Effects of Waste Cement on the Extractability of Cd, Soil Enzyme Activities, Cadmium Accumulation, Activities of Antioxidant Enzymes, and Malondialdehyde (MDA) Content in Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Spiking Treatment
2.2. Cement Waste Production
2.3. Soil Incubation and Pot Experiments
2.4. Soil Cd Concentration Analysis
2.5. Soil Enzyme Activity Analysis
2.6. Lettuce Plant Experiment Analysis
2.7. Analytical Methods for Plant Enzymatic Activities
3. Results
3.1. Changes in Soil and Waste Cement Characteristics
3.2. Effect of Waste Cement on Soil Cd Availability
3.3. Effect of Waste Cement on Soil Enzyme Activities
3.4. Effect of Waste Cement on Cd Concentrations in the Plant
3.5. Effect of Waste Cement on Plant Growth
3.6. Effect of Waste Cement on Plant Antioxidant Enzyme Activities
4. Discussion
5. Conclusions
- (1)
- Our incubation experiment clearly showed that soil pH and CEC increased significantly (p < 0.05) with the addition of waste cement. Waste cement was effective in decreasing DTPA-extracted Cd in soil, which was significantly correlated with soil pH and available CEC.
- (2)
- In addition, FDA and urease in the contaminated soil significantly increased, but soil catalase did not change significantly.
- (3)
- Waste cement application significantly reduced the Cd content in the roots and shoots of lettuce (p < 0.05). At the same time, waste cement applied to soil enhanced the shoot and root dry weight of lettuce. In particular, with the addition of 2% waste cement, the biomass of lettuce reached the maximum, and the addition of high-concentration waste cement damaged the growth of plants and reduced the plant mass of lettuce.
- (4)
- The application of waste cement markedly decreased O2•− and H2O2 and antioxidant activities (POD, CAT, and SOD) and the content of MDA in the lettuce, thereby alleviating the damage to plants by heavy metals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, X.; Ni, Y. Review of remediation technologies for cadmium in soil. E3S Web Conf. 2021, 233, 01037. [Google Scholar] [CrossRef]
- Li, Z.; Liang, Y.; Hu, H.; Shaheen, S.M.; Zhong, H.; Tack, F.M.G.; Wu, M.; Li, Y.F.; Gao, Y.; Rinklebe, J.; et al. Speciation, transportation, and pathways of cadmium in soil–rice systems: A review on the environmental implications and remediation approaches for food safety. Environ. Int. 2021, 156, 106749. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Sang, S.L.; Lim, J.E.; Lee, S.E.; Ju, S.C.; Moon, D.H.; Hashimoto, Y.; Ok, Y.S. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere 2014, 95, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection; Ministry of Land and Resources. National Soil Pollution Survey Bulletin; Ministry of Environmental Protection, Ministry of Land and Resources: Beijing, China, 2014. [Google Scholar]
- Zhang, W.; Pan, X.; Zhao, Q.; Zhao, T. Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides. Hortic Plant J. 2021, 7, 11. [Google Scholar] [CrossRef]
- Qin, S.Y.; Liu, H.E.; Nie, Z.J.; Rengel, Z.; Gao, W.; Li, C.; Zhao, P. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: A review. Pedosphere 2020, 30, 168–180. [Google Scholar] [CrossRef]
- Hussain, B.; Lin, Q.; Hamid, Y.; Sanaullah, M.; Di, L.; Rehman Hashmi, M.L.; Khan, M.B.; He, Z.; Yang, X. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci. Total Environ. 2020, 712, 136497. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, G.; Liao, S.; Shan, S.; Wang, G.; Guo, Z. Immobilization of cadmium by immobilized Alishewanella sp. WH16–1 with alginate–lotus seed pods in pot experiments of Cd–contaminated paddy soil. J. Hazard. Mater. 2018, 357, 431–439. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, X.; Wang, B.; Mohamad, O.; Wei, G. Bioaccumulation characterization of zinc and cadmium by Streptomyces zinciresistens, a novel actinomycete. Ecotox. Environ. Safe. 2012, 77, 7–17. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Sharma, R.K.; Archana, G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl. Soil Ecol. 2016, 107, 66–78. [Google Scholar] [CrossRef]
- Feki-Tounsi, M.; Hamza-Chaffai, A. Cadmium as a possible cause of bladder cancer: A review of accumulated evidence. Environ. Environ. Sci. Pollut. R. 2014, 21, 10561–10573. [Google Scholar] [CrossRef]
