Non-Destructive Damage Evaluation Based on Static Response for Beam-like Structures Considering Shear Deformation
Abstract
:1. Introduction
2. Formulation for Damage Identification
2.1. Element Stiffness Matrix Based on Timoshenko Beam Theory
2.2. Objective Function
2.3. Analysis Method for Damage Identification Results
3. Effect of Shear Deformation on Nodal Displacement of a Simply Supported Beam
4. Damage Identification of Beam-like Structures Considering Shear Deformation
4.1. Example 1: Simply Supported Beam with Three Elements
4.2. Example 2: Simply Supported Beam with Five Elements
4.3. Example 3: Simply Supported Overhanging Beam with Five Elements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ni, Y.Q.; Chen, R. Strain monitoring based bridge reliability assessment using parametric Bayesian mixture model. Eng. Struct. 2021, 226, 11406. [Google Scholar] [CrossRef]
- Dawood, T.; Zhu, Z.; Zayed, T. Computer vision–based model for moisture marks detection and recognition in subway networks. J. Comput. Civ. Eng. 2018, 32, 04017079. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Ou, J. Damage, nondestructive evaluation and rehabilitation of FRP composite-RC structure, A review. Constr. Build. Mater. 2020, 271, 121551. [Google Scholar] [CrossRef]
- Naito, H.; Sugiyama, R.; Bolander, J.E. Local Vibration Testing and Damage Evaluation for RC Bridge Decks. J. Struct. Eng. 2020, 146, 04020168. [Google Scholar] [CrossRef]
- Wang, J.; Xu, T.; Zhang, L.; Chang, T.; Zhang, J.; Yan, S.; Cui, H.L. Nondestructive damage evaluation of composites based on terahertz and X-ray image fusion. NDT E Int. Indep. Nondestruct. Test. Eval. 2022, 127, 102616. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, C.; Gu, X.; Li, J. A novel deep learning-based method for damage identification of smart building structures. Struct. Health Monit. 2019, 18, 143–163. [Google Scholar] [CrossRef] [Green Version]
- Hou, R.; Xia, Y. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019. J. Sound Vib. 2021, 491, 115741. [Google Scholar] [CrossRef]
- Capponi, L.; Slavi, J.; Rossi, G.; Boltear, M. Thermoelasticity-based modal damage identification. Int. J. Fatigue 2020, 137, 105661. [Google Scholar] [CrossRef]
- Yang, X.; Ouyang, H.; Guo, X.; Cao, S. Modal Strain Energy-Based Model Updating Method for Damage Identification on Beam-Like Structures. J. Struct. Eng. 2020, 146, 04020246. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, J.; Lu, Z.R. A fast friction-model-inspired sparse regularization approach for damage identification with modal data. Comput. Struct. 2020, 227, 106142. [Google Scholar] [CrossRef]
- Lu, Z.R.; Zhou, J.; Wang, L.; Liu, J. Damage identification from static tests by eigenparameter decomposition and sparse regularization. Struct. Health Monit. 2019, 19, 147592171988098. [Google Scholar] [CrossRef]
- Xiao, F.; Fan, J.; Chen, G.S.; Hulsey, J.L. Bridge health monitoring and damage identification of truss bridge using strain measurements. Adv. Mech. Eng. 2019, 11, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Zhu, W.; Meng, X.; Chen, G.S. Parameter identification of structures with different connections using static responses. Appl. Sci. 2022, 12, 5896. [Google Scholar] [CrossRef]
- Pathirage, C.S.N.; Li, J.; Li, L.; Hao, H.; Liu, W.; Wang, R. Development and application of a deep learning–based sparse autoencoder framework for structural damage identification. Struct. Health Monit. 2019, 18, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Sanayei, M.; Saletnik, M.J. Parameter estimation of structures from static strain measurements I: Formulation. J. Struct. Eng. 1996, 122, 555–562. [Google Scholar] [CrossRef]
