
Citation: Baras, N.; Dasygenis, M.

Area Division Using Affinity

Propagation for Multi-Robot

Coverage Path Planning. Appl. Sci.

2023, 13, 8207. https://doi.org/

10.3390/app13148207

Academic Editor: Jonghoek Kim

Received: 3 June 2023

Revised: 4 July 2023

Accepted: 10 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Area Division Using Affinity Propagation for Multi-Robot
Coverage Path Planning
Nikolaos Baras * and Minas Dasygenis

Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece
* Correspondence: nbaras@uowm.gr

Abstract: In the wake of advancing technology, autonomous vehicles and robotic systems have
burgeoned in popularity across a spectrum of applications ranging from mapping and agriculture
to reconnaissance missions. These practical implementations have brought to light an array of
scientific challenges, a crucial one among them being Coverage Path Planning (CPP). CPP, the
strategic planning of a path that ensures comprehensive coverage of a defined area, while being
widely examined in the context of a single-robot system, has found its complexity magnified in the
multi-robot scenario. A prime hurdle in multi-robot CPP is the division and allocation of the operation
area among the robots. Traditional methods, largely reliant on the number of robots and their initial
positions to segment the space, often culminate in suboptimal area division. This deficiency can
occasionally render the problem unsolvable due to the sensitivity of most area division algorithms
to the robots’ starting points. Addressing this predicament, our research introduced an innovative
methodology that employs Affinity Propagation (AP) for area allocation in multi-robot CPP. In our
approach, the area is partitioned into ‘n’ clusters through AP, with each cluster subsequently assigned
to a robot. Although the model operates under the assumption of an unlimited robot count, it offers
flexibility during execution, allowing the user to modify the AP algorithm’s similarity function factor
to regulate the number of generated clusters. Serving as a significant progression in multi-robot CPP,
the proposed model provides an innovative approach to area division and path optimization, thereby
setting a strong foundation for future exploration and practical enhancements in this field.

Keywords: affinity propagation; area allocation; coverage path planning

1. Introduction

Over the past few decades, we have witnessed an exponential advancement in technol-
ogy that has fundamentally reshaped the global landscape [1]. With a broad gamut ranging
from telecommunications and computing to artificial intelligence and robotics, these tech-
nological breakthroughs have drastically altered the ways in which humans operate and
perform tasks [1–3]. Once labor-intensive or monotonous tasks are now executed with
unparalleled speed, precision, and efficiency, largely due to automation and the advent of
intelligent systems.

A predominant player in this transformational journey has been the field of robotics.
Robots, once confined to the realms of science fiction, now pervade numerous sectors, such
as manufacturing [4], healthcare [5], agriculture [6–8], and logistics [9], serving as invalu-
able tools for enhancing productivity and improving the quality of services. In disaster
management, robots have been instrumental in executing search-and-rescue missions in
environments too hazardous for human intervention [10,11]. In agriculture, robotic systems
are leveraged for tasks ranging from seeding to harvesting, contributing significantly to
precision farming.

However, as with any emergent technology, the rapid rise of robotics has posed a
unique set of challenges, requiring innovative solutions. A prominent challenge in the
domain of robotics is Coverage Path Planning (CPP). In essence, CPP is the process of

Appl. Sci. 2023, 13, 8207. https://doi.org/10.3390/app13148207 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13148207
https://doi.org/10.3390/app13148207
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1437-1326
https://orcid.org/0000-0002-2180-9752
https://doi.org/10.3390/app13148207
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13148207?type=check_update&version=2

Appl. Sci. 2023, 13, 8207 2 of 15

developing a route or path that allows a robot to cover an entire operational area in an
efficient manner [12,13]. A vital aspect of numerous applications, CPP is integral to tasks
such as field inspection in agriculture [14–16], where a robotic system needs to cover a farm
field to assess crop health.

The complexity of CPP intensifies when we move from single-robot systems to multi-
robot systems. Multi-robot CPP involves devising paths for multiple robots to ensure
comprehensive and efficient coverage of a larger or more complex area [17–26]. A pressing
issue in multi-robot CPP is the division of the operational area among the robots, a problem
known as the ‘area division problem’. For example, consider a team of drones deployed
for large-scale environmental monitoring or a fleet of autonomous vehicles performing a
search-and-rescue mission in a disaster-stricken area. The optimal allocation of specific
regions to individual robots can drastically enhance the coverage efficiency and operational
coordination, reducing redundancies and saving valuable time. Addressing the area
division problem effectively is paramount for the successful deployment of multi-robot
systems across a range of real-world applications. As such, it remains a vibrant area of
research, inviting novel solutions and methodologies that can meet the evolving demands
of modern robotic systems.

Several researchers have proposed models to resolve the multi-robot CPP problem,
yet they often encounter significant limitations. A prevalent limitation of multi-robot
CPP algorithms lies in the arbitrary selection of the number of robots and their starting
locations. Both these factors wield substantial influence over the efficacy of the algorithm.
For example, an inadequate number of robots may yield incomplete coverage, resulting in
overlooked regions. Conversely, deploying an excessive number of robots can render the
task inefficient and unnecessarily complicated, thus elevating the cost and computational
burden. Likewise, the robots’ initial placement crucially impacts the effectiveness of the
algorithm, dictating the distribution of robots and the thoroughness of area coverage. An-
other major constraint is the limited scalability of the algorithms, referring to the capability
of an algorithm to perform optimally as the number of inputs or variables increases. In
the context of multi-robot CPP, scalability pertains to the algorithm’s ability to manage
expansive environments and multiple robots cooperating to execute a task.

This paper presents a significant contribution to the field of multi-robot CPP by
introducing a novel model for area division predicated on the Affinity Propagation (AP)
algorithm. The fundamental premise of the proposed approach is to deconstruct the multi-
robot CPP problem into a collection of single-robot CPP tasks, which may or may not
be interdependent. While numerous models in the literature adopt a similar divide-and-
conquer strategy, our model distinguishes itself in three vital respects:

(i) The proposed approach assigns territory to robots without arbitrarily defining the
number of robots (and hence the number of areas). The AP clustering algorithm
leverages a weighted similarity index (SI) function to discern similar cells and ascertain
the optimal number of robots for the multi-robot CPP task. This effectively liberates
the user from the responsibility of determining the appropriate number of robots for
the task. To our knowledge, we are the first to incorporate an AP algorithm to address
the multi-robot CPP problem.

(ii) The algorithm proposed in this paper presents a novel perspective on multi-robot area
division, where the number of robots and their respective areas are not predesignated
arbitrarily by the user. A common drawback of many existing algorithms is their
inability to handle scenarios where the robots’ initial positions are in close proximity,
leading to inefficient area division and path planning. Unlike these approaches,
our proposed algorithm demonstrates exceptional resilience to such situations. It
intelligently circumvents the constraints of predefined robot counts and positions,
thereby offering a more flexible and efficient solution for area division in multi-robot
coverage path planning.

(iii) The similarity function of the AP algorithm takes into consideration several factors,
such as layer type, the spatial connectivity of cells, and their “normalized distance”,

Appl. Sci. 2023, 13, 8207 3 of 15

before incorporating them into a cluster. This results in reduced area blending rates,
meaning that the cells within the final clusters created by this method are less likely
to be enveloped by cells from other clusters.

The structure of the remaining manuscript is as follows:
Section 2 of the document introduces similar works from the literature and highlights

their advantages and disadvantages. Following that, in Section 3, the formal problem
definition is provided. The subsequent section, Section 4, elaborates on the algorithm we
propose. Section 5 presents the experimental data and techniques employed to assess
the effectiveness of our algorithm. The algorithm’s limitations, possible performance
improvements, and the usage of parallel computing are discussed in Section 6. Finally,
Section 7 contains concluding remarks.

2. Literature Review

This section will delve into research endeavors in the literature that confront the
multi-robot coverage path planning problem, particularly emphasizing area division and
allocation. The objective of this section is to furnish a comprehensive review of extant algo-
rithms and methodologies employed to mitigate the problem of multi-robot coverage. An
analysis, comparison, and critical evaluation of related works were conducted to highlight
their respective merits and demerits, thereby establishing a foundation for assessing the
scientific contribution and novelty of the model proposed in this paper and identifying
lacunae in the prevailing state-of-the-art.

