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Abstract: In the wake of advancing technology, autonomous vehicles and robotic systems have
burgeoned in popularity across a spectrum of applications ranging from mapping and agriculture
to reconnaissance missions. These practical implementations have brought to light an array of
scientific challenges, a crucial one among them being Coverage Path Planning (CPP). CPP, the
strategic planning of a path that ensures comprehensive coverage of a defined area, while being
widely examined in the context of a single-robot system, has found its complexity magnified in the
multi-robot scenario. A prime hurdle in multi-robot CPP is the division and allocation of the operation
area among the robots. Traditional methods, largely reliant on the number of robots and their initial
positions to segment the space, often culminate in suboptimal area division. This deficiency can
occasionally render the problem unsolvable due to the sensitivity of most area division algorithms
to the robots’ starting points. Addressing this predicament, our research introduced an innovative
methodology that employs Affinity Propagation (AP) for area allocation in multi-robot CPP. In our
approach, the area is partitioned into ‘n’ clusters through AP, with each cluster subsequently assigned
to a robot. Although the model operates under the assumption of an unlimited robot count, it offers
flexibility during execution, allowing the user to modify the AP algorithm’s similarity function factor
to regulate the number of generated clusters. Serving as a significant progression in multi-robot CPP,
the proposed model provides an innovative approach to area division and path optimization, thereby
setting a strong foundation for future exploration and practical enhancements in this field.
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1. Introduction

Over the past few decades, we have witnessed an exponential advancement in technol-
ogy that has fundamentally reshaped the global landscape [1]. With a broad gamut ranging
from telecommunications and computing to artificial intelligence and robotics, these tech-
nological breakthroughs have drastically altered the ways in which humans operate and
perform tasks [1–3]. Once labor-intensive or monotonous tasks are now executed with
unparalleled speed, precision, and efficiency, largely due to automation and the advent of
intelligent systems.

A predominant player in this transformational journey has been the field of robotics.
Robots, once confined to the realms of science fiction, now pervade numerous sectors, such
as manufacturing [4], healthcare [5], agriculture [6–8], and logistics [9], serving as invalu-
able tools for enhancing productivity and improving the quality of services. In disaster
management, robots have been instrumental in executing search-and-rescue missions in
environments too hazardous for human intervention [10,11]. In agriculture, robotic systems
are leveraged for tasks ranging from seeding to harvesting, contributing significantly to
precision farming.

However, as with any emergent technology, the rapid rise of robotics has posed a
unique set of challenges, requiring innovative solutions. A prominent challenge in the
domain of robotics is Coverage Path Planning (CPP). In essence, CPP is the process of
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developing a route or path that allows a robot to cover an entire operational area in an
efficient manner [12,13]. A vital aspect of numerous applications, CPP is integral to tasks
such as field inspection in agriculture [14–16], where a robotic system needs to cover a farm
field to assess crop health.

The complexity of CPP intensifies when we move from single-robot systems to multi-
robot systems. Multi-robot CPP involves devising paths for multiple robots to ensure
comprehensive and efficient coverage of a larger or more complex area [17–26]. A pressing
issue in multi-robot CPP is the division of the operational area among the robots, a problem
known as the ‘area division problem’. For example, consider a team of drones deployed
for large-scale environmental monitoring or a fleet of autonomous vehicles performing a
search-and-rescue mission in a disaster-stricken area. The optimal allocation of specific
regions to individual robots can drastically enhance the coverage efficiency and operational
coordination, reducing redundancies and saving valuable time. Addressing the area
division problem effectively is paramount for the successful deployment of multi-robot
systems across a range of real-world applications. As such, it remains a vibrant area of
research, inviting novel solutions and methodologies that can meet the evolving demands
of modern robotic systems.

Several researchers have proposed models to resolve the multi-robot CPP problem,
yet they often encounter significant limitations. A prevalent limitation of multi-robot
CPP algorithms lies in the arbitrary selection of the number of robots and their starting
locations. Both these factors wield substantial influence over the efficacy of the algorithm.
For example, an inadequate number of robots may yield incomplete coverage, resulting in
overlooked regions. Conversely, deploying an excessive number of robots can render the
task inefficient and unnecessarily complicated, thus elevating the cost and computational
burden. Likewise, the robots’ initial placement crucially impacts the effectiveness of the
algorithm, dictating the distribution of robots and the thoroughness of area coverage. An-
other major constraint is the limited scalability of the algorithms, referring to the capability
of an algorithm to perform optimally as the number of inputs or variables increases. In
the context of multi-robot CPP, scalability pertains to the algorithm’s ability to manage
expansive environments and multiple robots cooperating to execute a task.

This paper presents a significant contribution to the field of multi-robot CPP by
introducing a novel model for area division predicated on the Affinity Propagation (AP)
algorithm. The fundamental premise of the proposed approach is to deconstruct the multi-
robot CPP problem into a collection of single-robot CPP tasks, which may or may not
be interdependent. While numerous models in the literature adopt a similar divide-and-
conquer strategy, our model distinguishes itself in three vital respects:

(i) The proposed approach assigns territory to robots without arbitrarily defining the
number of robots (and hence the number of areas). The AP clustering algorithm
leverages a weighted similarity index (SI) function to discern similar cells and ascertain
the optimal number of robots for the multi-robot CPP task. This effectively liberates
the user from the responsibility of determining the appropriate number of robots for
the task. To our knowledge, we are the first to incorporate an AP algorithm to address
the multi-robot CPP problem.

