Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Basic Device Geometry of Microfluidic Pump and Mixer Utilizing Janus AC-FFET
2.2. Mathematical Model of Active Sample Transport and Stirring via Janus AC-FFET
- (a) AC electric field
- (b) ICEO fluid motion
- (c) Analyte-mass transfer
2.3. Indicators of Device Performance
2.4. Characteristic ICEO Flow-Velocity Scale Due to Janus AC-FFET
3. Results and Discussion
3.1. Numerical-Simulation Methodology and Model Validation against Standard Benchmarks
3.2. ICEO around a Janus Micropillar Free from External Wiring
3.2.1. Effect of Metal-Phase Angle α on Horizontal Pumping by ICEO around a Janus Post
3.2.2. Effect of the Radius of Janus pillar on Frequency-Dependent ICEO Pumping
3.3. Field-Effect ICEO of a Janus Micropillar Subjected to a Controllable Gate Voltage
3.3.1. Effect of AC Gate-Voltage Bias on ICEO Mixing- and Pumping-Flow Components
3.3.2. Effect of Pillar Size on Frequency-Dependent Flow Responses of ux and uy
3.3.3. Effect of Driving Voltage on Janus AC-FFET at a Given Gate-Voltage-Bias Ratio β
3.4. Developing Microfluidic Pump and Mixer Driven by Bipolar Janus AC-FFET
3.4.1. Geometry Dependence of the Integrated Microfluidic Pump and Mixer
- (a) Effect of the radius of Janus cylinder
- (b) Effect of inter-pillar separation
- (c) Effect of the number of discrete Janus pillars within the array
3.4.2. Effect of the Applied AC Voltage on the Integrated Device’s Performance
- (a) Frequency dependence
- (b) Effect of the amplitude of AC-driven voltage
- (c) Effect of gate-voltage offset
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Dittrich, P.S.; Tachikawa, K.; Manz, A. Micro total analysis systems. Latest advancements and trends. Anal. Chem. 2006, 78, 3887–3908. [Google Scholar]
- Squires, T.M.; Quake, S.R. Microfluidics: Fluid physics at the nanoliter scale. Rev. Mod. Phys. 2005, 77, 977. [Google Scholar]
- Zhao, C.X.; Miller, E.; Cooper-White, J.J.; Middelberg, A.P. Effects of fluid–fluid interfacial elasticity on droplet formation in microfluidic devices. AIChE J. 2011, 57, 1669–1677. [Google Scholar] [CrossRef]
- Lee, C.Y.; Chang, C.L.; Wang, Y.N.; Fu, L.M. Microfluidic Mixing: A Review. Int. J. Mol. Sci. 2011, 12, 3263. [Google Scholar] [CrossRef] [Green Version]
- Green, J.; Holdø, A.; Khan, A. A review of passive and active mixing systems in microfluidic devices. Int. J. Multiphys. 2009, 1, 1–32. [Google Scholar] [CrossRef]
- Chen, L.; Wang, G.; Lim, C.; Seong, G.H.; Choo, J.; Lee, E.K.; Kang, S.H.; Song, J.M. Evaluation of passive mixing behaviors in a pillar obstruction poly(dimethylsiloxane) microfluidic mixer using fluorescence microscopy. Microfluid. Nanofluidics 2009, 7, 267–273. [Google Scholar] [CrossRef]
- Sritharan, K.; Strobl, C.; Schneider, M.; Wixforth, A.; Guttenberg, Z.V. Acoustic mixing at low Reynold’s numbers. Appl. Phys. Lett. 2006, 88, 054102. [Google Scholar] [CrossRef]
- Rida, A.; Gijs, M.A. Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal. Chem. 2004, 76, 6239–6246. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, S.; Bafekr, H.; Valipour, M.S.; Esfahani, J.A. A review on the application, simulation, and experiment of the electrokinetic mixers. Chem. Eng. Process.-Process Intensif. 2018, 126, 108–122. [Google Scholar] [CrossRef]
- Velev, O.D.; Bhatt, K.H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2006, 2, 738–750. [Google Scholar] [CrossRef]
- Velev, O.D.; Gangwal, S.; Petsev, D.N. Particle-localized AC and DC manipulation and electrokinetics. Annu. Rep. Sect. C Phys. Chem. 2009, 105, 213–246. [Google Scholar] [CrossRef]
- Ory, S.; Ehud, Y. The Taylor-Melcher leaky dielectric model as a macroscale electrokinetic description. J. Fluid Mech. 2015, 773, 1–33. [Google Scholar]
- Hu, G.; Li, D. Multiscale phenomena in microfluidics and nanofluidics. Chem. Eng. Sci. 2007, 62, 3443–3454. [Google Scholar] [CrossRef]