A widely recognized offline multi-robot CPP algorithm is the one proposed by
Tang et al. [21] using the MSTC* framework. This algorithm primarily aims to gener-
ate coverage paths for multiple robots while considering realistic physical constraints such
as obstacles and communication paths among robots. The MST technique, employed to di-
vide the target environment into smaller sub-regions, forms the backbone of the algorithm.
Robots are then allocated to these sub-areas according to their capabilities and workload
requirements. This algorithm possesses the advantage of addressing physical constraints, a
pivotal aspect in real-world scenarios where robots need to maneuver through complex
and dynamic environments. However, the algorithm does not consider environmental un-
certainties, leading to sub-optimal performance in volatile and dynamic situations. Further,
it predetermines the number of robots, thereby deciding the number of sub-areas. It is
notable that Tang et al.’s problem formulation aligns with the problem formulated in this
paper in terms of area division and allocation, although the specific problem details the
authors address are distinct.

Another noteworthy offline multi-robot CPP algorithm is the one developed by Rah-
man et al. [24] for autonomous radiation mapping using a mobile robot. The primary
objective of this algorithm is to create coverage paths that a single robot can traverse to
conduct radiation mapping in a designated area. The method draws from a genetic algo-
rithm, utilized to generate a multitude of potential coverage paths, and, subsequently, the
optimal path is selected based on criteria such as coverage efficiency and path length. The
flexibility of this algorithm lies in its adaptability; it can be modified to cater to varying
radiation mapping scenarios. Moreover, the algorithm’s computational efficiency makes it
suitable for extensive application. However, it uses the K-means clustering technique to
partition the overall space into smaller sub-spaces, implying that the algorithm necessitates
a completely arbitrary selection of the number of robots.

The DARP algorithm [18] represents a notable approach in the domain of multi-robot
coverage path planning. It offers a systematic solution by dividing the total environment
into distinct sub-areas, each allocated to a specific robot. The primary objective of DARP is
to minimize the total coverage time, accomplished by intelligently dividing the environment
based on its characteristics and the robotic fleet’s capabilities. However, the algorithm
makes predetermined assumptions about the number of robots and their initial positions,
leading to potential limitations in more complex environments.

Appl. Sci. 2023, 13, 8207 4 of 15

An interesting approach was proposed by Idir et al. [19], who suggested a multi-robot
CPP algorithm based on the DARP algorithm. The authors sought to tackle the problem
of weight allocation for multi-robot coverage using a weighted approach. The algorithm
employs a grid-based representation of the environment and segregates the environment
into a collection of cells necessitating coverage. The robots are assigned weights and the
DARP algorithm is utilized to distribute these weights among the robots and determine
their coverage paths. The strengths of this approach encompass handling the weight
allocation problem, thereby enhancing coverage performance, and the ability to manage
large-scale scenarios. Despite its improvements over the original DARP algorithm, it retains
the limitation of being unable to find a solution when the initial positions of the robots are
proximate.

Another DARP-based algorithm was proposed in [25]. The authors presented an
A*-modified DARP algorithm. This modified version of the DARP algorithm assigns
tasks to the appropriate robot and based on an Up-First approach the Spanning Trees are
constructed in order to ensued full coverage of the initial area. The authors claim that,
compared to the original DARP algorithm, their modifications yield higher efficiency and a
higher coverage rate.

A different approach for multi-robot CPP was proposed in [26] that uses Ant Colony
Optimization. The authors introduced an improved Ant Colony Optimization (ACO)
algorithm for single-robot CPP, which optimizes the energy and time consumption by
building the best possible Spanning Tree (ST) and, consequently, an optimal path. For
multi-robot scenarios, the study employed the DARP algorithm [18], dividing the total
area into smaller, equally sized sections, thus simplifying the complex computation. Each
subarea then constructs a spanning tree using the improved ACO. In the final stage, the end
nodes are shared among subareas to develop ideally-shaped spanning trees that minimize
the number of turns in the coverage path. The algorithms are proven to be near polynomial,
and simulation results highlight benefits including complete coverage, no backtracks,
minimum path length, zero preparation time, and the least number of turns. However, the
implementation of this approach still suffers from the drawbacks of the DARP algorithm,
meaning the arbitrary choice of robot’s initial positions.

Given the literature review, it is evident that multi-robot CPP has garnered consid-
erable attention from researchers. However, a direct evaluation and comparison of these
research works is challenging as each paper addresses a subtly different problem. A com-
monality that most offline multi-robot CPP algorithms share, including those mentioned
above, is their reliance on arbitrarily defining the number of robots and sensitivity to the
initial environmental conditions. Further research is imperative to devise new multi-robot
CPP algorithms that are devoid of these limitations, are more efficient, and tailored for
real-world applications. The Affinity Propagation algorithm proposed in this paper demon-
strates the potential to address these issues, and thus presents a significant advancement in
this field.

3. Problem Definition

The effective division of a given environment into distinct sub-areas for the deploy-
ment of multiple robots presents a challenging problem, particularly in the context of
ensuring contiguous access within each sub-region. To lay a solid foundation for our
investigation, we embarked on a mathematical formulation of this problem, succinctly
capturing the essential aspects and constraints involved. This mathematical model serves as
an unambiguous representation of the underlying problem, illuminating its core elements
and thus guiding the development of algorithmic solutions.

Our environment is described as a binary matrix representation, defining accessible
areas and obstacles. We considered robots that are assigned to different sections of this
environment, each section described as a ‘sub-area’. We also incorporated the distinct nature
of the terrain, assigning different types to each cell in the environment. The fundamental
goal was to find a valid division of the environment into sub-areas, each assigned to a

Appl. Sci. 2023, 13, 8207 5 of 15

unique robot, with the sub-areas satisfying a set of constraints related to accessibility and
continuity. The mathematical model elucidated below presents a precise description of the
problem, facilitating further discussion and solution design.

Given:

• An environment A of size X × Y represented as a binary matrix, A =
[
ai,j

]
, where

ai,j ∈ {0, 1} for all 1 ≤ i ≤ X and 1 ≤ j ≤ Y. In the environment matrix A, ai,j = 0
signifies an obstacle, whereas ai,j = 1 represents an accessible cell. By definition, robots
can only traverse accessible cells.

• A set of robots R = {r1, r2, . . . , rn}, where n is the number of robots.
• A matrix T =

[
ti,j

]
, where, that describes the type of each cell ai,j.

• A matrix E =
[
ei,j

]
, where, that describes the elevation level of each cell ai,j.

• An elevation weight value EW which represents the elevation weight importance factor,
and a floor type FW which represents the floor type elevation weight importance factor.

• A matrix Tw = [w1, w2, . . . , wn] where wi represents the weight assigned to the i th
floor type. The number of values in Tw is equal to the number of different floor types.
Based on this information, we seek:

• A set of sub-areas S = {s1, s2, . . . , sn}, where each sub-area si is a contiguous partition
of A assigned to robot ri. Formally, we define the following constraints:

• Each sub-area si maintains 4-neighbor continuity for all its accessible cells (Figure 1),
i.e., for each pair of accessible cells cm1,n1 and cm2,n2 in si, there exists a sequence of
accessible cells cmk ,nk , k = 1, . . . , p, such that cm1,n1 = cm1,n1 , cmp ,np = cm2,n2 , and cmk ,nk

is a 4-neighbor of cmk+1,nk+1 for all k = 1, . . . , p− 1. The 4-neighbor criterion specifies
that connectivity between cells must be either horizontal or vertical—not diagonal.
Thus, in essence, every cell in the sequence is horizontally or vertically adjacent to its
successor, for all values of k ranging from 1 to p − 1.

• This condition ensures a continuity or chain of 4-neighbor connections between any
two accessible cells within a given sub-area, thereby preserving the rule of 4-neighbor
connectivity throughout the entire grid.

• The environment A is the union of all sub-areas S, i.e., A = Un
i=1si.

• The intersection of any two distinct sub-areas si and sj for i 6= j is empty, i.e., si∩ sj = ∅
for all i 6= j.