(ii) The algorithm proposed in this paper presents a novel perspective on multi-robot area
division, where the number of robots and their respective areas are not predesignated
arbitrarily by the user. A common drawback of many existing algorithms is their
inability to handle scenarios where the robots’ initial positions are in close proximity,
leading to inefficient area division and path planning. Unlike these approaches,
our proposed algorithm demonstrates exceptional resilience to such situations. It
intelligently circumvents the constraints of predefined robot counts and positions,
thereby offering a more flexible and efficient solution for area division in multi-robot
coverage path planning.

(iii) The similarity function of the AP algorithm takes into consideration several factors,
such as layer type, the spatial connectivity of cells, and their “normalized distance”,



Appl. Sci. 2023, 13, 8207 3 of 15

before incorporating them into a cluster. This results in reduced area blending rates,
meaning that the cells within the final clusters created by this method are less likely
to be enveloped by cells from other clusters.

The structure of the remaining manuscript is as follows:
Section 2 of the document introduces similar works from the literature and highlights

their advantages and disadvantages. Following that, in Section 3, the formal problem
definition is provided. The subsequent section, Section 4, elaborates on the algorithm we
propose. Section 5 presents the experimental data and techniques employed to assess
the effectiveness of our algorithm. The algorithm’s limitations, possible performance
improvements, and the usage of parallel computing are discussed in Section 6. Finally,
Section 7 contains concluding remarks.

2. Literature Review

This section will delve into research endeavors in the literature that confront the
multi-robot coverage path planning problem, particularly emphasizing area division and
allocation. The objective of this section is to furnish a comprehensive review of extant algo-
rithms and methodologies employed to mitigate the problem of multi-robot coverage. An
analysis, comparison, and critical evaluation of related works were conducted to highlight
their respective merits and demerits, thereby establishing a foundation for assessing the
scientific contribution and novelty of the model proposed in this paper and identifying
lacunae in the prevailing state-of-the-art.

A widely recognized offline multi-robot CPP algorithm is the one proposed by
Tang et al. [21] using the MSTC* framework. This algorithm primarily aims to gener-
ate coverage paths for multiple robots while considering realistic physical constraints such
as obstacles and communication paths among robots. The MST technique, employed to di-
vide the target environment into smaller sub-regions, forms the backbone of the algorithm.
Robots are then allocated to these sub-areas according to their capabilities and workload
requirements. This algorithm possesses the advantage of addressing physical constraints, a
pivotal aspect in real-world scenarios where robots need to maneuver through complex
and dynamic environments. However, the algorithm does not consider environmental un-
certainties, leading to sub-optimal performance in volatile and dynamic situations. Further,
it predetermines the number of robots, thereby deciding the number of sub-areas. It is
notable that Tang et al.’s problem formulation aligns with the problem formulated in this
paper in terms of area division and allocation, although the specific problem details the
authors address are distinct.

Another noteworthy offline multi-robot CPP algorithm is the one developed by Rah-
man et al. [24] for autonomous radiation mapping using a mobile robot. The primary
objective of this algorithm is to create coverage paths that a single robot can traverse to
conduct radiation mapping in a designated area. The method draws from a genetic algo-
rithm, utilized to generate a multitude of potential coverage paths, and, subsequently, the
optimal path is selected based on criteria such as coverage efficiency and path length. The
flexibility of this algorithm lies in its adaptability; it can be modified to cater to varying
radiation mapping scenarios. Moreover, the algorithm’s computational efficiency makes it
suitable for extensive application. However, it uses the K-means clustering technique to
partition the overall space into smaller sub-spaces, implying that the algorithm necessitates
a completely arbitrary selection of the number of robots.

The DARP algorithm [18] represents a notable approach in the domain of multi-robot
coverage path planning. It offers a systematic solution by dividing the total environment
into distinct sub-areas, each allocated to a specific robot. The primary objective of DARP is
to minimize the total coverage time, accomplished by intelligently dividing the environment
based on its characteristics and the robotic fleet’s capabilities. However, the algorithm
makes predetermined assumptions about the number of robots and their initial positions,
leading to potential limitations in more complex environments.
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An interesting approach was proposed by Idir et al. [19], who suggested a multi-robot
CPP algorithm based on the DARP algorithm. The authors sought to tackle the problem
of weight allocation for multi-robot coverage using a weighted approach. The algorithm
employs a grid-based representation of the environment and segregates the environment
into a collection of cells necessitating coverage. The robots are assigned weights and the
DARP algorithm is utilized to distribute these weights among the robots and determine
their coverage paths. The strengths of this approach encompass handling the weight
allocation problem, thereby enhancing coverage performance, and the ability to manage
large-scale scenarios. Despite its improvements over the original DARP algorithm, it retains
the limitation of being unable to find a solution when the initial positions of the robots are
proximate.

Another DARP-based algorithm was proposed in [25]. The authors presented an
A*-modified DARP algorithm. This modified version of the DARP algorithm assigns
tasks to the appropriate robot and based on an Up-First approach the Spanning Trees are
constructed in order to ensued full coverage of the initial area. The authors claim that,
compared to the original DARP algorithm, their modifications yield higher efficiency and a
higher coverage rate.