- Zhao, C.X.; Chen, D.; Hui, Y.; Weitz, D.A.; Middelberg, A.P. Controlled Generation of Ultrathin-Shell Double Emulsions and Studies on Their Stability. ChemPhysChem 2017, 18, 1393–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saghatchi, R.; Rahmat, A.; Yildiz, M. Electrohydrodynamics of a droplet in a highly confined domain: A numerical study. Phys. Fluids 2020, 32, 123305. [Google Scholar] [CrossRef]
- Santra, S.; Sen, D.; Das, S.; Chakraborty, S. Electrohydrodynamic interaction between droplet pairs in a confined shear flow. Phys. Fluids 2019, 31, 032005. [Google Scholar] [CrossRef] [Green Version]
- Kunti, G.; Mondal, P.K.; Bhattacharya, A.; Chakraborty, S. Electrothermally modulated contact line dynamics of a binary fluid in a patterned fluidic environment. Phys. Fluids 2018, 30, 092005. [Google Scholar] [CrossRef]
- Kunti, G.; Bhattacharya, A.; Chakraborty, S. Alternating current electrothermal modulated moving contact line dynamics of immiscible binary fluids over patterned surfaces. Soft Matter 2017, 13, 6377–6389. [Google Scholar] [CrossRef]
- Liu, W.; Tao, Y.; Li, Y.; Ge, Z.; Wu, Q.; Ren, Y. Numerical characterization of transient electrohydrodynamic deformation and coalescence of single-core double emulsion droplets by AC field dielectrophoresis. Chem. Eng. Sci. 2023, 277, 118877. [Google Scholar] [CrossRef]
- Liu, W.; Ren, Y.; Tao, Y.; Chen, X.; Yao, B.; Hui, M.; Bai, L. Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Phys. Fluids 2017, 29, 112002. [Google Scholar] [CrossRef]
- Bazant, M.Z.; Squires, T.M. Induced-charge electrokinetic phenomena: Theory and microfluidic applications. Phys. Rev. Lett. 2004, 92, 066101. [Google Scholar] [CrossRef] [Green Version]
- López-Vizcaíno, R.; Navarro, V.; Yustres, Á. Two-Dimensional Modelling Approach for Electrokinetic Water Transport in Unsaturated Kaolinite. Appl. Sci. 2022, 13, 519. [Google Scholar] [CrossRef]
- Qi, W.; Shen, Y.; Li, S.; Chen, K. Study on the Interaction between the Reduction and Remediation of Dredged Sediments from Tai Lake Based on Vacuum Electro-Osmosis. Appl. Sci. 2023, 13, 741. [Google Scholar] [CrossRef]
- Noreen, S.; Waheed, S.; Hussanan, A.; Lu, D. Analytical solution for heat transfer in electroosmotic flow of a carreau fluid in a wavy microchannel. Appl. Sci. 2019, 9, 4359. [Google Scholar] [CrossRef] [Green Version]
- Waheed, S.; Noreen, S.; Hussanan, A. Study of heat and mass transfer in electroosmotic flow of third order fluid through peristaltic microchannels. Appl. Sci. 2019, 9, 2164. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.; Liu, W.; Ge, Z.; Yao, B.; Ren, Y. Alternating-current nonlinear electrokinetics in microfluidic insulator-decorated bipolar electrochemistry. Phys. Fluids 2022, 34, 112002. [Google Scholar] [CrossRef]
- Tripathi, D.; Narla, V.K.; Aboelkassem, Y. Electrokinetic membrane pumping flow model in a microchannel. Phys. Fluids 2020, 32, 082004. [Google Scholar] [CrossRef]
- Chen, L.; Lee, S.; Choo, J.; Lee, E.K. Continuous dynamic flow micropumps for microfluid manipulation. J. Micromech. Microeng. 2007, 18, 013001. [Google Scholar] [CrossRef]
- Chen, L.; Ma, J.; Guan, Y. Study of an electroosmotic pump for liquid delivery and its application in capillary column liquid chromatography. J. Chromatogr. A 2004, 1028, 219–226. [Google Scholar] [CrossRef]
- Salari, A.; Navi, M.; Dalton, C. A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications. Biomicrofluidics 2015, 9, 014113. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Koklu, M.; BeskoK, A. Particle trapping in high-conductivity media with electrothermally enhanced negative dielectrophoresis. Anal. Chem. 2009, 81, 2303–2310. [Google Scholar] [CrossRef]
- González, A.; Ramos, A.; Morgan, H.; Green, N.G.; Castellanos, A. Electrothermal flows generated by alternating and rotating electric fields in microsystems. J. Fluid Mech. 2006, 564, 415–433. [Google Scholar] [CrossRef] [Green Version]