- Sanayei, M.; Phelps, J.E.; Sipple, J.D.; Bell, E.S.; Brenner, B.R. Instrumentation, nondestructive testing, and finite-element model updating for bridge evaluation using strain measurements. J. Bridge Eng. 2012, 17, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Hulsey, J.L.; Chen, G.S.; Xiang, Y. Optimal static strain sensor placement for truss bridges. Int. J. Distrib. Sens. Netw. 2017, 13, 155014771770792. [Google Scholar] [CrossRef]
- Xiao, F.; Sun, H.; Mao, Y.; Chen, G.S. Damage identification of large-scale space truss structures based on stiffness separation method. Structures 2023, 53, 109–118. [Google Scholar] [CrossRef]
- Deng, F.; Wei, S.; Jin, X.; Chen, Z.; Li, H. Damage identification of long-span bridges based on the correlation of probability distribution of monitored quasi-static responses. Mech. Syst. Signal Process. 2023, 186, 109908. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, C.; Li, X. Structural damage detection of the bridge under moving loads with the quasi-static displacement influence line from one sensor. Measurement 2023, 211, 112599. [Google Scholar] [CrossRef]
- Le, N.T.; Thambiratnam, D.P.; Nguyen, A.; Chan, T.H.T. A new method for locating and quantifying damage in beams from static deflection changes. Eng. Struct. 2019, 180, 779–792. [Google Scholar] [CrossRef]
- Ma, Q.; Solís, M. Multiple damage identification in beams from full-field digital photogrammetry. J. Eng. Mech. 2019, 145, 04019054. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Q. Damage detection in beam-like structures using static shear energy redistribution. Front. Struct. Civ. Eng. 2022, 16, 1552–1564. [Google Scholar] [CrossRef]
- Zhang, X.; Thompson, D.; Sheng, X. Differences between Euler-Bernoulli and Timoshenko beam formulations for calculating the effects of moving loads on a periodically supported beam. J. Sound Vib. 2020, 481, 115432. [Google Scholar] [CrossRef]
- Abbas, W.; Bakr, O.K.; Nassar, M.M.; Abdeen, M.; Shabrawy, M. Analysis of Tapered Timoshenko and Euler–BernoulliBeams on an Elastic Foundation with Moving Loads. J. Math. 2021, 2021, 6616707. [Google Scholar] [CrossRef]
- Larsen, M.L.; Adhikari, S.; Arora, V. Analysis of stochastically parameterized prestressed beams and frames. Eng. Struct. 2021, 249, 113312. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, S.; Zhai, W. Exact closed-form solution for free vibration of Euler-Bernoulli and Timoshenko beams with intermediate elastic supports. Int. J. Mech. Sci. 2022, 213, 106842. [Google Scholar] [CrossRef]
- EN 1992-1-1; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings. CEN: Brussels, Belgium, 2002.
- ACI Committee 318 Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute: Detroit, MI, USA, 2000.
- Ding, Z.; Li, J.; Hao, H.; Lu, Z.R. Structural damage identification with uncertain modelling error and measurement noise by clustering based tree seeds algorithm. Eng. Struct. 2019, 185, 301–314. [Google Scholar] [CrossRef]
- Lu, Z.R.; Zhou, J.; Wang, L. On choice and effect of weight matrix for response sensitivity-based damage identification with measurement and model errors. Mech. Syst. Signal Process. 2019, 114, 1–24. [Google Scholar] [CrossRef]
- Seventekidis, P.; Giagopoulos, D. Model error effects in supervised damage identification of structures with numerically trained classifiers. Mech. Syst. Signal Process. 2023, 184, 109741. [Google Scholar] [CrossRef]
- Przemieniecki, J.S. Theory of Matrix Structural Analysis. Library of Congress Catalog Card Number 67; Courier Corporation: Gloucester, MA, USA, 1968. [Google Scholar]
- Logan, D.L. A First Course in the Finite Element Method, Enhanced Edition, SI Version; Cengage Learning: Boston, MA, USA, 2022. [Google Scholar]
- ANSI/AISC 360-10; Specification for Structural Steel Buildings. AISC: Chicago, IL, USA, 2010.
