance
rates of 1% (ACC-1), 2% (ACC-2) and 10% (ACC-10). Table 7 presents the results of the
statistical analysis.

Table 2. RAE (relative absolute error) of each algorithm averaged over each category of the SYNT-
PITCH dataset, along with the mean for each algorithm over the whole dataset.

RAE (Average)

Dataset Category
Algorithm

YIN SWIPE NLS OBP

2harm 0.003157 0.002998 0.000000 0.013210
2harm_wgn15 0.003071 0.002738 0.000000 0.014091

4harm 0.001324 0.002568 0.000000 0.052182
4harm_4part_wgn15 0.420658 0.304243 0.000000 0.154955

4harm_high 0.005729 0.004558 0.069865 0.985475
4harm_wgn15 0.001185 0.002136 0.000000 0.014095

full1 0.396471 0.252746 0.473064 0.201402
full2 0.254010 0.210246 0.483956 0.369483
pure 0.007338 0.004879 0.000000 0.013462

pure_wgn0P3 0.008713 0.019694 0.000000 0.012983
square_pure 0.334296 0.011628 0.000000 0.013462

square_wgn10 0.262356 0.013746 0.000000 0.013683

MEAN 0.141526 0.069348 0.085574 0.154873

Table 3. TE (time elapsed) in seconds for each algorithm averaged over each category of the SYNT-
PITCH dataset, along with the mean for each algorithm over the whole dataset.

Time Elapsed (TE, Average)

Dataset Category
Algorithm

YIN SWIPE NLS OBP

2harm 0.040090 0.266015 0.025799 0.004731
2harm_wgn15 0.033833 0.248275 0.025342 0.005095

4harm 0.033381 0.251229 0.026266 0.004853
4harm_4part_wgn15 0.033516 0.253206 0.025506 0.004677

4harm_high 0.035921 0.245899 0.025181 0.004831
4harm_wgn15 0.035036 0.271767 0.025841 0.005500

full1 0.036627 0.267752 0.031347 0.004833
full2 0.035664 0.254639 0.024700 0.004661
pure 0.035881 0.247622 0.025245 0.005238

pure_wgn0P3 0.035488 0.248970 0.025257 0.004766
square_pure 0.035509 0.246896 0.024810 0.004741

square_wgn10 0.035650 0.246456 0.028136 0.004685

MEAN 0.035550 0.254061 0.026119 0.004884
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Table 4. ACC-1: percentage of the times each algorithm has provided an estimated frequency that
brings RAE < 0.01. Averaged over each category of the SYNTHPITCH dataset, along with the mean
for each algorithm over the whole dataset.

ACC-1

Dataset Category
Algorithm

YIN SWIPE NLS OBP

2harm 0.949495 0.989899 1.000000 0.474747
2harm_wgn15 0.969697 0.979798 1.000000 0.393939

4harm 0.989899 0.989899 1.000000 0.434343
4harm_4part_wgn15 0.414141 0.242424 1.000000 0.303030

4harm_high 0.989899 0.989899 0.939394 0.303030
4harm_wgn15 1.000000 0.989899 1.000000 0.424242

full1 0.434343 0.191919 0.595960 0.414141
full2 0.575758 0.262626 0.646465 0.474747
pure 0.777778 0.868687 1.000000 0.444444

pure_wgn0P3 0.979798 0.606061 1.000000 0.484848
square_pure 0.626263 0.939394 1.000000 0.444444

square_wgn10 0.606061 0.858586 1.000000 0.424242

MEAN 0.776094 0.742424 0.931818 0.418350

Table 5. ACC-2: percentage of the times each algorithm has provided an estimated frequency that
brings RAE < 0.02. Averaged over each category of the SYNTHPITCH dataset, along with the mean
for each algorithm over the whole dataset.

