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Abstract: Wind and photovoltaic (PV) power forecasting are crucial for improving the operational
efficiency of power systems and building smart power systems. However, the uncertainty and insta-
bility of factors affecting renewable power generation pose challenges to power system operations.
To address this, this paper proposes a digital twin-based method for predicting wind and PV power.
By utilizing digital twin technology, this approach provides a highly realistic simulation environment
that enables accurate monitoring, optimal control, and decision support for power system operations.
Furthermore, a digital twin platform for the AI (Artificial Intelligence) Grid is established, allowing
real-time monitoring, and ensuring the safe, reliable, and stable operation of the grid. Additionally, a
deep learning-based model WPNet is developed to predict wind and PV power at specific future
time points. Four datasets are constructed based on weather conditions and historical wind and PV
power data from the Flanders and Wallonia regions. The prediction models presented in this paper
demonstrate excellent performance on these datasets, achieving mean square error (MSE) values of
0.001399, 0.001833, 0.000704, and 0.002708; mean absolute error (MAE) values of 0.025164, 0.027854,
0.018592, and 0.033501; and root mean square error (RMSE) values of 0.037409, 0.042808, 0.026541,
and 0.052042, respectively.

Keywords: AI Grid; digital twin; renewable energy; electric load forecasting

1. Introduction

As a result of the consumption of non-renewable energy and the quest for energy
independence and low-carbon development, the primary focus of energy sources in the
21st century is progressively shifting towards sustainable energy. Sustainable energy
encompasses renewable energy, nuclear energy, and natural gas, all of which can be
utilized continuously and efficiently over an extended period without causing harm to
the environment. In comparison to natural gas and nuclear energy, renewable energy
offers greater security, lower long-term costs, and superior environmental performance.
Consequently, renewable energy has emerged as the foremost direction for sustainable
energy development.

With the increasing adoption of renewable energy and ongoing reforms in the power
market, the implementation of AI (Artificial Intelligence) Grid technology has emerged as
a prominent trend in power system development [1]. However, the inherent instability and
uncertainty associated with renewable energy sources pose significant challenges to power
load forecasting, resulting in operational inefficiencies and safety risks within the power
system.

Digital twin technology has the capability to integrate historical load data, weather
data, renewable energy data, and other parameters to establish prediction models in the
field of renewable energy power load forecasting. These models are used to forecast
the future power generation situation within a specific time range. Furthermore, digital
twin technology utilizes simulation techniques to enable online monitoring and analysis
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of critical nodes in the power system, facilitating real-time optimization and control [2].
Specifically, in the domains of wind energy and photovoltaic (PV) power generation,
digital twin technology can utilize weather data such as wind speed, wind direction, and
temperature to construct collaborative power generation prediction models that incorporate
multiple factors. The application of statistical models aims to improve the operational
efficiency and reliability of the power system.

In the context of the AI Grid, digital twin technology plays a crucial role by seamlessly
integrating physical systems with virtual models [3]. This integration creates a highly real-
istic simulation environment enabling accurate monitoring, optimal control, and decision
support for power system operations. For example, in the field of power equipment opera-
tion and maintenance management, digital twin technology facilitates online monitoring
and status diagnosis of equipment, enabling timely detection of faults and abnormalities,
and providing appropriate solutions [4–7]. Additionally, digital twin technology enables
comprehensive data analysis and modeling of the power system, empowering participants
in the power market with more accurate and reliable decision support.

1.1. Literature Review

In recent years, there has been an increasing amount of research conducted by scholars
on power forecasting models. Currently, these models can be broadly classified into three
main categories. The first category comprises functional statistical models (FSM), followed
by regression prediction models (RPM) as the second category, and deep learning (DL)
prediction models based on big data as the third category.