- Zhang, W.L.; Du, Y.; Zhai, M.M.; Shang, Q. Cadmium exposure and its health effects: A 19–year follow–up study of a polluted area in China. Sci. Total Environ. 2014, 470–471, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Tauqeer, H.M.; Ali, S.; Rizwan, M.; Ali, Q.; Saeed, R.; Iftikhar, U.; Ahmad, R.; Farid, M.; Abbasi, G.H. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response. Ecotox. Environ. Safe. 2016, 126, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Hale, B.; Evans, L.; Lamnert, R. Effects of cement or lime on Cd, Co, Cu, Ni, Pb, Sb and Zn mobility in field–contaminated and aged soils. J. Hazard Mater. 2012, 199–200, 119–127. [Google Scholar] [CrossRef]
- Goodarzi, A.R.; Zandi, M.H. Assessing geo–mechanical and leaching behavior of cement–silica–fume–stabilized heavy metal–contaminated clayey soil. Environ. Earth. Sci. 2016, 75, 911. [Google Scholar] [CrossRef]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Cadmium mobility, uptake and anti–oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere 2018, 194, 579–587. [Google Scholar] [CrossRef]
- Scanferla, P.; Ferrari, G.; Pellay, R.; Volpi Ghirardini, A.; Zanetto, G.; Libralato, G. An innovative stabilization/solidification treatment for contaminated soil remediation: Demonstration project results. J. Soil Sediment. 2009, 9, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Chen, J.; Huang, Q.; Tang, S.; Wang, J.; Hu, P.; Shao, G. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils. Chemosphere 2018, 193, 547–556. [Google Scholar] [CrossRef]
- De Melo, A.B.; Gonçalves, A.F.; Martins, I.M. Construction and demolition waste generation and management in Lisbon (Portugal). Resour. Conserv. Recy. 2011, 55, 1252–1264. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Y.; Naz, F.; Zeng, C.; Cao, S. Separation studies of concrete and brick from construction and demolition waste. Waste Manage. 2019, 85, 396–404. [Google Scholar] [CrossRef]
- Damrongsiri, S. Feasibility of using demolition waste as an alternative heavy metal immobilising agent. J. Environ. Manage. 2017, 192, 197–202. [Google Scholar] [CrossRef]
- Ding, X.; Wang, J.; Huang, Q.; Hu, S.; Wu, Y.; Wang, L. The Effects of Waste Cement on the Bioavailability, Mobility and Leaching of Cadmium in Soil. Int. J. Environ. Res. Public Health 2021, 18, 8885. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Falade, F.O.; Oyedeji, B.J.; Akande, F.O.; Vishwakarma, V.; Alagarsamy, K.; Ramachandran, D.; Fatoba, P.O. Short–Term Aging of Pod–Derived Biochar Reduced Soil Cadmium Mobility and Ameliorated Cadmium Toxicity to Soil Enzymes and Tomato. Environ. Toxicol. Chem. 2020, 40, 3306–3316. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.C.; Zhang, H.B.; Ma, S.T.; Wang, R.; Wang, G.X.; Shao, Y.; Li, C.X. Effects of mine wastewater irrigation on activities of soil enzymes and physiological properties, heavy metal uptake and grain yield in winter wheat. Ecotox. Environ. Safe 2015, 113, 483–790. [Google Scholar] [CrossRef]
- Patel, A.; Patra, D.D. Influence of heavy metal rich tannery sludge on soil enzymes vis–à–vis growth of Tagetes minuta, an essential oil bearing crop. Chemosphere 2014, 112, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, J.; Ren, L.; Zhou, Y.; Gao, J.; Luo, L.; Yang, Y.; Peng, Q.; Huang, H.; Chen, A. Diagnosis of soil contamination using microbiological indices: A review on heavy metal pollution. J. Environ. Manage. 2019, 242, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal–polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 702, 134751. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Abd El–Latif, H.; Xia, Y.; He, J.Z. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. J. Environ. Sci. 2007, 19, 834–840. [Google Scholar] [CrossRef]
- Ning, C.C.; Gao, P.D.; Wang, B.Q.; Lin, W.P.; Jiang, N.H.; Cai, K.Z. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agr. 2017, 16, 1819–1831. [Google Scholar] [CrossRef] [Green Version]
- Jia, W.; Wang, B.; Wang, C.; Sun, H. Tourmaline and biochar for the remediation of acid soil polluted with heavy metals. J. Environ. Chem. Eng. 2017, 5, 2107–2114. [Google Scholar] [CrossRef]
