Circularly Polarized High-Gain Fabry-Perot Cavity Antenna with High Sidelobe Suppression
Abstract
:1. Introduction
2. Proposed FPCA Design and Operation
2.1. Design of the PRS and AMC Unit Cells and Feeder
2.2. Mechanism of the CP-PRS as a Polarizer
2.3. Operation of the Resonance Cavity
3. Simulation and Experiment Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasani, H.; Silva, J.S.; Capdevila, S.; Garcia-Vigueras, M.; Mosig, J.R. Dual-Band Circularly Polarized Transmitarray Antenna for Satellite Communications at (20, 30) GHz. IEEE Trans. Antennas Propag. 2019, 67, 5325–5333. [Google Scholar] [CrossRef]
- Yang, S.; Yan, Z.; Cai, M.; Li, X. Low-Profile Dual-Band Circularly Polarized Antenna Combining Transmitarray and Reflectarray for Satellite Communications. IEEE Trans. Antennas Propag. 2022, 70, 5983–5988. [Google Scholar] [CrossRef]
- Guo, Q.-Y.; Wong, H. Wideband and high-gain Fabry–Pérot cavity antenna with switched beams for millimeter-wave applications. IEEE Trans. Antennas Propag. 2019, 67, 4339–4347. [Google Scholar] [CrossRef]
- Goudarzi, A.; Honari, M.M.; Mirzavand, R. Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics 2020, 9, 1080. [Google Scholar] [CrossRef]
- Rabbani, M.S.; Churm, J.; Feresidis, A.P. Fabry–Perot Beam Scanning Antenna for Remote Vital Sign Detection at 60 GHz. IEEE Trans. Antennas Propag. 2021, 69, 3115–3124. [Google Scholar] [CrossRef]
- Nam, I.-J.; Lee, S.; Kim, D. Miniaturized beam reconfigurable reflectarray antenna with wide 3-D beam coverage. IEEE Trans. Antennas Propag. 2021, 70, 2613–2622. [Google Scholar] [CrossRef]
- Prado, D.R. Plane-Wave Generation through General Near-Field In-Band Reflectarray Direct Layout Optimization with Figure of Merit Constraints in mm-Wave Band. Electronics 2022, 12, 91. [Google Scholar] [CrossRef]
- Yi, X.; Su, T.; Li, X.; Wu, B.; Yang, L. A Double-Layer Wideband Transmitarray Antenna Using Two Degrees of Freedom Elements Around 20 GHz. IEEE Trans. Antennas Propag. 2019, 67, 2798–2802. [Google Scholar] [CrossRef]
- Yi, X.J.; Su, T.; Wu, B.; Chen, J.Z.; Yang, L.; Li, X. A Double-Layer Highly Efficient and Wideband Transmitarray Antenna. IEEE Access 2019, 7, 23285–23290. [Google Scholar] [CrossRef]
- Jang, W.; Jeon, Y.-G.; Maeng, H.-J.; Kim, J.; Kim, D. Novel Beam Scan Method of Fabry–Perot Cavity (FPC) Antennas. Appl. Sci. 2021, 11, 11005. [Google Scholar] [CrossRef]
- Rabbani, M.S.; Churm, J.; Feresidis, A.P. Continuous Beam-Steering Low-Loss Millimeter-Wave Antenna Based on a Piezo-Electrically Actuated Metasurface. IEEE Trans. Antennas Propag. 2021, 70, 2439–2449. [Google Scholar] [CrossRef]
- Ma, C.J.; Zheng, S.Y.; Pan, Y.M.; Chen, Z. Millimeter-Wave Fully Integrated Dielectric Resonator Antenna and Its Multi-beam Application. IEEE Trans. Antennas Propag. 2022, 70, 6571–6580. [Google Scholar] [CrossRef]
- Lee, J.-G. Compact and robust Fabry-Perot cavity antenna with PEC wall. J. Electromagn. Eng. Sci. 2021, 21, 184–188. [Google Scholar] [CrossRef]
- Hur, J.; Choo, H. Design of a small array antenna with an extended cavity structure for wireless power transmission. J. Electromagn. Eng. Sci. 2020, 20, 9–15. [Google Scholar] [CrossRef]
- Cai, Y.-M.; Li, K.; Li, W.; Gao, S.; Yin, Y.; Zhao, L.; Hu, W. Dual-band circularly polarized transmitarray with single linearly polarized feed. IEEE Trans. Antennas Propag. 2020, 68, 5015–5020. [Google Scholar] [CrossRef]
- Naseri, P.; Matos, S.A.; Costa, J.R.; Fernandes, C.A. Phase-delay versus phase-rotation cells for circular polarization transmit arrays—Application to satellite Ka-band beam steering. IEEE Trans. Antennas Propag. 2017, 66, 1236–1247. [Google Scholar] [CrossRef]
- Naseri, P.; Riel, M.; Demers, Y.; Hum, S.V. A dual-band dual-circularly polarized reflectarray for K/Ka-band space applications. IEEE Trans. Antennas Propag. 2020, 68, 4627–4637. [Google Scholar] [CrossRef]
- Dutta, K.; Mittra, R.; Chatterjee, A. Wideband Design of A Circularly Polarized Fabry-Perot Cavity Antenna. In Proceedings of the IEEE International Symposium on Antenna and Propagation and USNC-URSI Radio Science meeting (APS/URSI), Singapore, 4–10 December 2021; pp. 973–974. [Google Scholar]
- Li, W.; Gao, S.; Cai, Y.; Luo, Q.; Sobhy, M.; Wei, G.; Xu, J.; Li, J.; Wu, C.; Cheng, Z. Polarization-reconfigurable circularly polarized planar antenna using switchable polarizer. IEEE Trans. Antennas Propag. 2017, 65, 4470–4477. [Google Scholar] [CrossRef]
- Ren, J.; Jiang, W.; Zhang, K.; Gong, S. A high-gain circularly polarized Fabry–Perot antenna with wideband low-RCS property. IEEE Antennas Wireless Propag. Lett. 2018, 17, 853–856. [Google Scholar] [CrossRef]
- Li, J.; Huang, X. Dual Circular Polarization Fabry–Pérot Resonant Antennas Based on Meta-Surface. Electronics 2023, 12, 173. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.T.; Chen, M.; Ke, J.C.; Chen, M.Z.; Zhang, C.; Yang, R.; Li, X.; Cheng, Q.; Cui, T.J. Folded transmitarray antenna with circular polarization based on metasurface. IEEE Trans. Antennas Propag. 2020, 69, 806–814. [Google Scholar] [CrossRef]
- Lei, H.; Liu, Y.; Jia, Y.; Yue, Z.; Wang, X. A Low-Profile Dual-Band Dual-Circularly Polarized Folded Transmitarray Antenna With Independent Beam Control. IEEE Trans. Antennas Propag. 2021, 70, 3852–3857. [Google Scholar] [CrossRef]
- Trentini, G.V. Partially reflecting sheet arrays. IRE Trans. Antennas Propag. 1956, 4, 666–671. [Google Scholar] [CrossRef]
- CST Microwave Studio Suite. Available online: https://emagtech.co.kr/ (accessed on 10 May 2023).