• The problem is to find a bijective function f : R→ S such that f (ri) = si for all
1 ≤ i ≤ n, fulfilling the constraints mentioned above.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 16

Our environment is described as a binary matrix representation, defining accessible

areas and obstacles. We considered robots that are assigned to different sections of this

environment, each section described as a ‘sub‐area’. We also incorporated the distinct na‐

ture of the terrain, assigning different types to each cell in the environment. The funda‐

mental goal was to find a valid division of the environment into sub‐areas, each assigned

to a unique robot, with the sub‐areas satisfying a set of constraints related to accessibility

and continuity. The mathematical model elucidated below presents a precise description

of the problem, facilitating further discussion and solution design.

Given:

 An environment 𝐴 of size 𝑋 ൈ 𝑌 represented as a binary matrix, 𝐴 ൌ ൣ𝑎,൧, where

𝑎, ∈ ሼ0,1ሽ for all 1 𝑖 𝑋 and 1 𝑗 𝑌. In the environment matrix A, 𝑎, ൌ 0
signifies an obstacle, whereas 𝑎, ൌ 1 represents an accessible cell. By definition, ro‐
bots can only traverse accessible cells.

 A set of robots 𝑅 ൌ ሼ𝑟ଵ, 𝑟ଶ, … , 𝑟ሽ, where 𝑛 is the number of robots.

 A matrix 𝑇 ൌ ൣ𝑡,൧, where, that describes the type of each cell 𝑎,.
 A matrix 𝐸 ൌ ൣ𝑒,൧, where, that describes the elevation level of each cell 𝑎,.
 An elevation weight value 𝐸ௐ which represents the elevation weight importance

factor, and a floor type 𝐹ௐ which represents the floor type elevation weight im‐

portance factor.

 A matrix 𝑇௪ ൌ ሾ𝑤ଵ,𝑤ଶ, . . . ,𝑤ሿ where 𝑤 represents the weight assigned to the 𝑖 th
floor type. The number of values in 𝑇௪ is equal to the number of different floor types.

Based on this information, we seek:

 A set of sub‐areas 𝑆 ൌ ሼ𝑠ଵ, 𝑠ଶ, … , 𝑠ሽ, where each sub‐area 𝑠 is a contiguous partition
of 𝐴 assigned to robot 𝑟. Formally, we define the following constraints:

 Each sub‐area 𝑠 maintains 4‐neighbor continuity for all its accessible cells (Figure

1), i.e., for each pair of accessible cells 𝑐భ,భ and 𝑐మ,మ in 𝑠, there exists a sequence
of accessible cells 𝑐ೖ,ೖ , 𝑘 ൌ 1, … ,𝑝 , such that 𝑐భ,భ ൌ 𝑐భ,భ , 𝑐, ൌ 𝑐మ,మ , and

𝑐ೖ,ೖ is a 4‐neighbor of 𝑐ೖశభ,ೖశభ for all 𝑘 ൌ 1, … ,𝑝 െ 1. The 4‐neighbor criterion
specifies that connectivity between cells must be either horizontal or vertical—not

diagonal. Thus, in essence, every cell in the sequence is horizontally or vertically ad‐

jacent to its successor, for all values of k ranging from 1 to p − 1.

 This condition ensures a continuity or chain of 4‐neighbor connections between any

two accessible cells within a given sub‐area, thereby preserving the rule of 4‐neighbor

connectivity throughout the entire grid.

 The environment 𝐴 is the union of all sub‐areas 𝑆, i.e., 𝐴 ൌ ⋃ୀଵ
  𝑠.

 The intersection of any two distinct sub‐areas 𝑠 and 𝑠 for 𝑖 ് 𝑗 is empty, i.e., 𝑠 ∩
𝑠 ൌ ∅ for all 𝑖 ് 𝑗.

 The problem is to find a bijective function 𝑓:𝑅 → 𝑆 such that 𝑓ሺ𝑟ሻ ൌ 𝑠 for all 1
𝑖 𝑛, fulfilling the constraints mentioned above.

Figure 1. Image (a) depicts a cluster that consists of a single cell (blue cell). Green cells represent the

cells that have 4‐neighbor connectivity with the blue cell. Image (b) depicts a larger environment

Figure 1. Image (a) depicts a cluster that consists of a single cell (blue cell). Green cells represent the
cells that have 4-neighbor connectivity with the blue cell. Image (b) depicts a larger environment
along with its 4-neighbors. Essentially, 4-neighbor connectivity between cells prevents a robot from
moving diagonally within the environment.

4. The Proposed Algorithm
4.1. Data Initialization

To develop a strong solution for the multi-robot CPP problem, we introduced a new
algorithm based on AP [27] (Figure 2). AP is a powerful clustering algorithm commonly
used for dividing and assigning areas. In our approach, we rely on AP to group data points

Appl. Sci. 2023, 13, 8207 6 of 15

into meaningful clusters. The algorithm operates by exchanging messages containing real
values among the data points. These messages help the algorithm determine the best
number of clusters and how to assign the data points to those clusters. The algorithm
continues this message exchange process until a consensus is reached on the optimal cluster
configuration. This methodology allows us to bypass the necessity to predetermine the
number of robots or the dimensions of the respective sub-areas arbitrarily. As opposed to
conventional applications, we employed a meticulous transformation process to adapt our
grid-like environment, A, into a dataset suitable for AP (Figure 3).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

along with its 4‐neighbors. Essentially, 4‐neighbor connectivity between cells prevents a robot from

moving diagonally within the environment.

4. The Proposed Algorithm

4.1. Data Initialization

To develop a strong solution for the multi‐robot CPP problem, we introduced a new

algorithm based on AP [27] (Figure 2). AP is a powerful clustering algorithm commonly

used for dividing and assigning areas. In our approach, we rely on AP to group data

points into meaningful clusters. The algorithm operates by exchanging messages contain‐

ing real values among the data points. These messages help the algorithm determine the

best number of clusters and how to assign the data points to those clusters. The algorithm

continues this message exchange process until a consensus is reached on the optimal clus‐

ter configuration. This methodology allows us to bypass the necessity to predetermine the

number of robots or the dimensions of the respective sub‐areas arbitrarily. As opposed to

conventional applications, we employed a meticulous transformation process to adapt

our grid‐like environment, A, into a dataset suitable for AP (Figure 3).

Figure 2. The initialization step prepares the data, converts the grid to a set of data points, and

calculates the similarity matrix S. Then, the responsibility matrix R is updated. The responsibility

matrix reflects how well suited a data point is to serve as the exemplar for the other data points.

Next, the Availability matrix is updated. This matrix reflects how suitable an exemplar is for each

data point to serve as its exemplar. Finally, the algorithm iterates until the maximum number of

iterations set, or until there are no changes from the last iteration.

Figure 3. The initial environment (a) consists of obstacles (black cells), cells of type grass (green

cells), and cells of type asphalt (gray cells). In order to divide the environment into multiple sub‐

areas, we first have to convert the environment into a set of data points. (b) depicts the data points

in a X, Y Cartesian coordinate system.

Figure 2. The initialization step prepares the data, converts the grid to a set of data points, and
calculates the similarity matrix S. Then, the responsibility matrix R is updated. The responsibility
matrix reflects how well suited a data point is to serve as the exemplar for the other data points. Next,
the Availability matrix is updated. This matrix reflects how suitable an exemplar is for each data
point to serve as its exemplar. Finally, the algorithm iterates until the maximum number of iterations
set, or until there are no changes from the last iteration.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 16

along with its 4‐neighbors. Essentially, 4‐neighbor connectivity between cells prevents a robot from

moving diagonally within the environment.

4. The Proposed Algorithm

4.1. Data Initialization

To develop a strong solution for the multi‐robot CPP problem, we introduced a new

algorithm based on AP [27] (Figure 2). AP is a powerful clustering algorithm commonly

used for dividing and assigning areas. In our approach, we rely on AP to group data

points into meaningful clusters. The algorithm operates by exchanging messages contain‐

ing real values among the data points. These messages help the algorithm determine the

best number of clusters and how to assign the data points to those clusters. The algorithm

continues this message exchange process until a consensus is reached on the optimal clus‐

ter configuration. This methodology allows us to bypass the necessity to predetermine the

number of robots or the dimensions of the respective sub‐areas arbitrarily. As opposed to

conventional applications, we employed a meticulous transformation process to adapt

our grid‐like environment, A, into a dataset suitable for AP (Figure 3).