- Fang, L.; Liu, Y.; Tian, H.; Chen, H.; Wang, Y.; Huang, M. Proper land use for heavy metal–polluted soil based on enzyme activity analysis around a Pb–Zn mine in Feng County, China. Environ. Sci. Pollut. Res. 2017, 24, 28152–28164. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, J.; Zhao, Q.; Si, Y.; Mao, J.; Fang, G.; Liang, J. Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nano hydroxyapatite. J. Soil. Sediment. 2013, 13, 742–752. [Google Scholar] [CrossRef]
- Cheng, J.; Qiu, H.; Chang, Z.; Jiang, Z.; Yin, W. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. Springer Plus 2016, 5, 1290. [Google Scholar] [CrossRef] [Green Version]
- Goswami, S.; Das, S. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotox. Environ. Safe. 2016, 126, 211–218. [Google Scholar] [CrossRef]
- Patel, A.; Pandey, V.; Patra, D.D. Influence of tannery sludge on oil yield, metal uptake and antioxidant activities of Ocimum basilicum L. grown in two different soils. Ecol. Eng. 2015, 83, 422–430. [Google Scholar] [CrossRef]
- Zouari, M.; Elloumi, N.; Ahmed, C.B.; Delmail, D.; Rouina, B.B.; Abdallah, F.B.; Labrousse, P. Exogenous proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium–induced oxidative damage in young date palm (Phoenix dactylifera L.). Ecol. Eng. 2016, 86, 202–209. [Google Scholar] [CrossRef]
- Li, D.; Wang, L.; Wang, Y.; Li, H.; Chen, G. Soil properties and cultivars determine heavy metal accumulation in rice grain and cultivars respond differently to Cd stress. Environ. Sci. Pollut. Res. 2019, 26, 14638–14648. [Google Scholar] [CrossRef]
- Liu, H.J.; Zhang, C.X.; Wang, J.M.; Zhou, C.J.; Feng, H.; Mahajan, M.D.; Han, X.R. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosphere 2017, 171, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Guo, D.; Mahar, A.; Wang, P.; Ma, F.; Shen, F.; Li, R.; Zhang, Z. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils. Ecotox. Environ. Safe. 2017, 139, 202–209. [Google Scholar] [CrossRef]
- Uyasatian, U.; Ussawarujikulchai, A.; Leelawat, T. Estimation of buildingrelated C&D waste generation and composition in Bangkok. Environ. Nat. Resour. J. 2007, 5, 133–140. [Google Scholar]
- Rodriguez, G.; Alegre, F.J.; Martinez, G. The contribution of environmental management systems to the management of construction and demolition waste: The case of the Autonomous Community of Madrid (Spain). Resour. Conserv. Recycl. 2007, 50, 334–349. [Google Scholar] [CrossRef]
- Delongui, L.; Matuella, M.; Nunez, W.P.; Fedrigo, W.; da Silva, L.C.P.; Ceratti, J.A.P. Construction and demolition waste parameters for rational pavement design. Constr. Build. Mater. 2018, 168, 105–112. [Google Scholar] [CrossRef]
- Huang, X.R.; Zhao, H.H.; Hu, X.F.; Liu, F.H.; Wang, L.; Zhao, X.; Gao, P.C.; Ji, P.H. Optimization of preparation technology for modified coal fly ash and its adsorption properties for Cd2+. J. Hazard. Mater. 2020, 392, 122461. [Google Scholar] [CrossRef]
- Rautaray, S.K.; Ghosh, B.C.; Mittra, B.N. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils. Bioresour. Technol. 2003, 90, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, R.K.; Agrawal, S.B. Effects of fly ash incorporation on heavy metal accumulation, growth and yield responses of Beta vulgaris plants. Bioresour. Technol. 2008, 99, 7200–7207. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Ghorbani, M.; Moudry, J. Effects of Zeolite on Aggregation, Nutrient Availability, and Growth Characteristics of Corn (Zea mays L.) in Cadmium-Contaminated Soils. Water Air Soil Poll. 2022, 11, 436. [Google Scholar] [CrossRef]
- Poorahong, T. Efficiency of Some Heavy Metal Removal from Printed Circuit Board Industrial Wastewater by Concrete Rubbish Media. Master’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2002. [Google Scholar]
- GB/T 50082–2009; Standard for test methods of long-term performance and du-rability of ordinary concrete. China Organization for Standardization: Beijing, China, 2009.
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- ISO/DIS 14870; Soil Quality: Extraction of Trace Elements by Buffered DTPA Solution. International Organization for Standardization: Geneve, Switzerland, 1996.