- Castillo, E.; Nogal, M.; Antonio Lozano-Galant, J.; Turmo, J. Solving some special cases of monomial ratio equations appearing frequently in physical and engineering problems. Math. Probl. Eng. 2016, 2016, 9764913. [Google Scholar] [CrossRef] [Green Version]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks, a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2018, 378, 686–707. [Google Scholar] [CrossRef]
- Wambacq, J.; Maes, K.; Rezayat, A.; Guillaume, P.; Lombaert, G. Localization of dynamic forces on structures with an interior point method using group sparsity. Mech. Syst. Signal Process. 2018, 115, 593–606. [Google Scholar] [CrossRef]
- Tofallis, C. A better measure of relative prediction accuracy for model selection and model estimation. J. Oper. Res. Soc. 2015, 66, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
Shape | Depth h | Width b | Thickness tf | Thickness tw |
---|---|---|---|---|
mm | mm | mm | mm | |
Wide flange cross-section | 150 | 100 | 5 | 4 |
Rectangular cross-section | 150 | 100 | - | - |
Scenario | Element 1 (mm) | Element 2 (mm) | Element 3 (mm) |
---|---|---|---|
1 | 0.8 | / | / |
2 | / | 1.2 | / |
3 | / | / | 1 |
4 | 0.8 | 1.2 | / |
5 | 0.8 | / | 1 |
6 | / | 1.2 | 1 |
Scenario | Beam Theory | Iterations | Element 1 (mm) | Element 2 (mm) | Element 3 (mm) |
---|---|---|---|---|---|
1 | Timoshenko | 13 | 0.80 | / | / |
Euler–Bernoulli | 8 | 0.89 | / | / | |
2 | Timoshenko | 12 | / | 1.20 | / |
Euler–Bernoulli | 12 | / | 1.21 | / | |
3 | Timoshenko | 7 | / | / | 1.00 |
Euler–Bernoulli | 11 | / | / | 1.08 | |
4 | Timoshenko | 20 | 0.80 | 1.20 | / |
Euler–Bernoulli | 17 | 0.83 | 1.21 | / | |
5 | Timoshenko | 14 | 0.80 | / | 1.00 |
Euler–Bernoulli | 16 | 0.86 | / | 1.06 | |
6 | Timoshenko | 17 | / | 1.20 | 1.00 |
Euler–Bernoulli | 14 | / | 1.21 | 1.03 |
Scenario | Beam Theory | Iterations | Element 1 (mm) | Element 2 (mm) | Element 3 (mm) |
---|---|---|---|---|---|
1 | Timoshenko | 8 | 0.80 | / | / |
Euler–Bernoulli | 9 | 1.02 | / | / | |
2 | Timoshenko | 9 | / | 1.20 | / |
Euler–Bernoulli | 15 | / | 1.28 | / | |
3 | Timoshenko | 5 | / | / | 1.00 |
Euler–Bernoulli | 9 | / | / | 1.22 | |
4 | Timoshenko | 18 | 0.80 | 1.20 | / |
Euler–Bernoulli | 19 | 0.80 | 1.28 | / | |
5 | Timoshenko | 13 | 0.80 | / | 1.00 |
Euler–Bernoulli | 12 | 0.93 | / | 1.12 | |
6 | Timoshenko | 21 | / | 1.20 | 1.00 |
Euler–Bernoulli | 17 | / | 1.28 | 1.00 |
Scenario | Wide Flange Cross-Section | Rectangular Cross-Section |
---|---|---|
1 | 10.93% | 27.70% |
2 | 1.15% | 6.57% |
3 | 7.62% | 21.91% |
4 | 2.14% | 3.49% |
5 | 6.55% | 14.02% |
6 | 2.01% | 3.49% |
Scenario | Element 1 (mm) | Element 2 (mm) | Element 3 (mm) | Element 4 (mm) | Element 5 (mm) |
---|---|---|---|---|---|
1 | 0.75 | / | / | 0.3 | / |
2 | / | 0.5 | / | 0.3 | 0.2 |
3 | 0.75 | 0.5 | 1 | / | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Xiao, F.; Yan, Y.; Chen, G.S.; Ma, Y. Non-Destructive Damage Evaluation Based on Static Response for Beam-like Structures Considering Shear Deformation. Appl. Sci. 2023, 13, 8219. https://doi.org/10.3390/app13148219
Meng X, Xiao F, Yan Y, Chen GS, Ma Y. Non-Destructive Damage Evaluation Based on Static Response for Beam-like Structures Considering Shear Deformation. Applied Sciences. 2023; 13(14):8219. https://doi.org/10.3390/app13148219
Chicago/Turabian StyleMeng, Xiangwei, Feng Xiao, Yu Yan, Gang S. Chen, and Yanlong Ma. 2023. "Non-Destructive Damage Evaluation Based on Static Response for Beam-like Structures Considering Shear Deformation" Applied Sciences 13, no. 14: 8219. https://doi.org/10.3390/app13148219
APA StyleMeng, X., Xiao, F., Yan, Y., Chen, G. S., & Ma, Y. (2023). Non-Destructive Damage Evaluation Based on Static Response for Beam-like Structures Considering Shear Deformation. Applied Sciences, 13(14), 8219. https://doi.org/10.3390/app13148219