A different approach for multi-robot CPP was proposed in [26] that uses Ant Colony
Optimization. The authors introduced an improved Ant Colony Optimization (ACO)
algorithm for single-robot CPP, which optimizes the energy and time consumption by
building the best possible Spanning Tree (ST) and, consequently, an optimal path. For
multi-robot scenarios, the study employed the DARP algorithm [18], dividing the total
area into smaller, equally sized sections, thus simplifying the complex computation. Each
subarea then constructs a spanning tree using the improved ACO. In the final stage, the end
nodes are shared among subareas to develop ideally-shaped spanning trees that minimize
the number of turns in the coverage path. The algorithms are proven to be near polynomial,
and simulation results highlight benefits including complete coverage, no backtracks,
minimum path length, zero preparation time, and the least number of turns. However, the
implementation of this approach still suffers from the drawbacks of the DARP algorithm,
meaning the arbitrary choice of robot’s initial positions.

Given the literature review, it is evident that multi-robot CPP has garnered consid-
erable attention from researchers. However, a direct evaluation and comparison of these
research works is challenging as each paper addresses a subtly different problem. A com-
monality that most offline multi-robot CPP algorithms share, including those mentioned
above, is their reliance on arbitrarily defining the number of robots and sensitivity to the
initial environmental conditions. Further research is imperative to devise new multi-robot
CPP algorithms that are devoid of these limitations, are more efficient, and tailored for
real-world applications. The Affinity Propagation algorithm proposed in this paper demon-
strates the potential to address these issues, and thus presents a significant advancement in
this field.

3. Problem Definition

The effective division of a given environment into distinct sub-areas for the deploy-
ment of multiple robots presents a challenging problem, particularly in the context of
ensuring contiguous access within each sub-region. To lay a solid foundation for our
investigation, we embarked on a mathematical formulation of this problem, succinctly
capturing the essential aspects and constraints involved. This mathematical model serves as
an unambiguous representation of the underlying problem, illuminating its core elements
and thus guiding the development of algorithmic solutions.

Our environment is described as a binary matrix representation, defining accessible
areas and obstacles. We considered robots that are assigned to different sections of this
environment, each section described as a ‘sub-area’. We also incorporated the distinct nature
of the terrain, assigning different types to each cell in the environment. The fundamental
goal was to find a valid division of the environment into sub-areas, each assigned to a
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unique robot, with the sub-areas satisfying a set of constraints related to accessibility and
continuity. The mathematical model elucidated below presents a precise description of the
problem, facilitating further discussion and solution design.

Given:

• An environment A of size X × Y represented as a binary matrix, A =
[
ai,j

]
, where

ai,j ∈ {0, 1} for all 1 ≤ i ≤ X and 1 ≤ j ≤ Y. In the environment matrix A, ai,j = 0
signifies an obstacle, whereas ai,j = 1 represents an accessible cell. By definition, robots
can only traverse accessible cells.

• A set of robots R = {r1, r2, . . . , rn}, where n is the number of robots.
• A matrix T =

[
ti,j

]
, where, that describes the type of each cell ai,j.

• A matrix E =
[
ei,j

]
, where, that describes the elevation level of each cell ai,j.

• An elevation weight value EW which represents the elevation weight importance factor,
and a floor type FW which represents the floor type elevation weight importance factor.

• A matrix Tw = [w1, w2, . . . , wn] where wi represents the weight assigned to the i th
floor type. The number of values in Tw is equal to the number of different floor types.
Based on this information, we seek:

• A set of sub-areas S = {s1, s2, . . . , sn}, where each sub-area si is a contiguous partition
of A assigned to robot ri. Formally, we define the following constraints:

• Each sub-area si maintains 4-neighbor continuity for all its accessible cells (Figure 1),
i.e., for each pair of accessible cells cm1,n1 and cm2,n2 in si, there exists a sequence of
accessible cells cmk ,nk , k = 1, . . . , p, such that cm1,n1 = cm1,n1 , cmp ,np = cm2,n2 , and cmk ,nk

is a 4-neighbor of cmk+1,nk+1 for all k = 1, . . . , p− 1. The 4-neighbor criterion specifies
that connectivity between cells must be either horizontal or vertical—not diagonal.
Thus, in essence, every cell in the sequence is horizontally or vertically adjacent to its
successor, for all values of k ranging from 1 to p − 1.

• This condition ensures a continuity or chain of 4-neighbor connections between any
two accessible cells within a given sub-area, thereby preserving the rule of 4-neighbor
connectivity throughout the entire grid.

• The environment A is the union of all sub-areas S, i.e., A = Un
i=1si.

• The intersection of any two distinct sub-areas si and sj for i 6= j is empty, i.e., si∩ sj = ∅
for all i 6= j.

• The problem is to find a bijective function f : R→ S such that f (ri) = si for all
1 ≤ i ≤ n, fulfilling the constraints mentioned above.
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Figure 1. Image (a) depicts a cluster that consists of a single cell (blue cell). Green cells represent the
cells that have 4-neighbor connectivity with the blue cell. Image (b) depicts a larger environment
along with its 4-neighbors. Essentially, 4-neighbor connectivity between cells prevents a robot from
moving diagonally within the environment.