- Prosser, J.; Speir, T.; Stott, D. Soil Oxidoreductases and FDA Hydrolysis. In Methods of Soil Enzymology Soil; Dick, R.P., Ed.; Science Society of America Inc.: Madison, WI, USA, 2011; pp. 103–124. [Google Scholar]
- Yang, X.; Liu, J.; Mcgrouther, K.; Huang, H.; Lu, K.; Guo, X.; He, L.; Lin, X.; Che, L.; Ye, Z. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. 2016, 23, 974–984. [Google Scholar] [CrossRef]
- Chen, Y.X.; Huang, X.D.; Han, Z.Y.; Huang, X.; Hu, B.; Shi, D.Z.; Wu, W.X. Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere 2010, 78, 1177–1181. [Google Scholar] [CrossRef]
- Kazemi, N.; Khavari–Nejad, R.A.; Fahimi, H.; Saadatmand, S.; Nejad–Sattari, T. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci. Hortic. 2010, 126, 402–407. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, F.; Wang, G.; Zhang, G.; Wang, Y.; Chen, X.; Mao, Z. Effects of biochar on photosynthesis and antioxidative system of Malus hupehensis Rehd. seedlings under replant conditions. Sci. Hortic. 2014, 175, 9–15. [Google Scholar] [CrossRef]
- Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.H.A.; Nawaz, I.; Yousaf, S.; Cheema, A.S.; Iqbal, M. Soil amendments enhanced the growth of Nicotiana alata L. and Petunia hydrida L. by stabilizing heavy metals from wastewater. J. Environ. Manage. 2019, 242, 46–55. [Google Scholar] [CrossRef]
- Huang, L.; Gao, X.; Liu, M.; Du, G.; Guo, J.S.; Ntakirutimana, T. Correlation among soil microorganisms, soil enzyme activities, and removal rates of pollutants in three constructed wetlands purifying micro–polluted river water. Ecol. Eng. 2012, 46, 98–106. [Google Scholar] [CrossRef]
- Niemeyer, J.C.; Lolata, G.B.; Carvalho, G.M.d.; Da Silva, E.M.; Sousa, J.P.; Nogueira, M.A. Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl. Soil Ecol. 2012, 59, 96–105. [Google Scholar] [CrossRef]
- Makoi, J.H.J.R.; Ndakidemi, P.A. Selected soil enzymes: Examples of their potential roles in the ecosystem. Afr. J. Biotechnol. 2008, 7, 181–191. [Google Scholar]
- Jiang, J.; Xu, R.; Jiang, T.; Li, Z. Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J. Hazard Mater. 2012, 229, 145–150. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, Y.; Muhammad, N.; Yu, X.; Xiao, K.; Meng, J.; Liu, X.; Xu, J.; Brookes, P.C. The Effects and Mechanisms of Soil Acidity Changes, following Incorporation of Biochars in Three Soils Differing in Initial pH. Soil Sci. Soc. Am. J. 2014, 78, 1606–1614. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Houben, D.; Evrard, L.; Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenerg. 2013, 5, 196–204. [Google Scholar] [CrossRef]
- Oste, A.; Temminghoff, E.J.M.; Van Riemsdijk, W.H. Solid–solution Partitioning of Organic Matter in Soils as Influenced by an Increase in pH or Ca Concentration. Environ. Sci. Technol. 2002, 36, 208–214. [Google Scholar] [CrossRef]
- Rotman, B.; Papermas, B.W. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc. Natl. Acad. Sci. USA 1966, 55, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Cheng, K.; Li, L.; Yan, J.; Zhang, A.; Bian, R.; Chang, A. The reduction of wheat Cd uptake in contaminated soil via biochar amendment: A two–year field experiment. Bioresources 2012, 7, 5666–5676. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Liu, L.; Zeng, G.; Xu, P.; Huang, C.; Deng, L.; Wang, R.; Wan, J. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal–contaminated sediment. Chemosphere 2017, 174, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, J.; Lin, Q.; Chen, X.; Chen, Y. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J. Environ. Sci. 2007, 19, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Marstorp, H.; Bååth, E.; Witter, E.; Gong, P. A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environ. Toxicol. Chem. 2000, 19, 1983–1991. [Google Scholar]
- Lahori, A.H.; Zhang, Z.; Guo, Z.; Li, R.; Mahar, A.; Awasthi, M.K.; Wang, P.; Shen, F.; Kumbhar, F.; Sial, T.A.; et al. Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils. Ecotox. Environ. Safe. 2017, 145, 528–538. [Google Scholar] [CrossRef]
- Toshimitsu, H.; Hirotomo, O.; Ayako, K.K.; Tomoyuki, M.; Ken, N.; Hidetaka, K. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains. Environ. Sci. Technol. 2016, 50, 4178–4185. [Google Scholar]