Figure 2. The initialization step prepares the data, converts the grid to a set of data points, and

calculates the similarity matrix S. Then, the responsibility matrix R is updated. The responsibility

matrix reflects how well suited a data point is to serve as the exemplar for the other data points.

Next, the Availability matrix is updated. This matrix reflects how suitable an exemplar is for each

data point to serve as its exemplar. Finally, the algorithm iterates until the maximum number of

iterations set, or until there are no changes from the last iteration.

Figure 3. The initial environment (a) consists of obstacles (black cells), cells of type grass (green

cells), and cells of type asphalt (gray cells). In order to divide the environment into multiple sub‐

areas, we first have to convert the environment into a set of data points. (b) depicts the data points

in a X, Y Cartesian coordinate system.

Figure 3. The initial environment (a) consists of obstacles (black cells), cells of type grass (green cells),
and cells of type asphalt (gray cells). In order to divide the environment into multiple sub-areas, we
first have to convert the environment into a set of data points. (b) depicts the data points in a X, Y
Cartesian coordinate system.

4.2. Calculating Normalized Distance

In this process, each cell within the initial environment is mapped onto a data point
in a two-dimensional coordinate system. To discern the relationship between data points,
we define a similarity function. In many standard applications of AP, similarity is gauged
by the negative of Euclidean distance. This inversely proportional relationship implies a
smaller similarity for larger absolute distances between data points.

Appl. Sci. 2023, 13, 8207 7 of 15

However, the application of Euclidean distance to our context of CPP within a two-
dimensional grid, where we aim to preserve each cluster’s continuity and its cell’s 4-
neighbor relationship, is not fitting. This metric fails to account for obstacles that may
disrupt the path between two locations. This discrepancy between Euclidean distances
and actual traversable distances can lead to significant errors, with the disparity being
exacerbated by the presence of numerous obstacles.

Understanding the inherent constraints of the traditional approach, we adapted our
similarity function to include a more tailored and nuanced model (Algorithm 1).

Algorithm 1: Calculating the normalized 4-neighbor distance between two points

1. Input: Binary matrix A with dimensions X by Y, starting point (x1, y1), and target point (x2, y2)
2. Output: minimum distance D between the starting and target points
3. Function 4_neighbor_actual_distance (A, x1, y1, x2, y2):
4. Step 1: Initialize a distance matrix D with dimensions X by Y, set all elements to infinity
5. Step 2: Initialize a queue Q
6. Step 3: Set D [x1, y1] = 0 and add (x1, y1) to Q
7. Step 4: While Q is not empty:
8. Step 4.1: Dequeue a point (x, y) from Q
9. Step 4.2: Loop through each of its four neighbors (xn, yn) in the environment A:
10. Step 4.2.1: If (xn, yn) is an obstacle (A[xn, yn] = 0), skip this neighbor
11. Step 4.2.2: If D[xn, yn] > D[x, y] + 1:
12. Step 4.2.2.1: Update D[xn, yn] = D[x, y] + 1
13. Step 4.2.2.2: Add (xn, yn) to Q
14. Step 5: Return D[x2, y2] as the minimum distance D between the starting and target points
15. End Function

Our novel algorithm not only calculates the minimum 4-neighbor distance between
cells, similar to a BFS approach, but also takes into account the type of floor and elevation of
each cell, thereby capturing crucial information about the landscape’s unique characteristics.
It thereby ensures a more accurate and practical representation of the environment’s
traversability. Incorporating these parameters directly into the similarity function provides
a more realistic framework for area division in 2D grid environments. This ultimately leads
to enhanced efficiency and effectiveness in our CPP solutions, as it ensures more prudent
and strategic allocation of sub-areas to robots, factoring in complex grid conditions that
could impact their performance.

4.3. Calculating the Similarity Matrix

In the similarity matrix, each element holds a singular metric quantifying its resem-
blance to the other elements in the adjacent vicinity (Algorithm 2). The degree of similarity
between any two elements augments in direct proportion with the increase in the similarity
value. It warrants highlighting that, due to the intrinsic characteristics of the AP method,
the similarity function S(p1, p2) may not necessarily be identical to S(p2, p1). Although
this directional feature is not incorporated in the current implementation of our proposed
methodology (Figure 4), potential future adaptations of the algorithm may consider its
integration to facilitate directional clustering of cells and other specific elements. Utilizing
the AP methodology, we classified data points into distinct sub-regions for each robot,
following an assessment of the similarity quotient between each pair of data points. The
AP algorithm operates through the transmission of messages that denote a data point’s
proclivity towards a particular cluster. Subsequent to the resolution on the number of
clusters and the allocation of data points to respective clusters, these messages are subject
to iterative refinement.

Appl. Sci. 2023, 13, 8207 8 of 15

Algorithm 2: The procedure that calculates the weighted Similarity Matrix S

1. Input:
2. Environment matrices: binary A, weight W, elevation E, floor F
3. Significance multipliers: t, q, r
4. Output: similarity matrix S
5. Function similarity_calculation(A, X, Y, W):
6. Step 1: Initialize an X by Y matrix S
7. Step 2: Loop through each pair of data points (x1, y1) and (x2, y2) in the environment A:
8. Step 2.1: Calculate the distance between the data points:
9. d = 4_neighbor_actual_distance (x1, y1, x2, y2)
10. Step 2.2: Calculate the elevation difference
11. e = |E[x1, y1]− E[x2, y2]|
12. Step 2.3: Calculate the floor discrepancy
13. f = |F[x1, y1]− F[x2, y2]|
14. Step 2.2: Multiply each metric by its weight factor:
15. d = t× d
16. e = q× e
17. f = r× f
18. Step 2.3: Store the similarity between the data points in the similarity matrix S:
19. S[x1, y1, x2, y2] = −(d + e + f)
20. Step 3: Return the similarity matrix S
21. End Function

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16

Although this directional feature is not incorporated in the current implementation of our

proposed methodology (Figure 4), potential future adaptations of the algorithm may con‐

sider its integration to facilitate directional clustering of cells and other specific elements.

Utilizing the AP methodology, we classified data points into distinct sub‐regions for each

robot, following an assessment of the similarity quotient between each pair of data points.

The AP algorithm operates through the transmission of messages that denote a data

point’s proclivity towards a particular cluster. Subsequent to the resolution on the number

of clusters and the allocation of data points to respective clusters, these messages are sub‐

ject to iterative refinement.

Algorithm 2: The procedure that calculates the weighted Similarity Matrix S

1. Input:

2. Environment matrices: binary 𝐴, weight 𝑊, elevation 𝐸, floor 𝐹
3. Significance multipliers: 𝑡, 𝑞, 𝑟
4. Output: similarity matrix 𝑆
5. Function similarity_calculationሺ𝐴,𝑋,𝑌,𝑊ሻ:
6. Step 1: Initialize an 𝑋 by 𝑌 matrix 𝑆
7. Step 2: Loop through each pair of data points ሺ𝑥ଵ,𝑦ଵሻ and ሺ𝑥ଶ,𝑦ଶሻ in the

environment 𝐴:
8. Step 2.1: Calculate the distance between the data points:

9. 𝑑 = 4_neighbor_actual_distance ሺ𝑥ଵ,𝑦ଵ, 𝑥ଶ,𝑦ଶሻ
10. Step 2.2: Calculate the elevation difference
11. 𝑒 ൌ |𝐸ሾ𝑥ଵ,𝑦ଵሿ െ 𝐸ሾ𝑥ଶ,𝑦ଶሿ|
12. Step 2.3: Calculate the floor discrepancy
13. 𝑓 ൌ |𝐹ሾ𝑥ଵ,𝑦ଵሿ െ 𝐹ሾ𝑥ଶ,𝑦ଶሿ|
14. Step 2.2: Multiply each metric by its weight factor:

15. 𝑑 ൌ 𝑡 ൈ 𝑑
16. 𝑒 ൌ 𝑞 ൈ 𝑒
17. 𝑓 ൌ 𝑟 ൈ 𝑓
18. Step 2.3: Store the similarity between the data points in the similarity

matrix 𝑆:
19. 𝑆ሾ𝑥ଵ,𝑦ଵ, 𝑥ଶ,𝑦ଶሿ ൌ െሺ𝑑 𝑒 𝑓ሻ
20. Step 3: Return the similarity matrix 𝑆
21. End Function

Figure 4. Two points (denoted with blue color) will always have the same similarity matrix with

each other. In practice, this means that going from point p1 to point p2 has the same cost as going

from point p2 to p1.