- Abadi, S.M.A.M.H.; Behdad, N. Wideband Linear-to-Circular Polarization Converters Based on Miniaturized-Element Frequency Selective Surfaces. IEEE Trans. Antennas Propag. 2016, 64, 525–534. [Google Scholar] [CrossRef]
Analysis Parameters | Simulated | Measured |
---|---|---|
Total efficiency | 92.9% | 91.9% |
Impedance bandwidth 1 | 418 MHz | 970 MHz |
Fractional bandwidth | 4.18% | 9.7% |
Directivity | 15.75 dBi | 14.77 dBi |
Realized gain | 15.40 dBi | 14.42 dBi |
3 dB peak gain bandwidth | 503 MHz | 630 MHz |
Aperture efficiency | 25% | 20% |
Bandwidth efficiency 2 | 120% | 65% |
Axial ratio (AR) | 0.12 dB | 0.65 dB |
3 dB axial ratio bandwidth | 233 MHz | 303 MHz |
X-polarization level (dB) 3 | −42 | −25 |
SLS (xz-plane) | 23.8 dB | 18.92 dB |
SLS (yz-plane) | 25 dB | 23.63 dB |
Reference | [19] | [20] | [21] | [22] | [23] | Present Project |
---|---|---|---|---|---|---|
Frequency f0 (GHz) | 2.55 | 10.70 | 15.00 | 10.30 | 15.00 | 10.00 |
Linear polarized feeder/rotation | AC-MPA 1 | MPA/45° | AC-MPA | V-slot MPA | MPA | U-slot MPA |
Antenna type | RCA 2 | FPCA | FACA | FTA 3 | FTA | FPCA |
Polarization | LCP 4/RCP 5 | LCP | LCP/RCP | LCP | RCP | LCP |
Antenna electrical size | 1.02λ0 × 1.02λ0 | 2.68λ0 × 2.68λ0 | 6.53λ0 × 6.53λ0 | 7.35λ0 × 7.35λ0 | 12λ0 × 12λ0 | 3.3λ0 × 3.3λ0 |
Cavity height (λ0) | 0.09 | 0.44 | 0.5 | 1.20 | 2.00 | 0.41 |
Realized gain (dBi) | 9.6 | 10.2 | 19 | 21.0 | 24.9 | 15.4 |
Aperture efficiency (%) | 70.0 | 10.6 | 14.8 | 18.5 | 17.1 | 25.3 |
Axial ratio (dB) | 0.50/1.10 | 0.62 | 0.6 | 0.40 | 0.50 | 0.12 |
X-polarization level (dB) 6 | −8/−10 | −27 | N. A 7 | −15 | −20 | −42 |
SLS xz-plane (dB) | 10.1/8.2 | 15.2 | 8.0 | 13.1 | 17.3 | 23.8 |
SLS yz-plane (dB) | 10.2/8.5 | 15.4 | 8.2 | 14.5 | 18.2 | 25.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Lee, K.-G.; Kim, D. Circularly Polarized High-Gain Fabry-Perot Cavity Antenna with High Sidelobe Suppression. Appl. Sci. 2023, 13, 8222. https://doi.org/10.3390/app13148222
Hussain M, Lee K-G, Kim D. Circularly Polarized High-Gain Fabry-Perot Cavity Antenna with High Sidelobe Suppression. Applied Sciences. 2023; 13(14):8222. https://doi.org/10.3390/app13148222
Chicago/Turabian StyleHussain, Muhammad, Kyung-Geun Lee, and Dongho Kim. 2023. "Circularly Polarized High-Gain Fabry-Perot Cavity Antenna with High Sidelobe Suppression" Applied Sciences 13, no. 14: 8222. https://doi.org/10.3390/app13148222
APA StyleHussain, M., Lee, K. -G., & Kim, D. (2023). Circularly Polarized High-Gain Fabry-Perot Cavity Antenna with High Sidelobe Suppression. Applied Sciences, 13(14), 8222. https://doi.org/10.3390/app13148222