- Zhu, H.; Chen, C.; Xu, C.; Zhu, Q.; Huang, D. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ. Pollut. 2016, 219, 99–106. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Rinklebe, J. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecol. Eng. 2015, 74, 319–326. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, Y.; Lu, S. Si–Ca–K–Mg amendment reduces the phytoavailability and transfer of Cd from acidic soil to rice grain. Environ. Sci. Pollut. Res. 2020, 27, 33248–33258. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, R.; Ma, F.; Li, Y.; Wang, L. Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of Cd to maize in artificially contaminated loess soil. J. Environ. Manage. 2016, 184, 569–574. [Google Scholar] [CrossRef]
- Ding, J.; Sun, Y.; Xiao, C.L.; Shi, K.; Zhou, Y.H.; Yu, J.Q. Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J. Exp. Bot. 2007, 58, 3765–3773. [Google Scholar] [CrossRef] [PubMed]
- Farhangi–Abriz, S.; Torabian, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotox. Environ. Safe. 2017, 137, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Prasad, S.M. Antioxidant enzyme responses to the oxidative stress due to chlorpyrifos, dimethoate and dieldrin stress in palak (Spinacia oleracea L.) and their toxicity alleviation by soil amendments in tropical cropland. Sci. Total Environ. 2017, 35, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, X.; Chen, D.; Li, Y.; Wang, F. Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida). Ecotox. Environ. Safe. 2018, 150, 18–25. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Xu, C.; Liu, R.; Chen, Y. Molecular mechanism of catalase activity change under sodium dodecyl sulfate–induced oxidative stress in the mouse primary hepatocytes. J. Hazard. Mater. 2016, 307, 173–183. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Jiang, W.; Liu, D. Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ. Sci. Pollut. Res. 2013, 20, 1117–1123. [Google Scholar] [CrossRef]
- Soudek, P.; Petrová, Š.; Vaňková, R.; Song, J.; Vaněk, T. Accumulation of heavy metals using Sorghum sp. Chemosphere 2014, 104, 15–24. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, S.; Shan, X.; Christie, P. Combined toxicity of cadmium and arsenate to wheat seedlings and plant uptake and antioxidative enzyme responses to cadmium and arsenate co–contamination. Ecotox. Environ. Safe. 2007, 68, 305–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Physicochemical Properties | Contaminated Soils |
---|---|
Water content (%) | 23.37 |
pH | 5.5 |
Organic matter (g∙kg−1) | 9.965 |
Cation exchange capacity (CEC) (cmol∙kg−1) | 5.79 |
Cd (mg∙kg−1) | 3.16 |
Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | |
---|---|---|---|---|---|---|---|
Contents (%) | Cement | 24.57 | 5.29 | 3.41 | 62.88 | 0.97 | 0.82 |
Fly ash | 54.26 | 36.52 | 5.49 | 2.85 | 4.23 | – | |
Zeolite | 60.56 | 17.32 | 1.42 | 3.23 | 0.56 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Wu, Y.; Wang, J. Effects of Waste Cement on the Extractability of Cd, Soil Enzyme Activities, Cadmium Accumulation, Activities of Antioxidant Enzymes, and Malondialdehyde (MDA) Content in Lettuce. Appl. Sci. 2023, 13, 8254. https://doi.org/10.3390/app13148254
Ding X, Wu Y, Wang J. Effects of Waste Cement on the Extractability of Cd, Soil Enzyme Activities, Cadmium Accumulation, Activities of Antioxidant Enzymes, and Malondialdehyde (MDA) Content in Lettuce. Applied Sciences. 2023; 13(14):8254. https://doi.org/10.3390/app13148254
Chicago/Turabian StyleDing, Xiuming, Yuejun Wu, and Junfeng Wang. 2023. "Effects of Waste Cement on the Extractability of Cd, Soil Enzyme Activities, Cadmium Accumulation, Activities of Antioxidant Enzymes, and Malondialdehyde (MDA) Content in Lettuce" Applied Sciences 13, no. 14: 8254. https://doi.org/10.3390/app13148254
APA StyleDing, X., Wu, Y., & Wang, J. (2023). Effects of Waste Cement on the Extractability of Cd, Soil Enzyme Activities, Cadmium Accumulation, Activities of Antioxidant Enzymes, and Malondialdehyde (MDA) Content in Lettuce. Applied Sciences, 13(14), 8254. https://doi.org/10.3390/app13148254