Figure 4. Two points (denoted with blue color) will always have the same similarity matrix with each
other. In practice, this means that going from point p1 to point p2 has the same cost as going from
point p2 to p1.

4.4. Generation of Clusters

After calculating the similarity between all pairs of data points, the AP algorithm was
used to cluster the data points into sub-areas for each robot. The AP algorithm works by
passing messages between data points, which indicate their preference for a particular
cluster. These messages are updated iteratively until a consensus is reached on the number
of clusters and which points belong to which cluster.

Upon the conclusion of the iterative message-passing phase, the AP algorithm pro-
ceeds towards the establishment of sub-areas (Algorithm 3). This crucial stage determines
the most suitable exemplar for each cluster—a data point that accrues the maximum prefer-
ence value when both availability and responsibility are taken into account. Consequently,
each data point (cell) is assigned to the exemplar of its respective cluster.

Appl. Sci. 2023, 13, 8207 9 of 15

Algorithm 3: Generating the sub-areas using AP

1. Input: grid-like area A with dimensions X by Y
2. Output: sub-areas for each robot
3. Step 1: Convert the grid-like area A into a set of data points
4. Represent each grid cell as a data point in a two-dimensional coordinate system
5. Step 2: Calculate the similarity between every pair of data points
6. Calculate the similarity based on Algorithms 1 and 2 (taking into consideration the weight
factor)
7. Store the similarity in a matrix S
8. Step 3: Initialize messages between data points
9. Initialize two matrices, R and A, to store the messages between data points
10. Initialize the self-similarity matrix, S, to store the similarity between a data point and itself
11. Step 4: Iterate until convergence
12. Update the responsibility matrix, R
13. Update the availability matrix, A
14. Step 5: Identify exemplars
15. Identify the data points with the highest responsibility and availability values as
exemplars
16. Step 6: Assign sub-areas to each robot
17. Assign each non-exemplar data point to the closest exemplar (only if they are spatially
connected using the 4-neighbor scheme)
18. Group the data points assigned to each exemplar into a sub-area
19. Step 8: Return the sub-areas for each robot

A key attribute of the proposed algorithm lies in its capacity to autonomously ascertain
the optimal number of clusters (sub-areas), without any need for user-defined inputs. This
ability to self-regulate cluster formation ensures flexibility and adaptability, which is
particularly beneficial in complex real-world applications.

The final output of the algorithm is a list of cluster labels for each data point in the
initial environment, indicating the respective robot assignment for each cell (Figure 5). This
clustered set of data points serves as the foundation for subsequent stages of the proposed
model, leading to the final path planning for the robots.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 16

Figure 5. The initial environment as depicted in (a) contains two layer types (denoted by green and

gray cells). The output of the algorithm in (b) shows the two clusters (blue and yellow), as they were

generated by the algorithm. It is worth mentioning that different values of the importance value 𝑇௪
may result in slightly different clusters.

5. Experimental Results

In this section, we present the findings obtained from our in‐depth analysis of the

proposed algorithm. The experimental results validate the efficiency and adaptability of

our algorithm in effectively decomposing the environment into suitable sub‐areas. The

evaluation metrics employed primarily centered on the criteria of computational time and

the quality of the generated clusters.

In terms of comparison with existing algorithms, it is important to highlight that our

proposed AP‐based algorithm addresses a unique problem in the field of multi‐robot CPP.

In the literature, many algorithms attempt to solve the issue of dividing an initial area into

multiple sub‐areas for each robot. However, the identical problem that our algorithm

solves, without arbitrarily pre‐determining the number of robots and their initial posi‐

tions, is lacking in the current literature. Nevertheless, we embarked on an indirect com‐

parative analysis, contrasting our algorithm’s performance with traditional algorithms for

area division in CPP, which rely on pre‐specified robot counts and locations. The compar‐

ative study primarily emphasized the improvements in efficiency, flexibility, and adapt‐

ability introduced by the proposed algorithm. Despite the inherent differences in the prob‐

lem contexts, the comparative analysis provided a clear demonstration of the strides made

by the AP‐based approach, particularly in situations where the initial robot positions are

in close proximity.

The conducted simulations predominantly operated in two meticulously constructed

environments of distinct sizes, each featuring distinct characteristics. Both environments

were generated using a pseudo‐random process, offering a unique combination of acces‐

sible areas and obstacles along with varying environmental types, ensuring the robustness

of the simulated scenarios.

The smaller 24 × 24 environment served as an essential proving ground for our pro‐

posed algorithm, presenting a grid with a variety of unique parameters and diverse char‐

acteristics. The total area consisted of 576 cells, with approximately 80% of the grid being

accessible and approximately 20% assigned as obstacles. These obstacles were evenly scat‐

tered throughout the grid to simulate potential hindrances that robots might encounter in

real‐world scenarios. Beyond mere accessibility, cells in the environment were character‐

ized by two distinct terrain types—grass and asphalt. The grass cells accounted for

roughly 60% of the accessible area, while the asphalt cells constituted the remaining 40%.

This bifurcation of terrain types aimed to emulate real‐world environments where robots

might encounter varied terrains requiring different path planning strategies and naviga‐

tion capabilities. To augment the realism of the simulation, cells were assigned varying

elevation levels. The elevations ranged from 0 to 10 units, with a standard deviation of

Figure 5. The initial environment as depicted in (a) contains two layer types (denoted by green and
gray cells). The output of the algorithm in (b) shows the two clusters (blue and yellow), as they were
generated by the algorithm. It is worth mentioning that different values of the importance value Tw

may result in slightly different clusters.

5. Experimental Results

In this section, we present the findings obtained from our in-depth analysis of the
proposed algorithm. The experimental results validate the efficiency and adaptability of
our algorithm in effectively decomposing the environment into suitable sub-areas. The

Appl. Sci. 2023, 13, 8207 10 of 15

evaluation metrics employed primarily centered on the criteria of computational time and
the quality of the generated clusters.

In terms of comparison with existing algorithms, it is important to highlight that our
proposed AP-based algorithm addresses a unique problem in the field of multi-robot CPP.
In the literature, many algorithms attempt to solve the issue of dividing an initial area
into multiple sub-areas for each robot. However, the identical problem that our algorithm
solves, without arbitrarily pre-determining the number of robots and their initial positions,
is lacking in the current literature. Nevertheless, we embarked on an indirect comparative
analysis, contrasting our algorithm’s performance with traditional algorithms for area
division in CPP, which rely on pre-specified robot counts and locations. The comparative
study primarily emphasized the improvements in efficiency, flexibility, and adaptability
introduced by the proposed algorithm. Despite the inherent differences in the problem
contexts, the comparative analysis provided a clear demonstration of the strides made by
the AP-based approach, particularly in situations where the initial robot positions are in
close proximity.

The conducted simulations predominantly operated in two meticulously constructed
environments of distinct sizes, each featuring distinct characteristics. Both environments
were generated using a pseudo-random process, offering a unique combination of accessible
areas and obstacles along with varying environmental types, ensuring the robustness of
the simulated scenarios.