ACC-2

Dataset Category
Algorithm

YIN SWIPE NLS OBP

2harm 1.000000 1.000000 1.000000 0.818182
2harm_wgn15 1.000000 1.000000 1.000000 0.777778

4harm 1.000000 1.000000 1.000000 0.737374
4harm_4part_wgn15 0.414141 0.333333 1.000000 0.545455

4harm_high 0.989899 1.000000 0.939394 0.464646
4harm_wgn15 1.000000 1.000000 1.000000 0.757576

full1 0.434343 0.191919 0.595960 0.575758
full2 0.575758 0.272727 0.646465 0.717172
pure 1.000000 1.000000 1.000000 0.818182

pure_wgn0P3 0.989899 0.797980 1.000000 0.818182
square_pure 0.676768 0.949495 1.000000 0.818182

square_wgn10 0.606061 0.858586 1.000000 0.797980

MEAN 0.807239 0.783670 0.931818 0.720539

Table 6. ACC-10: percentage of the times each algorithm has provided an estimated frequency that
brings RAE < 0.10. Averaged over each category of the SYNTHPITCH dataset, along with the mean
for each algorithm over the whole dataset.

ACC-10

Dataset Category Algorithm

YIN SWIPE NLS OBP

2harm 1.000000 1.000000 1.000000 1.000000
2harm_wgn15 1.000000 1.000000 1.000000 1.000000

4harm 1.000000 1.000000 1.000000 0.979798
4harm_4part_wgn15 0.414141 0.484848 1.000000 0.757576

4harm_high 0.989899 1.000000 0.939394 0.585859
4harm_wgn15 1.000000 1.000000 1.000000 1.000000

full1 0.434343 0.383838 0.595960 0.696970
full2 0.575758 0.444444 0.646465 0.828283
pure 1.000000 1.000000 1.000000 1.000000

pure_wgn0P3 0.989899 0.989899 1.000000 1.000000
square_pure 0.727273 0.979798 1.000000 1.000000

square_wgn10 0.606061 0.979798 1.000000 1.000000

MEAN 0.811448 0.855219 0.931818 0.904040
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Table 7. Results of the Mann–Whitney statistical test for the relevance of each metric for each couple
of algorithms. Comparisons involving OBP are in bold. A z-score < −4 associated with p < 0.000001
is related to a confidence higher than 99.997%.