4. The Proposed Algorithm
4.1. Data Initialization

To develop a strong solution for the multi-robot CPP problem, we introduced a new
algorithm based on AP [27] (Figure 2). AP is a powerful clustering algorithm commonly
used for dividing and assigning areas. In our approach, we rely on AP to group data points
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into meaningful clusters. The algorithm operates by exchanging messages containing real
values among the data points. These messages help the algorithm determine the best
number of clusters and how to assign the data points to those clusters. The algorithm
continues this message exchange process until a consensus is reached on the optimal cluster
configuration. This methodology allows us to bypass the necessity to predetermine the
number of robots or the dimensions of the respective sub-areas arbitrarily. As opposed to
conventional applications, we employed a meticulous transformation process to adapt our
grid-like environment, A, into a dataset suitable for AP (Figure 3).

Appl. Sci. 2023, 13, x FOR PEER REVIEW  6  of  16 
 

along with its 4‐neighbors. Essentially, 4‐neighbor connectivity between cells prevents a robot from 

moving diagonally within the environment. 

4. The Proposed Algorithm 

4.1. Data Initialization 

To develop a strong solution for the multi‐robot CPP problem, we introduced a new 

algorithm based on AP [27] (Figure 2). AP is a powerful clustering algorithm commonly 

used  for dividing and assigning areas.  In our approach, we  rely on AP  to group data 

points into meaningful clusters. The algorithm operates by exchanging messages contain‐

ing real values among the data points. These messages help the algorithm determine the 

best number of clusters and how to assign the data points to those clusters. The algorithm 

continues this message exchange process until a consensus is reached on the optimal clus‐

ter configuration. This methodology allows us to bypass the necessity to predetermine the 

number of robots or the dimensions of the respective sub‐areas arbitrarily. As opposed to 

conventional applications, we employed a meticulous  transformation process  to adapt 

our grid‐like environment, A, into a dataset suitable for AP (Figure 3). 

 

Figure 2. The  initialization step prepares  the data, converts  the grid  to a set of data points, and 

calculates the similarity matrix S. Then, the responsibility matrix R is updated. The responsibility 

matrix reflects how well suited a data point is to serve as the exemplar for the other data points. 

Next, the Availability matrix is updated. This matrix reflects how suitable an exemplar is for each 

data point to serve as  its exemplar. Finally, the algorithm  iterates until the maximum number of 

iterations set, or until there are no changes from the last iteration. 

 

Figure 3. The  initial environment  (a) consists of obstacles  (black cells), cells of  type grass  (green 

cells), and cells of type asphalt (gray cells). In order to divide the environment into multiple sub‐

areas, we first have to convert the environment into a set of data points. (b) depicts the data points 

in a X, Y Cartesian coordinate system. 

   

Figure 2. The initialization step prepares the data, converts the grid to a set of data points, and
calculates the similarity matrix S. Then, the responsibility matrix R is updated. The responsibility
matrix reflects how well suited a data point is to serve as the exemplar for the other data points. Next,
the Availability matrix is updated. This matrix reflects how suitable an exemplar is for each data
point to serve as its exemplar. Finally, the algorithm iterates until the maximum number of iterations
set, or until there are no changes from the last iteration.
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Figure 3. The initial environment (a) consists of obstacles (black cells), cells of type grass (green cells),
and cells of type asphalt (gray cells). In order to divide the environment into multiple sub-areas, we
first have to convert the environment into a set of data points. (b) depicts the data points in a X, Y
Cartesian coordinate system.

4.2. Calculating Normalized Distance

In this process, each cell within the initial environment is mapped onto a data point
in a two-dimensional coordinate system. To discern the relationship between data points,
we define a similarity function. In many standard applications of AP, similarity is gauged
by the negative of Euclidean distance. This inversely proportional relationship implies a
smaller similarity for larger absolute distances between data points.
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However, the application of Euclidean distance to our context of CPP within a two-
dimensional grid, where we aim to preserve each cluster’s continuity and its cell’s 4-
neighbor relationship, is not fitting. This metric fails to account for obstacles that may
disrupt the path between two locations. This discrepancy between Euclidean distances
and actual traversable distances can lead to significant errors, with the disparity being
exacerbated by the presence of numerous obstacles.

Understanding the inherent constraints of the traditional approach, we adapted our
similarity function to include a more tailored and nuanced model (Algorithm 1).

Algorithm 1: Calculating the normalized 4-neighbor distance between two points

1. Input: Binary matrix A with dimensions X by Y, starting point (x1, y1), and target point (x2, y2)
2. Output: minimum distance D between the starting and target points
3. Function 4_neighbor_actual_distance (A, x1, y1, x2, y2):
4. Step 1: Initialize a distance matrix D with dimensions X by Y, set all elements to infinity
5. Step 2: Initialize a queue Q
6. Step 3: Set D [x1, y1] = 0 and add (x1, y1) to Q
7. Step 4: While Q is not empty:
8. Step 4.1: Dequeue a point (x, y) from Q
9. Step 4.2: Loop through each of its four neighbors (xn, yn) in the environment A:
10. Step 4.2.1: If (xn, yn) is an obstacle (A[xn, yn] = 0), skip this neighbor
11. Step 4.2.2: If D[xn, yn] > D[x, y] + 1:
12. Step 4.2.2.1: Update D[xn, yn] = D[x, y] + 1
13. Step 4.2.2.2: Add (xn, yn) to Q
14. Step 5: Return D[x2, y2] as the minimum distance D between the starting and target points
15. End Function

Our novel algorithm not only calculates the minimum 4-neighbor distance between
cells, similar to a BFS approach, but also takes into account the type of floor and elevation of
each cell, thereby capturing crucial information about the landscape’s unique characteristics.
It thereby ensures a more accurate and practical representation of the environment’s
traversability. Incorporating these parameters directly into the similarity function provides
a more realistic framework for area division in 2D grid environments. This ultimately leads
to enhanced efficiency and effectiveness in our CPP solutions, as it ensures more prudent
and strategic allocation of sub-areas to robots, factoring in complex grid conditions that
could impact their performance.