The smaller 24 × 24 environment served as an essential proving ground for our
proposed algorithm, presenting a grid with a variety of unique parameters and diverse
characteristics. The total area consisted of 576 cells, with approximately 80% of the grid
being accessible and approximately 20% assigned as obstacles. These obstacles were
evenly scattered throughout the grid to simulate potential hindrances that robots might
encounter in real-world scenarios. Beyond mere accessibility, cells in the environment were
characterized by two distinct terrain types—grass and asphalt. The grass cells accounted
for roughly 60% of the accessible area, while the asphalt cells constituted the remaining 40%.
This bifurcation of terrain types aimed to emulate real-world environments where robots
might encounter varied terrains requiring different path planning strategies and navigation
capabilities. To augment the realism of the simulation, cells were assigned varying elevation
levels. The elevations ranged from 0 to 10 units, with a standard deviation of three units to
ensure a substantial variation in elevation across the grid. An elevation weight factor of 0.1
was applied to indicate the importance of elevation. Similarly, the type of terrain also had
an associated weight factor to indicate the importance of terrain type.

Subsequently, a second, larger, and more complex environment was introduced for
a more in-depth simulation. The dimensions of this environment are 100 × 100. The rest
of the parameters were the same as those of the previous smaller environment. Due to its
substantial size, detailed visualization was rendered impractical. Nevertheless, we present
empirical data and statistics to illustrate the algorithm’s performance. This larger grid
serves to emulate more complex real-world scenarios, thereby demonstrating the scalability
and adaptability of the proposed AP algorithm in diverse, challenging situations.

The computational experiments were conducted on a dedicated testbed configured
to ensure accurate and consistent results. The hardware setup encompassed a high-
performance workstation equipped with an Intel Core i7-9700K 8-core processor clocked at
3.60 GHz, bolstered with 32 GB of DDR4 RAM and enabling efficient data handling and
manipulation, which were particularly critical given the size of the datasets and complexity
of operations involved in Affinity Propagation.

Table 1 shows the experimental results for each setup. For each algorithm, we con-
ducted 20 experiments using the aforementioned parameters. The table shows the average
values for the number of generated clusters and the cluster quality.

Appl. Sci. 2023, 13, 8207 11 of 15

Table 1. Experimental results for two environments using three clustering algorithms for CPP.

Environment Size Algorithm Generated Clusters Cluster Quality

24 × 24 [18] n = 2 2 0.66
24 × 24 [19] n = 2 2 0.84
24 × 24 [25] n = 2 2 0.89
24 × 24 Proposed 2.19 0.91

100 × 100 [18] n = 2 2 0.39 (often failed to find solution)
100 × 100 [19] n = 2 2 0.85
100 × 100 [25] n = 2 2 0.92
100 × 100 Proposed 6.52 0.94

It is worth mentioning that it is difficult to evaluate the proposed algorithm by directly
comparing it with others found in the literature, since these algorithms are not config-
urable to identify the different cell types, elevation, and importance factor. Therefore, we
could only compare the results of these algorithms by taking into account the quality of
the clustering. The quality of clustering was calculated using the Silhouette Coefficient
(SC) [28].

The SC, also known as Silhouette Score, is a well-established and popular metric for
evaluating the quality of a clustering algorithm. The essence of this method lies in its dual-
faceted measurement approach, quantifying both cohesion and separation simultaneously
for each individual cell. It operates by comparing the average distance of a cell to all other
points within its own cluster (cohesion) against the average distance to points in the nearest
cluster (separation). The coefficient thus provides an aggregate measure of how similar
a given data point is to its own cluster relative to other clusters. Higher values of the SC
suggest that the cell is well-clustered and lower values imply that the specific cell might
have been better assigned to a neighboring cluster. It is widely regarded well due to its
intuitive interpretation, its capability to work with any distance metric (in our example the
normalized distance as presented in Algorithm 1), and its agnosticism towards the specific
clustering algorithm used. To properly evaluate the proposed algorithm, we calculated the
SC not only for the average distances but also for the similarity with regard to elevation
and floor type. The total SC calculated was weighted based on the respective weights of
floor type and elevation.

A more nuanced evaluation of the proposed algorithm was achieved by conducting
multiple runs in the same environment but with varied importance factors attached to
floor type and elevation. This exploratory approach aimed to investigate the algorithm’s
capability to adapt and respond to shifts in preference and the importance of environmental
features. For this experiment, the main focus was on gauging the homogeneity of the
resulting clusters. Homogeneity here was defined as the proportion of a cluster that
exhibits uniformity in terms of either floor type or elevation. When the importance factor
assigned to floor type was modified, we anticipated observing clusters that largely contain
the same floor type. Consequently, the algorithm’s sensitivity to floor type would be
reflected by the degree of homogeneity of the resulting clusters. Analogously, when the
emphasis is shifted to elevation, the homogeneity of the clusters, in terms of their elevation,
becomes the pivotal measure of algorithm performance. The experimental results are
presented in Table 2.

The experimental results indicate that the importance factors affect the final clusters
and their cells. It is important, however, to fine tune the exact values for each multi-robot
CPP task, based on the capabilities of the available robots. A visual representation of a
10 × 10 environment and the output of the algorithm with different importance factor TW
are depicted in Figure 6. A larger 24 × 24 environment is depicted in Figure 7.

Appl. Sci. 2023, 13, 8207 12 of 15

Table 2. Experimental results from the execution of the proposed algorithm in the same environment
using different elevation Ew and floor type FW weight factors. These values range from 0 to 1 and
describe how important the preservation of elevation or floor type within a generated sub-area is.
Increasing or decreasing both values at the same time reduces the importance of both variables within
the clustering process.

Environment Importance Factors (Ew, FW) Height Homogeneity Floor Homogeneity

100 × 100 (0, 0) 0.61 0.49
100 × 100 (0.8, 0) 0.75 0.45
100 × 100 (0.8, 0.8) 0.59 0.53
100 × 100 (0, 0.8) 0.53 0.78

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 16

A more nuanced evaluation of the proposed algorithm was achieved by conducting

multiple runs in the same environment but with varied importance factors attached to

floor type and elevation. This exploratory approach aimed to investigate the algorithm’s

capability to adapt and respond to shifts in preference and the importance of environmen‐

tal features. For this experiment, the main focus was on gauging the homogeneity of the

resulting clusters. Homogeneity here was defined as the proportion of a cluster that ex‐

hibits uniformity in terms of either floor type or elevation. When the importance factor

assigned to floor type was modified, we anticipated observing clusters that largely contain

the same floor type. Consequently, the algorithm’s sensitivity to floor type would be re‐

flected by the degree of homogeneity of the resulting clusters. Analogously, when the em‐

phasis is shifted to elevation, the homogeneity of the clusters, in terms of their elevation,

becomes the pivotal measure of algorithm performance. The experimental results are pre‐

sented in Table 2.

The experimental results indicate that the importance factors affect the final clusters

and their cells. It is important, however, to fine tune the exact values for each multi‐robot

CPP task, based on the capabilities of the available robots. A visual representation of a 10

× 10 environment and the output of the algorithm with different importance factor 𝑇ௐ are
depicted in Figure 6. A larger 24 × 24 environment is depicted in Figure 7.

Figure 6. The initial environment as depicted in (a) contains two layer types (green and gray). The

second image (b) shows the output clusters of the algorithm (blue and yellow) with an importance

factor 𝑇ௐ ൌ 0. The third image (c) shows the output of the algorithm for the same input environ‐

ment where the importance factor 𝑇ௐ is equal to 0.8. Increasing the importance factor of floor type

increases the likelihood that the algorithm will consider two cells of the same type to be more similar.

Figure 7. An example environment with dimensions 24 × 24. The initial environment (a) contains

two layer types (green and gray). The second image (b) shows the output clusters of the algorithm

(blue and yellow) with an importance factor 𝑇ௐ ൌ 0.3.

Figure 6. The initial environment as depicted in (a) contains two layer types (green and gray). The
second image (b) shows the output clusters of the algorithm (blue and yellow) with an importance
factor TW = 0. The third image (c) shows the output of the algorithm for the same input environment
where the importance factor TW is equal to 0.8. Increasing the importance factor of floor type
increases the likelihood that the algorithm will consider two cells of the same type to be more similar.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 16

A more nuanced evaluation of the proposed algorithm was achieved by conducting

multiple runs in the same environment but with varied importance factors attached to

floor type and elevation. This exploratory approach aimed to investigate the algorithm’s

capability to adapt and respond to shifts in preference and the importance of environmen‐

tal features. For this experiment, the main focus was on gauging the homogeneity of the

resulting clusters. Homogeneity here was defined as the proportion of a cluster that ex‐

hibits uniformity in terms of either floor type or elevation. When the importance factor

assigned to floor type was modified, we anticipated observing clusters that largely contain

the same floor type. Consequently, the algorithm’s sensitivity to floor type would be re‐

flected by the degree of homogeneity of the resulting clusters. Analogously, when the em‐

phasis is shifted to elevation, the homogeneity of the clusters, in terms of their elevation,

becomes the pivotal measure of algorithm performance. The experimental results are pre‐

sented in Table 2.