- Prabhakaran, R.A.; Zhou, Y.; Zhao, C.; Hu, G.; Song, Y.; Wang, J.; Yang, C.; Xuan, X. Induced charge effects on electrokinetic entry flow. Phys. Fluids 2017, 29, 42–48. [Google Scholar] [CrossRef]
- Gregersen, M.M.; Andersen, M.B.; Soni, G.; Meinhart, C.; Bruus, H. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis. Phys. Rev. E 2009, 79, 066316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yossifon, G.; Frankel, I.; Miloh, T. Symmetry breaking in induced-charge electro-osmosis over polarizable spheroids. Phys. Fluids 2007, 19, 217. [Google Scholar] [CrossRef]
- Studer, V.; Pépin, A.; Chen, Y.; Ajdari, A. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst 2004, 129, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Van Der Wouden, E.; Hermes, D.; Gardeniers, J.; Van Den Berg, A. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields. Lab A Chip 2006, 6, 1300–1305. [Google Scholar] [CrossRef]
- Kale, A.; Song, L.; Lu, X.; Yu, L.; Hu, G.; Xuan, X. Electrothermal enrichment of submicron particles in an insulator-based dielectrophoretic microdevice. Electrophoresis 2017, 39, 887–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, E.; Manoochehri, S. Enhanced ac electrothermal fluidic pumping in microgrooved channels. J. Appl. Phys. 2008, 104, 064902. [Google Scholar] [CrossRef] [Green Version]
- Stubbe, M.; Holtappels, M.; Gimsa, J. A new working principle for ac electro-hydrodynamic on-chip micro-pumps. J. Phys. D Appl. Phys. 2007, 40, 6850. [Google Scholar] [CrossRef]
- Sasaki, N.; Kitamori, T.; Kim, H.B. Fluid mixing using AC electrothermal flow on meandering electrodes in a microchannel. Electrophoresis 2012, 33, 2668–2673. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Krishnamoorthy, S.; Sundaram, S. Numerical analysis of mixing by electrothermal induced flow in microfluidic systems. Biomicrofluidics 2007, 1, 024102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubbe, M.; Gimsa, J. A short review on AC electro-thermal micropumps based on smeared structural polarizations in the presence of a temperature gradient. Colloids Surf. A Physicochem. Eng. Asp. 2011, 376, 97–101. [Google Scholar] [CrossRef]
- Velasco, V.; Williams, S.J. Electrokinetic concentration, patterning, and sorting of colloids with thin film heaters. J. Colloid Interface Sci. 2013, 394, 598–603. [Google Scholar] [CrossRef]
- Yang, K.; Wu, J. Numerical study of in situ preconcentration for rapid and sensitive nanoparticle detection. Biomicrofluidics 2010, 4, 034106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felten, M.; Staroske, W.; Jaeger, M.S.; Schwille, P.; Duschl, C. Accumulation and filtering of nanoparticles in microchannels using electrohydrodynamically induced vortical flows. Electrophoresis 2008, 29, 2987–2996. [Google Scholar] [CrossRef] [PubMed]
- Feldman, H.C.; Sigurdson, M.; Meinhart, C.D. AC electrothermal enhancement of heterogeneous assays in microfluidics. Lab A Chip 2007, 7, 1553–1559. [Google Scholar] [CrossRef]
- Squires, T.M. Induced-charge electrokinetics: Fundamental challenges and opportunities. Lab A Chip 2009, 9, 2477–2483. [Google Scholar] [CrossRef]
- Pascall, A.J.; Squires, T.M. Induced charge electro-osmosis over controllably contaminated electrodes. Phys. Rev. Lett. 2010, 104, 088301. [Google Scholar] [CrossRef]
- Peng, C.; Lazo, I.; Shiyanovskii, S.V.; Lavrentovich, O.D. Induced-charge electro-osmosis around metal and Janus spheres in water: Patterns of flow and breaking symmetries. Phys. Rev. E 2014, 90, 051002. [Google Scholar] [CrossRef] [Green Version]
- Paustian, J.S.; Pascall, A.J.; Wilson, N.M.; Squires, T.M. Induced charge electroosmosis micropumps using arrays of Janus micropillars. Lab A Chip 2014, 14, 3300–3312. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.T.; Paunov, V.N.; Petsev, D.N.; Velev, O.D. Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat. Mater. 2007, 6, 235–240. [Google Scholar] [CrossRef]