4.3. Calculating the Similarity Matrix

In the similarity matrix, each element holds a singular metric quantifying its resem-
blance to the other elements in the adjacent vicinity (Algorithm 2). The degree of similarity
between any two elements augments in direct proportion with the increase in the similarity
value. It warrants highlighting that, due to the intrinsic characteristics of the AP method,
the similarity function S(p1, p2) may not necessarily be identical to S(p2, p1). Although
this directional feature is not incorporated in the current implementation of our proposed
methodology (Figure 4), potential future adaptations of the algorithm may consider its
integration to facilitate directional clustering of cells and other specific elements. Utilizing
the AP methodology, we classified data points into distinct sub-regions for each robot,
following an assessment of the similarity quotient between each pair of data points. The
AP algorithm operates through the transmission of messages that denote a data point’s
proclivity towards a particular cluster. Subsequent to the resolution on the number of
clusters and the allocation of data points to respective clusters, these messages are subject
to iterative refinement.
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Algorithm 2: The procedure that calculates the weighted Similarity Matrix S

1. Input:
2. Environment matrices: binary A, weight W, elevation E, floor F
3. Significance multipliers: t, q, r
4. Output: similarity matrix S
5. Function similarity_calculation(A, X, Y, W):
6. Step 1: Initialize an X by Y matrix S
7. Step 2: Loop through each pair of data points (x1, y1) and (x2, y2) in the environment A:
8. Step 2.1: Calculate the distance between the data points:
9. d = 4_neighbor_actual_distance (x1, y1, x2, y2)
10. Step 2.2: Calculate the elevation difference
11. e = |E[x1, y1]− E[x2, y2]|
12. Step 2.3: Calculate the floor discrepancy
13. f = |F[x1, y1]− F[x2, y2]|
14. Step 2.2: Multiply each metric by its weight factor:
15. d = t× d
16. e = q× e
17. f = r× f
18. Step 2.3: Store the similarity between the data points in the similarity matrix S:
19. S[x1, y1, x2, y2] = −(d + e + f )
20. Step 3: Return the similarity matrix S
21. End Function

Appl. Sci. 2023, 13, x FOR PEER REVIEW  8  of  16 
 

Although this directional feature is not incorporated in the current implementation of our 

proposed methodology (Figure 4), potential future adaptations of the algorithm may con‐

sider its integration to facilitate directional clustering of cells and other specific elements. 

Utilizing the AP methodology, we classified data points into distinct sub‐regions for each 

robot, following an assessment of the similarity quotient between each pair of data points. 

The AP  algorithm  operates  through  the  transmission  of messages  that  denote  a  data 

point’s proclivity towards a particular cluster. Subsequent to the resolution on the number 

of clusters and the allocation of data points to respective clusters, these messages are sub‐

ject to iterative refinement. 

Algorithm 2: The procedure that calculates the weighted Similarity Matrix S 

1. Input: 

2.           Environment matrices: binary  𝐴, weight 𝑊, elevation  𝐸, floor  𝐹 
3.           Significance multipliers:  𝑡, 𝑞, 𝑟 
4. Output: similarity matrix  𝑆   
5. Function similarity_calculationሺ𝐴,𝑋,𝑌,𝑊ሻ: 
6.         Step 1: Initialize an  𝑋  by  𝑌 matrix  𝑆 
7.         Step 2: Loop through each pair of data points  ሺ𝑥ଵ,𝑦ଵሻ  and  ሺ𝑥ଶ,𝑦ଶሻ  in the 

environment  𝐴: 
8.                     Step 2.1: Calculate the distance between the data points: 

9.                             𝑑  = 4_neighbor_actual_distance ሺ𝑥ଵ,𝑦ଵ, 𝑥ଶ,𝑦ଶሻ  
10.                     Step 2.2: Calculate the elevation difference 
11.                             𝑒 ൌ |𝐸ሾ𝑥ଵ,𝑦ଵሿ െ 𝐸ሾ𝑥ଶ,𝑦ଶሿ|     
12.                     Step 2.3: Calculate the floor discrepancy 
13.                             𝑓 ൌ |𝐹ሾ𝑥ଵ,𝑦ଵሿ െ 𝐹ሾ𝑥ଶ,𝑦ଶሿ| 
14.                     Step 2.2: Multiply each metric by its weight factor: 

15.                             𝑑 ൌ 𝑡 ൈ 𝑑  
16.                             𝑒 ൌ 𝑞 ൈ 𝑒 
17.                             𝑓 ൌ 𝑟 ൈ 𝑓 
18.                     Step 2.3: Store the similarity between the data points in the similarity 

matrix  𝑆: 
19.                     𝑆ሾ𝑥ଵ,𝑦ଵ, 𝑥ଶ,𝑦ଶሿ ൌ   െሺ𝑑  𝑒  𝑓ሻ 
20.         Step 3: Return the similarity matrix  𝑆 
21. End Function 

 

Figure 4. Two points (denoted with blue color) will always have the same similarity matrix with 

each other. In practice, this means that going from point p1 to point p2 has the same cost as going 

from point p2 to p1. 