Comparison
Statistical Measures

U Pearson p z-Score

RAE (OBP vs. SWIPE) 42 0.08914 1.70318

RAE (OBP vs. NLS) 30 0.0164 2.396

RAE (OBP vs. YIN) 52 0.25848 1.12583

RAE (YIN vs. SWIPE) 60 0.50926 0.66395

RAE (YIN vs. NLS) 31 0.01928 2.33827

RAE (SWIPE vs. NLS) 33 0.02642 2.2228

TE (OBP vs. SWIPE) 0 <0.000001 <−4

TE (OBP vs. NLS) 0 <0.000001 <−4

TE (OBP vs. YIN) 0 <0.000001 <−4

TE (YIN vs. SWIPE) 0 <0.000001 <−4

TE (YIN vs. NLS) 0 <0.000001 <−4

TE (SWIPE vs. NLS) 0 <0.000001 <−4

ACC-1 (OBP vs. SWIPE) 36 0.04036 −2.04959

ACC-1 (OBP vs. NLS) 0 <0.000001 <−4

ACC-1 (OBP vs. YIN) 14 0.0009 −3.31976

ACC-1 (YIN vs. SWIPE) 70 0.92828 0.0866

ACC-1 (YIN vs. NLS) 26.5 0.00932 −2.59808

ACC-1 (SWIPE vs. NLS) 22.5 0. 00466 −2.82902

ACC-2 (OBP vs. SWIPE) 40.5 0.07346 −1.78979

ACC-2 (OBP vs. NLS) 18 0.002 −3.08882

ACC-2 (OBP vs. YIN) 51.5 0.25014 −1.1547

ACC-2 (YIN vs. SWIPE) 72 0.97606 0.02887

ACC-2 (YIN vs. NLS) 46.5 0.14986 −1.44338

ACC-2 (SWIPE vs. NLS) 52 0.25848 −1.12583

ACC-10 (OBP vs. SWIPE) 65 0.70394 0.37528

ACC-10 (OBP vs. NLS) 61.5 0.56192 −0.57735

ACC-10 (OBP vs. YIN) 55.5 0.35758 0.92376

ACC-10 (YIN vs. SWIPE) 67 0.79486 −0.25981

ACC-10 (YIN vs. NLS) 46.5 0.14986 −1.44338

ACC-10 (SWIPE vs. NLS) 54 0.3125 −1.01036

Figure 6 shows a sample of the RAE plotted for each signal within two categories of
the dataset, as an RAE vs. frequency plot, where it can be appreciated how OBP performs
in a solid way throughout all the categories, to the point where, for complex signals like
those included in “full2”, it actually brings lower errors than most of the other algorithms;
it can also be observed how most of the errors in NLS are octave errors (integer RAE). The
exemplified categories are “2harm” and “full2” in order to show the behavior of the four
algorithms on clean vs. unclean signals.
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Figure 6. Example of RAE (percentage error) vs. frequency plots for two categories (a very clean one
vs. a very complex one) of the SYNTHPITCH dataset. Frequencies span from 100 Hz to 5000 Hz with
a step size of 50 Hz. (a) “2harm” category (blue); (b) “full2” category (red).

All the analyses, data creation, tests, simulations and algorithm implementations were
performed using MATLAB® R2023a (by Mathworks Inc., Natick, MA, USA [43]) on a Dell
Latitude E5550 computer, with an Intel Core i5 5200U processor and a 16 GB Dual-Channel
DDR3 RAM.

Figure 6 details an example of the percentage error (RAE) with respect to the frequency,
i.e., the different signals within a category of the SYNTPITCH dataset.
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The time elapsed (TE) was empirically shown to be independent of the frequency of
the input; plots are thus not shown as they are erratic and only depend on the randomness
within the signals, given for example by the white Gaussian noise. TE was also shown to
be independent of the dataset category, i.e., from the pitch complexity of the input signal.

4. Discussion

The premises of this study, besides the presentation of the custom-made SYNTHPITCH
dataset, were to implement an ultra-fast pitch detection algorithm for real-time applications
and ease of hardware implementation. Our proposed algorithm, OneBitPitch (OBP), despite
running on a software environment, confirms the premises by providing by far the fastest
results in terms of time elapsed for pitch detection. On the other hand, as is expected due to
its nature, SWIPE is the heaviest algorithm and takes an average of 256 ms to be executed,
despite the “large” window frame selected and the SWIPEP variant.

YIN, considered one of the fastest pitch detection algorithms, being based on a modi-
fied autocorrelation, was about nine times faster than SWIPE, with only a 38 ms average.
NLS needs a special mention, as its accuracy values are outstanding, and, on synthetic
signals, its time performances are too, with only a 27 ms average.

However, OBP shows its real strength with an average elaboration time of only 4.6 ms.
It is 50 times faster than SWIPE and even 9 times faster than YIN, which is considered a
fast algorithm. Figure 7 displays an alternative visualization of the performance of the
four algorithms in terms of speed, plotting the elapsed time, which immediately shows the
differences in speed.
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Other works such as that by Grinewitschus et al. [21] report speed as a multiplier
of the “realtime”, which is the duration of the audio segment to be evaluated. Their
approach, based on leveraging the constant-Q Gabor Transform followed by harmonic shift
algorithms and corrective heuristics, reaches a declared 0.29 × realtime speed on a more
powerful machine than what has been used in the present work; nonetheless, OBP reaches
0.046 × realtime.

The choice of the right algorithm for a specific application is mainly based on the
latency and accuracy tradeoff required, and the computational power available, so it is safe
to say that each of the proposed algorithms has a specific field and reason to be applied.

Looking at the RAE and accuracies, the NLS appears as the best-performing algorithm,
always providing less than 1% RAE on average, followed by SWIPE. It is, however, worth
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noting that the NLS was one of the algorithms suffering the most from octave errors,
especially when processing noisy signals or square waves. Moreover, this test confirms the
noise-robust nature of SWIPE, performing well even with harsh signals like square waves
and/or noise.

Looking at the accuracy tables for ACC-1, ACC-2 and ACC-10, NLS confirms its
performances by always providing the highest accuracy, at 93%. However, this value stays
the same for all three ranges, which indicates that all the errors reported by NLS within
these tests were greater than 10% in RAE, which is a good indicator of a certain proneness
to octave errors.

Although OBP underperforms when it comes to 1% accuracy, that is to be expected:
only 42% of the time was the error smaller than 1%. On the other hand, its performances
become comparable to YIN and SWIP for ACC-2, which represents the acceptability range.
The discrete nature of musical notes within the Western tempered system is so that a 2.5%
error still leads to a discretized pitch being correct.