The experimental results indicate that the importance factors affect the final clusters

and their cells. It is important, however, to fine tune the exact values for each multi‐robot

CPP task, based on the capabilities of the available robots. A visual representation of a 10

× 10 environment and the output of the algorithm with different importance factor 𝑇ௐ are
depicted in Figure 6. A larger 24 × 24 environment is depicted in Figure 7.

Figure 6. The initial environment as depicted in (a) contains two layer types (green and gray). The

second image (b) shows the output clusters of the algorithm (blue and yellow) with an importance

factor 𝑇ௐ ൌ 0. The third image (c) shows the output of the algorithm for the same input environ‐

ment where the importance factor 𝑇ௐ is equal to 0.8. Increasing the importance factor of floor type

increases the likelihood that the algorithm will consider two cells of the same type to be more similar.

Figure 7. An example environment with dimensions 24 × 24. The initial environment (a) contains

two layer types (green and gray). The second image (b) shows the output clusters of the algorithm

(blue and yellow) with an importance factor 𝑇ௐ ൌ 0.3.

Figure 7. An example environment with dimensions 24 × 24. The initial environment (a) contains
two layer types (green and gray). The second image (b) shows the output clusters of the algorithm
(blue and yellow) with an importance factor TW = 0.3.

6. Discussion
6.1. Limitations

While this paper proposed an innovative application of AP in the field of multi-robot
CPP, it is not without limitations. A clear understanding of these potential constraints is
essential for refining the algorithm, enhancing its applicability, and identifying areas for
future research.

Appl. Sci. 2023, 13, 8207 13 of 15

The primary limitation arises from the AP’s inherent computational complexity. With a
time complexity of O(N2T), where N represents the number of data points and T denotes the
number of iterations, AP can be computationally expensive for large-scale environments.
This computational cost is primarily due to the calculation of the similarity matrix and
the iterative exchange of “responsibility” and “availability” messages. This renders the
algorithm less practical for real-time operations, particularly for larger environments, as it
may lead to increased latency in area division and subsequent path planning.

Another important limitation is the static nature of the AP algorithm, which is very
hard if not impossible to adjust for dynamic environments. The AP algorithm, as applied
in this context, assumes a static environment where the position of obstacles and the type
of each cell are known beforehand. In scenarios where the environment changes over time,
the algorithm would need to be rerun, potentially leading to delays and inefficiencies. The
ability to adapt to dynamic environments remains a significant challenge in the field of
multi-robot CPP and represents a key area for future research.

6.2. Performance Improvement

The performance of the AP algorithm, as is the case with most computational proce-
dures, is pivotal in real-world applications. The urgency for efficiency and execution speed
improvements is even more pronounced when dealing with multi-robot coverage path
planning, given the scale of the task and the inherent complexity associated with environ-
ment mapping and path planning. In light of this, several strategies can be considered to
enhance the execution speed and overall efficiency of the AP algorithm.

One crucial step of the AP algorithm is the calculation of the similarity matrix. Given
that this phase accounts for a significant portion of the computations (approximately 40%),
improving its efficiency is imperative. Given its intrinsic parallelizable nature, where the
similarity between each pair of data points can be calculated independently, we could
potentially harness the power of parallel computing. By distributing the calculation of
similarity measures across multiple cores or nodes in a parallel computing environment,
we can expedite this process markedly, thereby increasing the overall efficiency of the AP
algorithm.

On the other hand, the message passing phase of the AP algorithm, which is pivotal
for its iterative structure, is more challenging to parallelize. Although in theory, each
“responsibility” and “availability” message update could be computed in parallel, the
iterative nature of the AP algorithm necessitates the results of each preceding iteration.
Nonetheless, we could explore certain forms of “soft” parallelization, such as utilizing
vectorized operations or parallel map functions provided by high-level languages and
libraries. Even though this approach would not offer true parallelization due to each
iteration still needing to await the completion of all message updates, it could still provide
substantial speed improvements.

Besides parallel computing, other potential strategies for improving the efficiency
of the AP algorithm could include optimization of the algorithm’s parameters or the
application of hardware accelerators such as Graphics Processing Units (GPUs) [29]. Fine-
tuning parameters like the damping factor or the preference value could potentially reduce
the number of iterations required for convergence, thereby accelerating the execution speed.
Similarly, using GPUs, which are particularly suited for parallelizable tasks, could lead
to substantial reductions in computation time. However, such strategies would require
careful evaluation to balance efficiency gains against the potential impact on the quality of
the results.

7. Conclusions

The presented research introduces a paradigm shift in the domain of multi-robot CPP
by utilizing AP for optimally dividing the operational area among the robots. Instead of
using traditional methods, which largely rely on the number of robots and their initial
positions, this innovative methodology partitions the area into ‘n’ clusters using AP and

Appl. Sci. 2023, 13, 8207 14 of 15

subsequently assigns each cluster to a robot. This model, while functioning under the
assumption of an unlimited number of robots, provides a unique flexibility by allowing
the modification of the AP algorithm’s similarity function factor to control the number of
generated clusters.

One field where the proposed algorithm can find profound applications is precision
agriculture. This industry, already substantially automated, requires precision farming,
which involves the distribution of multiple tasks, such as seeding, fertilizing, and harvest-
ing, across a fleet of robotic entities. Identifying the optimal number of sub-areas becomes
paramount to prevent overlap and redundancy in operations. The proposed algorithm,
by facilitating automatic partitioning of farmland into sub-areas based on factors such as
crop type and topography paves the way for improved resource management. It ensures
optimal task distribution amongst autonomous agricultural machines, enhancing their
overall operational efficiency, thereby contributing to a significant reduction in the time
and cost associated with agricultural practices.

Additionally, this algorithm can significantly revolutionize urban search and rescue
operations. Typically, these operations are time-sensitive, requiring the division of large,
affected areas into smaller manageable sub-areas to enable quick and efficient search
strategies. The conventional method of dividing areas based on available rescuers may not
be effective, especially in scenarios where the rescuers are robotic entities. By employing
this algorithm, we could efficiently partition the search area into the appropriate number of
sub-areas (clusters) regardless of the number of robots, optimizing the search strategy and
increasing the likelihood of successful rescue operations. Moreover, with the AP algorithm’s
adaptable similarity function factor, the rescue team has flexibility in regulating the number
of generated clusters, facilitating a more efficient and coordinated search operation.

As a significant progression in multi-robot CPP, this methodology paves the way
for novel research directions and practical enhancements in this field. The capability to
deliver effective area division and path optimization, without burdening the user with the
arbitrary decision of the number of robots or their initial positions, sets a new benchmark
for multi-robot CPP implementations. Moreover, our work provides a strong foundation
for the development of enhanced strategies that can address the existing complexities of
multi-robot CPP and further expedite the deployment of autonomous systems in diverse
fields ranging from agriculture to reconnaissance missions. Future work will focus on
refining the proposed model, incorporating more complex environmental factors, and
exploring the potential of integrating this method with different path planning algorithms
for better performance.