   

Figure 4. Two points (denoted with blue color) will always have the same similarity matrix with each
other. In practice, this means that going from point p1 to point p2 has the same cost as going from
point p2 to p1.

4.4. Generation of Clusters

After calculating the similarity between all pairs of data points, the AP algorithm was
used to cluster the data points into sub-areas for each robot. The AP algorithm works by
passing messages between data points, which indicate their preference for a particular
cluster. These messages are updated iteratively until a consensus is reached on the number
of clusters and which points belong to which cluster.

Upon the conclusion of the iterative message-passing phase, the AP algorithm pro-
ceeds towards the establishment of sub-areas (Algorithm 3). This crucial stage determines
the most suitable exemplar for each cluster—a data point that accrues the maximum prefer-
ence value when both availability and responsibility are taken into account. Consequently,
each data point (cell) is assigned to the exemplar of its respective cluster.
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Algorithm 3: Generating the sub-areas using AP

1. Input: grid-like area A with dimensions X by Y
2. Output: sub-areas for each robot
3. Step 1: Convert the grid-like area A into a set of data points
4. Represent each grid cell as a data point in a two-dimensional coordinate system
5. Step 2: Calculate the similarity between every pair of data points
6. Calculate the similarity based on Algorithms 1 and 2 (taking into consideration the weight
factor)
7. Store the similarity in a matrix S
8. Step 3: Initialize messages between data points
9. Initialize two matrices, R and A, to store the messages between data points
10. Initialize the self-similarity matrix, S, to store the similarity between a data point and itself
11. Step 4: Iterate until convergence
12. Update the responsibility matrix, R
13. Update the availability matrix, A
14. Step 5: Identify exemplars
15. Identify the data points with the highest responsibility and availability values as
exemplars
16. Step 6: Assign sub-areas to each robot
17. Assign each non-exemplar data point to the closest exemplar (only if they are spatially
connected using the 4-neighbor scheme)
18. Group the data points assigned to each exemplar into a sub-area
19. Step 8: Return the sub-areas for each robot

A key attribute of the proposed algorithm lies in its capacity to autonomously ascertain
the optimal number of clusters (sub-areas), without any need for user-defined inputs. This
ability to self-regulate cluster formation ensures flexibility and adaptability, which is
particularly beneficial in complex real-world applications.

The final output of the algorithm is a list of cluster labels for each data point in the
initial environment, indicating the respective robot assignment for each cell (Figure 5). This
clustered set of data points serves as the foundation for subsequent stages of the proposed
model, leading to the final path planning for the robots.
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Figure 5. The initial environment as depicted in (a) contains two layer types (denoted by green and
gray cells). The output of the algorithm in (b) shows the two clusters (blue and yellow), as they were
generated by the algorithm. It is worth mentioning that different values of the importance value Tw

may result in slightly different clusters.

5. Experimental Results

In this section, we present the findings obtained from our in-depth analysis of the
proposed algorithm. The experimental results validate the efficiency and adaptability of
our algorithm in effectively decomposing the environment into suitable sub-areas. The



Appl. Sci. 2023, 13, 8207 10 of 15

evaluation metrics employed primarily centered on the criteria of computational time and
the quality of the generated clusters.

In terms of comparison with existing algorithms, it is important to highlight that our
proposed AP-based algorithm addresses a unique problem in the field of multi-robot CPP.
In the literature, many algorithms attempt to solve the issue of dividing an initial area
into multiple sub-areas for each robot. However, the identical problem that our algorithm
solves, without arbitrarily pre-determining the number of robots and their initial positions,
is lacking in the current literature. Nevertheless, we embarked on an indirect comparative
analysis, contrasting our algorithm’s performance with traditional algorithms for area
division in CPP, which rely on pre-specified robot counts and locations. The comparative
study primarily emphasized the improvements in efficiency, flexibility, and adaptability
introduced by the proposed algorithm. Despite the inherent differences in the problem
contexts, the comparative analysis provided a clear demonstration of the strides made by
the AP-based approach, particularly in situations where the initial robot positions are in
close proximity.

The conducted simulations predominantly operated in two meticulously constructed
environments of distinct sizes, each featuring distinct characteristics. Both environments
were generated using a pseudo-random process, offering a unique combination of accessible
areas and obstacles along with varying environmental types, ensuring the robustness of
the simulated scenarios.

The smaller 24 × 24 environment served as an essential proving ground for our
proposed algorithm, presenting a grid with a variety of unique parameters and diverse
characteristics. The total area consisted of 576 cells, with approximately 80% of the grid
being accessible and approximately 20% assigned as obstacles. These obstacles were
evenly scattered throughout the grid to simulate potential hindrances that robots might
encounter in real-world scenarios. Beyond mere accessibility, cells in the environment were
characterized by two distinct terrain types—grass and asphalt. The grass cells accounted
for roughly 60% of the accessible area, while the asphalt cells constituted the remaining 40%.
This bifurcation of terrain types aimed to emulate real-world environments where robots
might encounter varied terrains requiring different path planning strategies and navigation
capabilities. To augment the realism of the simulation, cells were assigned varying elevation
levels. The elevations ranged from 0 to 10 units, with a standard deviation of three units to
ensure a substantial variation in elevation across the grid. An elevation weight factor of 0.1
was applied to indicate the importance of elevation. Similarly, the type of terrain also had
an associated weight factor to indicate the importance of terrain type.