- Chang, S.T.; Beaumont, E.; Petsev, D.N.; Velev, O.D. Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. Lab A Chip 2008, 8, 117–124. [Google Scholar] [CrossRef]
- Zehavi, M.; Sofer, D.; Miloh, T.; Velev, O.D.; Yossifon, G. Optically Modulated Propulsion of Electric-Field-Powered Photoconducting Janus Particles. Phys. Rev. Appl. 2022, 18, 024060. [Google Scholar] [CrossRef]
- Bhatt, K.H.; Grego, S.; Velev, O.D. An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. Langmuir 2005, 21, 6603–6612. [Google Scholar] [CrossRef] [PubMed]
- Shields, C.W., IV; Han, K.; Ma, F.; Miloh, T.; Yossifon, G.; Velev, O.D. Supercolloidal spinners: Complex active particles for electrically powered and switchable rotation. Adv. Funct. Mater. 2018, 28, 1803465. [Google Scholar] [CrossRef]
- Diwakar, N.M.; Kunti, G.; Miloh, T.; Yossifon, G.; Velev, O.D.J.A.F.M. AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Curr. Opin. Colloid Interface Sci. 2022, 59, 101586. [Google Scholar]
- Gangwal, S.; Cayre, O.J.; Bazant, M.Z.; Velev, O.D. Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 2008, 100, 058302. [Google Scholar] [CrossRef] [Green Version]
- Gangwal, S.; Pawar, A.; Kretzschmar, I.; Velev, O.D. Programmed assembly of metallodielectric patchy particles in external AC electric fields. Soft Matter 2010, 6, 1413–1418. [Google Scholar] [CrossRef]
- Sharma, R.; Velev, O.D. Remote steering of self-propelling microcircuits by modulated electric field. Adv. Funct. Mater. 2015, 25, 5512–5519. [Google Scholar] [CrossRef]
- Hermanson, K.D.; Lumsdon, S.O.; Williams, J.P.; Kaler, E.W.; Velev, O.D. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 2001, 294, 1082–1086. [Google Scholar] [CrossRef]
- Squires, T.M.; Bazant, M.Z. Induced-charge electro-osmosis. J. Fluid Mech. 2004, 509, 217–252. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, O.; Yariv, E. Induced-charge electro-osmosis beyond weak fields. Phys. Rev. E 2012, 86, 061506. [Google Scholar] [CrossRef] [PubMed]
- Yossifon, G.; Frankel, I.; Miloh, T. On electro-osmotic flows through microchannel junctions. Phys. Fluids 2006, 18, 381. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, W.; Tao, Y.; Hui, M.; Wu, Q. On ac-field-induced nonlinear electroosmosis next to the sharp corner-field-singularity of leaky dielectric blocks and its application in on-chip micro-mixing. Micromachines 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schasfoort, R.B.; Schlautmann, S.; Hendrikse, J.; van den Berg, A. Field-effect flow control for microfabricated fluidic networks. Science 1999, 286, 942–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Wouden, E.; Heuser, T.; Hermes, D.; Oosterbroek, R.; Gardeniers, J.; Van Den Berg, A. Field-effect control of electro-osmotic flow in microfluidic networks. Colloids Surf. A Physicochem. Eng. Asp. 2005, 267, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Fan, R.; Reed, M.A. Field-effect reconfigurable nanofluidic ionic diodes. Nat. Commun. 2011, 2, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Tao, Y.; Chen, Y.; Ge, Z.; Chen, J.; Li, Y. Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis. Appl. Sci. 2023, 13, 8253. https://doi.org/10.3390/app13148253
Liu W, Tao Y, Chen Y, Ge Z, Chen J, Li Y. Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis. Applied Sciences. 2023; 13(14):8253. https://doi.org/10.3390/app13148253
Chicago/Turabian StyleLiu, Weiyu, Ye Tao, Yaoyao Chen, Zhenyou Ge, Junshuo Chen, and Yanbo Li. 2023. "Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis" Applied Sciences 13, no. 14: 8253. https://doi.org/10.3390/app13148253
APA StyleLiu, W., Tao, Y., Chen, Y., Ge, Z., Chen, J., & Li, Y. (2023). Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis. Applied Sciences, 13(14), 8253. https://doi.org/10.3390/app13148253