Author Contributions: Conceptualization, N.B. and M.D.; methodology, N.B.; writing—original draft
preparation, N.B.; writing—review and editing, N.B.; visualization, N.B.; supervision, M.D.; funding
acquisition, N.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was carried out as part of the project «Smart Safe Navigation for Electric Bicy-
cles and Skateboards» (Project code:KMP6-0292520) under the framework of the Action «Investment
Plans of Innovation» of the Operational Program «Central Macedonia 2014 2020», that is co-funded
by the European Regional Development Fund and Greece.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mourtzis, D.; Angelopoulos, J.; Panopoulos, N. A Literature Review of the Challenges and Opportunities of the Transition from

Industry 4.0 to Society 5.0. Energies 2022, 15, 6276. [CrossRef]
2. Kagermann, H.; Wahlster, W. Ten Years of Industrie 4.0. Science 2022, 4, 26. [CrossRef]
3. Demir, K.A.; Döven, G.; Sezen, B. Industry 5.0 and human-robot co-working. Procedia Comput. Sci. 2019, 158, 688–695. [CrossRef]

https://doi.org/10.3390/en15176276
https://doi.org/10.3390/sci4030026
https://doi.org/10.1016/j.procs.2019.09.104

Appl. Sci. 2023, 13, 8207 15 of 15

4. Wang, E.Z.; Lee, C.C.; Li, Y. Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries. Energy
Econ. 2022, 105, 105748. [CrossRef]

5. Kyrarini, M.; Lygerakis, F.; Rajavenkatanarayanan, A.; Sevastopoulos, C.; Nambiappan, H.R.; Chaitanya, K.K.; Makedon, F. A
survey of robots in healthcare. Technologies 2021, 9, 8. [CrossRef]

6. Oliveira, L.F.; Moreira, A.P.; Silva, M.F. Advances in agriculture robotics: A state-of-the-art review and challenges ahead. Robotics
2021, 10, 52. [CrossRef]

7. Aivazidou, E.; Tsolakis, N. Transitioning towards human–robot synergy in agriculture: A systems thinking perspective. Syst. Res.
Behav. Sci. 2022, 40, 536–551. [CrossRef]

8. Marinoudi, V.; Sørensen, C.G.; Pearson, S.; Bochtis, D. Robotics and labour in agriculture. A context consideration. Biosyst. Eng.
2019, 184, 111–121. [CrossRef]

9. Shamout, M.; Ben-Abdallah, R.; Alshurideh, M.; Alzoubi, H.; Kurdi, B.A.; Hamadneh, S. A conceptual model for the adoption of
autonomous robots in supply chain and logistics industry. Uncertain Supply Chain. Manag. 2022, 10, 577–592. [CrossRef]

10. Jorge, V.A.M.; Granada, R.; Maidana, R.G.; Jurak, D.A.; Heck, G.; Negreiros, A.P.F.; dos Santos, D.H.; Gonçalves, L.M.G.; Amory,
A.M. A Survey on Unmanned Surface Vehicles for Disaster Robotics: Main Challenges and Directions. Sensors 2019, 19, 702.
[CrossRef]

11. Angelopoulos, G.; Baras, N.; Dasygenis, M. Secure autonomous cloud brained humanoid robot assisting rescuers in hazardous
environments. Electronics 2021, 10, 124. [CrossRef]

12. Dogru, S.; Marques, L. ECO-CPP: Energy constrained online coverage path planning. Robot. Auton. Syst. 2022, 157, 104242.
[CrossRef]

13. Patle, B.K.; Pandey, A.; Parhi, D.R.K.; Jagadeesh, A.J.D.T. A review: On path planning strategies for navigation of mobile robot.
Def. Technol. 2019, 15, 582–606. [CrossRef]

14. Moysiadis, V.; Sarigiannidis, P.; Vitsas, V.; Khelifi, A. Smart farming in Europe. Comput. Sci. Rev. 2021, 39, 100345. [CrossRef]
15. Utamima, A.; Reiners, T.; Ansaripoor, A.H. Optimisation of agricultural routing planning in field logistics with Evolutionary

Hybrid Neighbourhood Search. Biosyst. Eng. 2019, 184, 166–180. [CrossRef]
16. Moysiadis, V.; Tsolakis, N.; Katikaridis, D.; Sørensen, C.G.; Pearson, S.; Bochtis, D. Mobile Robotics in Agricultural Opera-tions: A

Narrative Review on Planning Aspects. Appl. Sci. 2020, 10, 3453. [CrossRef]
17. Almadhoun, R.; Taha, T.; Seneviratne, L.; Zweiri, Y. A survey on multi-robot coverage path planning for model reconstruction

and mapping. SN Appl. Sci. 2019, 1, 847. [CrossRef]
18. Kapoutsis, A.C.; Chatzichristofis, S.A.; Kosmatopoulos, E.B. DARP: Divide areas algorithm for optimal multi-robot coverage path

planning. J. Intell. Robot. Syst. 2017, 86, 663–680. [CrossRef]
19. Idir, O.; Renzaglia, A. Multi-Robot Weighted Coverage Path Planning: A Solution based on the DARP Algorithm. In Proceedings

of the 2022 17th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 11–13 December
2022; pp. 98–104.

20. Huang, X.; Sun, M.; Zhou, H.; Liu, S. A multi-robot coverage path planning algorithm for the environment with multiple land
cover types. IEEE Access 2020, 8, 198101–198117. [CrossRef]

21. Tang, J.; Sun, C.; Zhang, X. MSTC: Multi-robot Coverage Path Planning under Physical Constrain. In Proceedings of the 2021
IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 2518–2524.

22. Collins, L.; Ghassemi, P.; Esfahani, E.T.; Doermann, D.; Dantu, K.; Chowdhury, S. Scalable coverage path planning of multi-robot
teams for monitoring non-convex areas. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation
(ICRA), Xi’an, China, 30 May–5 June 2021; pp. 7393–7399.

23. Qin, Y.; Fu, L.; He, D.; Liu, Z. Improved Optimization Strategy Based on Region Division for Collaborative Multi-Agent Coverage
Path Planning. Sensors 2023, 23, 3596. [CrossRef]

24. Abd Rahman, N.A.; Sahari KS, M.; Hamid, N.A.; Hou, Y.C. A coverage path planning approach for autonomous radiation
mapping with a mobile robot. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221116483. [CrossRef]

25. Huang, Y.; Li, M.; Zhao, T. A Multi-robot Coverage Path Planning Algorithm Based on Improved DARP Algorithm. arXiv 2023,
arXiv:2304.09741.

26. Gao, C.; Kou, Y.; Li, Z.; Xu, A.; Li, Y.; Chang, Y. Optimal multirobot coverage path planning: Ideal-shaped spanning tree. Math.
Probl. Eng. 2018, 2018, 3436429. [CrossRef]

27. Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [CrossRef] [PubMed]
28. Dinh, D.T.; Fujinami, T.; Huynh, V.N. Estimating the optimal number of clusters in categorical data clustering by silhouette

coefficient. In Knowledge and Systems Sciences, Proceedings of the 20th International Symposium 2019, KSS 2019, Da Nang, Vietnam, 29
November–1 December 2019; Springer: Singapore, 2019.

29. Hijma, P.; Heldens, S.; Sclocco, A.; Van Werkhoven, B.; Bal, H.E. Optimization Techniques for GPU Programming. ACM Comput.
Surv. 2023, 239, 81. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eneco.2021.105748
https://doi.org/10.3390/technologies9010008
https://doi.org/10.3390/robotics10020052
https://doi.org/10.1002/sres.2887
https://doi.org/10.1016/j.biosystemseng.2019.06.013
https://doi.org/10.5267/j.uscm.2021.11.006
https://doi.org/10.3390/s19030702
https://doi.org/10.3390/electronics10020124
https://doi.org/10.1016/j.robot.2022.104242
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/j.cosrev.2020.100345
https://doi.org/10.1016/j.biosystemseng.2019.06.001
https://doi.org/10.3390/app10103453
https://doi.org/10.1007/s42452-019-0872-y
https://doi.org/10.1007/s10846-016-0461-x
https://doi.org/10.1109/ACCESS.2020.3027422
https://doi.org/10.3390/s23073596
https://doi.org/10.1177/17298806221116483
https://doi.org/10.1155/2018/3436429
https://doi.org/10.1126/science.1136800
https://www.ncbi.nlm.nih.gov/pubmed/17218491
https://doi.org/10.1145/3570638

	Introduction
	Literature Review
	Problem Definition
	The Proposed Algorithm
	Data Initialization
	Calculating Normalized Distance
	Calculating the Similarity Matrix
	Generation of Clusters

	Experimental Results
	Discussion
	Limitations
	Performance Improvement

	Conclusions
	References