Subsequently, a second, larger, and more complex environment was introduced for
a more in-depth simulation. The dimensions of this environment are 100 × 100. The rest
of the parameters were the same as those of the previous smaller environment. Due to its
substantial size, detailed visualization was rendered impractical. Nevertheless, we present
empirical data and statistics to illustrate the algorithm’s performance. This larger grid
serves to emulate more complex real-world scenarios, thereby demonstrating the scalability
and adaptability of the proposed AP algorithm in diverse, challenging situations.

The computational experiments were conducted on a dedicated testbed configured
to ensure accurate and consistent results. The hardware setup encompassed a high-
performance workstation equipped with an Intel Core i7-9700K 8-core processor clocked at
3.60 GHz, bolstered with 32 GB of DDR4 RAM and enabling efficient data handling and
manipulation, which were particularly critical given the size of the datasets and complexity
of operations involved in Affinity Propagation.

Table 1 shows the experimental results for each setup. For each algorithm, we con-
ducted 20 experiments using the aforementioned parameters. The table shows the average
values for the number of generated clusters and the cluster quality.
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Table 1. Experimental results for two environments using three clustering algorithms for CPP.

Environment Size Algorithm Generated Clusters Cluster Quality

24 × 24 [18] n = 2 2 0.66
24 × 24 [19] n = 2 2 0.84
24 × 24 [25] n = 2 2 0.89
24 × 24 Proposed 2.19 0.91

100 × 100 [18] n = 2 2 0.39 (often failed to find solution)
100 × 100 [19] n = 2 2 0.85
100 × 100 [25] n = 2 2 0.92
100 × 100 Proposed 6.52 0.94

It is worth mentioning that it is difficult to evaluate the proposed algorithm by directly
comparing it with others found in the literature, since these algorithms are not config-
urable to identify the different cell types, elevation, and importance factor. Therefore, we
could only compare the results of these algorithms by taking into account the quality of
the clustering. The quality of clustering was calculated using the Silhouette Coefficient
(SC) [28].

The SC, also known as Silhouette Score, is a well-established and popular metric for
evaluating the quality of a clustering algorithm. The essence of this method lies in its dual-
faceted measurement approach, quantifying both cohesion and separation simultaneously
for each individual cell. It operates by comparing the average distance of a cell to all other
points within its own cluster (cohesion) against the average distance to points in the nearest
cluster (separation). The coefficient thus provides an aggregate measure of how similar
a given data point is to its own cluster relative to other clusters. Higher values of the SC
suggest that the cell is well-clustered and lower values imply that the specific cell might
have been better assigned to a neighboring cluster. It is widely regarded well due to its
intuitive interpretation, its capability to work with any distance metric (in our example the
normalized distance as presented in Algorithm 1), and its agnosticism towards the specific
clustering algorithm used. To properly evaluate the proposed algorithm, we calculated the
SC not only for the average distances but also for the similarity with regard to elevation
and floor type. The total SC calculated was weighted based on the respective weights of
floor type and elevation.

A more nuanced evaluation of the proposed algorithm was achieved by conducting
multiple runs in the same environment but with varied importance factors attached to
floor type and elevation. This exploratory approach aimed to investigate the algorithm’s
capability to adapt and respond to shifts in preference and the importance of environmental
features. For this experiment, the main focus was on gauging the homogeneity of the
resulting clusters. Homogeneity here was defined as the proportion of a cluster that
exhibits uniformity in terms of either floor type or elevation. When the importance factor
assigned to floor type was modified, we anticipated observing clusters that largely contain
the same floor type. Consequently, the algorithm’s sensitivity to floor type would be
reflected by the degree of homogeneity of the resulting clusters. Analogously, when the
emphasis is shifted to elevation, the homogeneity of the clusters, in terms of their elevation,
becomes the pivotal measure of algorithm performance. The experimental results are
presented in Table 2.

The experimental results indicate that the importance factors affect the final clusters
and their cells. It is important, however, to fine tune the exact values for each multi-robot
CPP task, based on the capabilities of the available robots. A visual representation of a
10 × 10 environment and the output of the algorithm with different importance factor TW
are depicted in Figure 6. A larger 24 × 24 environment is depicted in Figure 7.
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Table 2. Experimental results from the execution of the proposed algorithm in the same environment
using different elevation Ew and floor type FW weight factors. These values range from 0 to 1 and
describe how important the preservation of elevation or floor type within a generated sub-area is.
Increasing or decreasing both values at the same time reduces the importance of both variables within
the clustering process.

Environment Importance Factors (Ew, FW) Height Homogeneity Floor Homogeneity

100 × 100 (0, 0) 0.61 0.49
100 × 100 (0.8, 0) 0.75 0.45
100 × 100 (0.8, 0.8) 0.59 0.53
100 × 100 (0, 0.8) 0.53 0.78
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6. Discussion
6.1. Limitations

While this paper proposed an innovative application of AP in the field of multi-robot
CPP, it is not without limitations. A clear understanding of these potential constraints is
essential for refining the algorithm, enhancing its applicability, and identifying areas for
future research.
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The primary limitation arises from the AP’s inherent computational complexity. With a
time complexity of O(N2T), where N represents the number of data points and T denotes the
number of iterations, AP can be computationally expensive for large-scale environments.
This computational cost is primarily due to the calculation of the similarity matrix and
the iterative exchange of “responsibility” and “availability” messages. This renders the
algorithm less practical for real-time operations, particularly for larger environments, as it
may lead to increased latency in area division and subsequent path planning.