For larger-scale errors, OBP actually brings better ACC-10 values than YIN and SWIPE,
with more than 90% accuracy.

TE can be considered as the most crucial metric for the present paper, due to the
improvement that OBP aims to bring, which is specifically in terms of speed.

Within this context, the differences between all of the algorithms considered, especially
OBP, have been proven to be statistically significant with a Mann–Whitney test yielding a
U close to 0, which brings p < 0.00001, which is much lower than the desired threshold of
0.05. A z-score < −4 points to a confidence higher than 99.997%.

RAE and ACC-1 also generally present statistical significance in the comparisons,
especially when OBP is involved. On the other hand, results regarding ACC-10 are not
statistically significant (all of the algorithms perform similarly).

In general, differences between YIN and SWIPE within this picture appear to bear less
statistical significance, being only significant for the TE—which is the most crucial metric
for the scope of this study.

These results in terms of time vs. accuracy are completely in line with the premises,
since OBP was designed to be minimalistic, forgoing sheer, pinpointed accuracy (hence
the lower ACC-1 values) but still staying within an acceptable range for most applications
(hence the higher ACC-2 values), with an inherent observed robustness with respect to
signal variations and to octave errors.

It is worth noting that despite the average accuracy, the average RAE of OBP is
comparable to the YIN algorithm.

Moreover, all the presented algorithms have been used in one fixed setup with a fixed
threshold. However, in real-world applications, hyperparameters can be tuned to better
adapt to the nature and variation of the input: in fact, manually changing the threshold of
the OBP algorithm provides better performances on certain datasets, especially the noisiest.

The noisiest, most unclean dataset categories are full1, full2, 4harm_4part_wgn15 and
4harm_high: on these sets, most algorithms provide poor performances. However, the
average RAEs that would be obtained on all of the other sets are as follows:

• YIN: 0.077680, i.e., 7.7% average error;
• SWIPE: 0.007548, i.e., 0.7% average error;
• NLS: 0, i.e., no errors. Due to its heuristic-powered nature, NLS is able to pinpoint

discrete frequencies on synthetic datasets;
• OBP: 0.018396, i.e., 1.8% average error.

On cleaner signals, such as those produced by many musical instruments that do not
have added noise, OBP actually performs better in terms of error than YIN, while providing
more than acceptable results overall.

The minimalistic, stripped-down nature of OBP does not allow it to reach almost-
perfect accuracy levels; however, it is critical to assess its “acceptability” ranges, given that
it is by far the fastest [44].
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YIN, on the other hand, is a fast and simple algorithm. It suffered from octave errors
12% of the time, but when the estimation was right, the precision was satisfying, with an
87% chance of obtaining a result with less than 1% error.

The OBP algorithm presents a peculiar behavior because it has only a 4% chance of
suffering from octave errors.

An advantage of the mathematical model behind OBP over other similar autocorrelation-
based methods is that, being based on the product of signals, the output heavily depends on
the magnitude of the input and its variations. Because of that, an additional normalization
process is usually needed, increasing the computational complexity, requiring knowledge
of the energy of the signals and adding more multipliers.

On the other hand, OBP only processes sign signals, inherently independent from the
original magnitude, removing the need for explicit normalization procedures.

Despite the performances reported in these tests, different environments and data see
the algorithms behave differently, at least in terms of accuracy. In fact, SWIPE is one of the
gold standards for feature extraction for medical or Machine Learning purposes, due to it
being well suited for noisy environments and due to the applications not needing real-time
elaboration. On the other hand, NLS is not robust with respect to the nature of the input
and is more prone to suffer from octave errors, making it sometimes an inconsistent choice
despite the high performances on the proposed synthetic dataset.

This study employed the SYNTHPITCH dataset because the large-scale speed was the
main indicator to be evaluated; however, future steps will evolve around the experimenta-
tion on real-world, validated data for pitch detection, which also leads to the application of
pitch-tracking, to follow in real-time the varying pitch of a real sound/speech signal [45].

Future Works

We are currently working on expanding the present experimentation with other test
datasets, focusing especially on real-world scenarios such as sounds from real instruments
(as those employed for MIDI conversion) or vocal signals.