Another important limitation is the static nature of the AP algorithm, which is very
hard if not impossible to adjust for dynamic environments. The AP algorithm, as applied
in this context, assumes a static environment where the position of obstacles and the type
of each cell are known beforehand. In scenarios where the environment changes over time,
the algorithm would need to be rerun, potentially leading to delays and inefficiencies. The
ability to adapt to dynamic environments remains a significant challenge in the field of
multi-robot CPP and represents a key area for future research.

6.2. Performance Improvement

The performance of the AP algorithm, as is the case with most computational proce-
dures, is pivotal in real-world applications. The urgency for efficiency and execution speed
improvements is even more pronounced when dealing with multi-robot coverage path
planning, given the scale of the task and the inherent complexity associated with environ-
ment mapping and path planning. In light of this, several strategies can be considered to
enhance the execution speed and overall efficiency of the AP algorithm.

One crucial step of the AP algorithm is the calculation of the similarity matrix. Given
that this phase accounts for a significant portion of the computations (approximately 40%),
improving its efficiency is imperative. Given its intrinsic parallelizable nature, where the
similarity between each pair of data points can be calculated independently, we could
potentially harness the power of parallel computing. By distributing the calculation of
similarity measures across multiple cores or nodes in a parallel computing environment,
we can expedite this process markedly, thereby increasing the overall efficiency of the AP
algorithm.

On the other hand, the message passing phase of the AP algorithm, which is pivotal
for its iterative structure, is more challenging to parallelize. Although in theory, each
“responsibility” and “availability” message update could be computed in parallel, the
iterative nature of the AP algorithm necessitates the results of each preceding iteration.
Nonetheless, we could explore certain forms of “soft” parallelization, such as utilizing
vectorized operations or parallel map functions provided by high-level languages and
libraries. Even though this approach would not offer true parallelization due to each
iteration still needing to await the completion of all message updates, it could still provide
substantial speed improvements.

Besides parallel computing, other potential strategies for improving the efficiency
of the AP algorithm could include optimization of the algorithm’s parameters or the
application of hardware accelerators such as Graphics Processing Units (GPUs) [29]. Fine-
tuning parameters like the damping factor or the preference value could potentially reduce
the number of iterations required for convergence, thereby accelerating the execution speed.
Similarly, using GPUs, which are particularly suited for parallelizable tasks, could lead
to substantial reductions in computation time. However, such strategies would require
careful evaluation to balance efficiency gains against the potential impact on the quality of
the results.

7. Conclusions

The presented research introduces a paradigm shift in the domain of multi-robot CPP
by utilizing AP for optimally dividing the operational area among the robots. Instead of
using traditional methods, which largely rely on the number of robots and their initial
positions, this innovative methodology partitions the area into ‘n’ clusters using AP and
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subsequently assigns each cluster to a robot. This model, while functioning under the
assumption of an unlimited number of robots, provides a unique flexibility by allowing
the modification of the AP algorithm’s similarity function factor to control the number of
generated clusters.

One field where the proposed algorithm can find profound applications is precision
agriculture. This industry, already substantially automated, requires precision farming,
which involves the distribution of multiple tasks, such as seeding, fertilizing, and harvest-
ing, across a fleet of robotic entities. Identifying the optimal number of sub-areas becomes
paramount to prevent overlap and redundancy in operations. The proposed algorithm,
by facilitating automatic partitioning of farmland into sub-areas based on factors such as
crop type and topography paves the way for improved resource management. It ensures
optimal task distribution amongst autonomous agricultural machines, enhancing their
overall operational efficiency, thereby contributing to a significant reduction in the time
and cost associated with agricultural practices.

Additionally, this algorithm can significantly revolutionize urban search and rescue
operations. Typically, these operations are time-sensitive, requiring the division of large,
affected areas into smaller manageable sub-areas to enable quick and efficient search
strategies. The conventional method of dividing areas based on available rescuers may not
be effective, especially in scenarios where the rescuers are robotic entities. By employing
this algorithm, we could efficiently partition the search area into the appropriate number of
sub-areas (clusters) regardless of the number of robots, optimizing the search strategy and
increasing the likelihood of successful rescue operations. Moreover, with the AP algorithm’s
adaptable similarity function factor, the rescue team has flexibility in regulating the number
of generated clusters, facilitating a more efficient and coordinated search operation.

As a significant progression in multi-robot CPP, this methodology paves the way
for novel research directions and practical enhancements in this field. The capability to
deliver effective area division and path optimization, without burdening the user with the
arbitrary decision of the number of robots or their initial positions, sets a new benchmark
for multi-robot CPP implementations. Moreover, our work provides a strong foundation
for the development of enhanced strategies that can address the existing complexities of
multi-robot CPP and further expedite the deployment of autonomous systems in diverse
fields ranging from agriculture to reconnaissance missions. Future work will focus on
refining the proposed model, incorporating more complex environmental factors, and
exploring the potential of integrating this method with different path planning algorithms
for better performance.
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