Technically speaking, the most likely future implementations of OBP will definitely
focus on hardware implementation, due to its bitwise nature and maximum speed. Its
simple structure and the low usage of memory and computations make it perfectly suit-
able for a hardware-only implementation—for example, with a DSP—to exploit its speed
capabilities and inherent characteristics suitable for digital electronics. A future FPGA
implementation is foreseen, aimed to produce a stand-alone IpCore that, using just a small
amount of logic, can provide ultra-low-latency pitch tracking [46,47]. With the increasing
trend and the low cost/low performance of System on a Chip (SoC) technologies, the OBP
algorithm can be a perfect candidate for wearable electronic, embedded music processors
for Autotune or real-time MIDI conversion [48], as well as IoT applications, surveillance or
vocal recognition. We can thus summarize some of the future directions of OBP as follows:

• Test on real-world datasets, especially within the professional audio/musical department;
• Full-hardware FPGA implementation;
• Addition of optional features such as posterior (heuristic) correction for added accu-

racy at the cost of speed, selectable N-bit expansion, etc.

5. Conclusions

In this paper, a novel algorithm was proposed for ultra-fast pitch detection for real-time
applications, based on a modified autocorrelation implemented on a single-bit signal. The
OneBitPitch (OBP) algorithm was compared with the most widely used models for high-
speed F0 detection, namely, YIN, SWIPE and an NLS-based implementation. Additionally,
a custom dataset made of synthetic waves has been proposed and made available to the
public: the SYNTHPITCH dataset encompasses sinusoidal and square waves with added
artifacts for an increasing pitch complexity, realized through the addition of harmonics,
partials, white noise and reverb.
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OBP is shown to be an ultra-fast, reliable pitch detection algorithm for real-time appli-
cations: it has been built with a minimalist approach that aims to reduce all computationally
expensive steps in pitch detection, which are mainly represented by a multi-bit elaboration,
the transformation/metric production and the eventual presence of corrective heuristics.

The focus of the OBP algorithm is solely on speed, provided that acceptable accuracy
levels are reached, and its characteristics make it exceptionally suitable for an easy and
lightweight hardware implementation on FPGA or SoC, for ever-higher customization
possibilities as well as lower latencies.

The comparison of different state-of-the-art algorithms shows that OBP is 9 times
faster than the peak speed of the other algorithms (namely, YIN) and 50 times faster than
SWIPE. OBP is shown to be the fastest pitch detection algorithm within the presented test,
with only 4.6 ms of mean elapsed time on each data instance, or 0.046 × realtime runtime,
which is the lowest reported to date.

On the other hand, although relative error might be increased for certain datasets, OBP
is less prone to octave errors, and in general demonstrates the ability to stay within the
acceptability range on most of the tested signals. The main compromise was between speed
and accuracy, and OBP stays within acceptable ranges of 2% accuracy, with a 72% average
that peaks at almost 82% for less noisy signals, which is enough for most discrete-note
musical applications. The NLS-based algorithm is the most accurate one, although it is less
robust to noise or input variations and requires a prior building of a model; in fact, SWIPE
is one of the most employed algorithms in real-world applications not centered on speed.
Additional tests are needed on real-world signals, such as validated voices of known F0,
and a hardware implementation, with more parameters and selectable options is foreseen
for the OBP algorithm.

Author Contributions: Conceptualization, D.C.; methodology, D.C. and V.C.; software, D.C. and
V.C.; validation, V.C. and G.C.; formal analysis, V.C.; investigation, D.C. and V.C.; resources, V.C.;
data curation, V.C.; writing—original draft preparation, D.C.; writing—review and editing, V.C.;
visualization, D.C. and V.C.; supervision, G.C.; project administration, G.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The proposed dataset SYNTHPITCH of synthetic signals for testing
pitch detection algorithms is available at the following link: https://drive.google.com/drive/folders/
1YP15ULjyyeI27k_2wPzWFxuig7fbSveb?usp=sharing (accessed on 10 July 2023).

Acknowledgments: The authors would like to thank Voicewise S.r.l. for the support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ruslan, N.; Mamat, M.; Porle, R.; Parimon, N. A Comparative Study of Pitch Detection Algorithms for Microcontroller Based

Voice Pitch Detector. Adv. Sci. Lett. 2017, 23, 11521–11524. [CrossRef]
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