The functional statistical model of power forecasting comprises various techniques
such as the Kalman filter [8], regression analysis [9–11], and time series methods [12].
Takeda et al. (2016) [8] employed the ensemble Kalman filter (EnKF) technique and shrink-
age/multiple regression methods to develop a power load modeling framework. This
framework enabled the prediction and analysis of power load conditions. While the
Kalman filter method for electricity forecasting can mitigate the impact of data noise
on the forecasting results, it may not achieve optimal performance in nonlinear scenar-
ios. Charytoniuk et al. (1998) [9] proposed a nonparametric regression-based forecasting
method that can predict future load data using historical load data. Zivanovic (2001) [10]
proposed a local polynomial regression-based load forecasting method that utilized a data
mining algorithm with a robust location estimator (M-estimator) to preprocess historical
load data and approximate the functional relationship between load and load influencing
factors through Taylor expansions. Dudek (2016) [11] introduced a local linear regression
model that simplified the load forecasting problem by using linear regression to model
the relationship between individual variables (modes) in the current data neighborhood.
Regression analysis methods are simple to implement and encompass multiple factors
affecting the load, but they require complete and error-free historical data. Additionally,
these methods do not account for factors such as temporal effects and lack autonomous
learning capabilities. Clements et al. (2016) [12] proposed a multi-equation time series
model based on least squares, which incorporated seasonal models with intra-day depen-
dence to address the characteristics of the load in the posterior. This model effectively
tackles the load forecasting problem with a limited amount of historical data, thereby
enhancing efficiency. However, the time series model may be less sensitive to factors such
as climate and environment.

Unlike functional statistical models, regression predictive models are often better
equipped to handle nonlinear data. As research progresses, some scholars have pro-
posed the utilization of regression learning models for power prediction. For example,
Dong et al. [13] proposed a convolutional neural network (CNN) combined with the K-
means algorithm [14] for electricity load forecasting. This approach solved the problem of
electricity forecasting models not adapting to large datasets. However, it often led to the
electricity forecasting results reaching local optimum rather than the global optimum.
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Wang et al. [15] and Ren et al. [16] used particle swarm and simulated annealing
particle swarm optimization algorithms, respectively, to optimize the SVM algorithm for
power load forecasting. These approaches improved the convergence ability of the model
and reduced computing time. However, such algorithms are not applicable to medium and
large datasets.

In recent years, the use of deep learning algorithms based on big data has garnered
significant attention from researchers in the field of time series forecasting. For instance,
Muzaffar et al. [17] used LSTM networks for multivariate power load forecasting. They
predicted power load values at future moments using power load data with exogenous
variables such as historical temperature, humidity, and wind speed. Choi et al. [18] pro-
posed a power load forecasting framework combining hybrid models of ResNet [19] and
LSTM, which utilized ResNet to extract potential features of the data, and then used
LSTM to predict the power load data. Meng et al. [20] proposed a hybrid model for
wind power prediction based on a dual-attention mechanism and cross-optimization. The
dual-attention mechanism enhanced the model’s sensitivity to important information, and
cross-optimization improved the generalization capability of the model.

Zheng et al. [21] used the least absolute shrinkage and selection operator (Lasso) and
partial correlation analysis to analyze the effects of temperature, humidity, rainfall, and
wind speed on loads. They used the average temperature as an input variable to predict
electrical loads for residential communities through the GRU model. Poczeta et al. [22]
combined fuzzy cognitive maps and artificial neural networks to construct an energy usage
power load forecasting model. Pombo et al. [23] integrated a PV performance model
into a machine learning algorithm model to predict PV power using physical information
features related to PV power generation. Moisés et al. [24] compared the performance of
a PV production forecasting model with that of a deep learning approach by comparing
the performance of a machine learning and deep learning approach in a PV production
prediction application, the results showed that the deep learning approach is better in this
application scenario. The literature review is shown in Table 1.

Table 1. Literature review summary.

Type
Approach Year Ref.

FSM RPM DL
√

EnKF + shrinkage/multiple regression 2016 [8]√
nonparametric regression-based forecasting 1998 [9]√
local polynomial regression-based load forecasting 2001 [10]√
local linear regression 2016 [11]√
a multi-equation time series model based on least squares 2016 [12]√
K-means + CNN 2017 [13]√
particle swarm + SVM 2007 [15]√
simulated annealing particle swarm optimization + SVM 2016 [16]√
LSTM 2018 [17]√
ResNet + LSTM 2018 [18]√
dual-attention mechanism + cross-optimization 2022 [20]√
Lassopartial correlation analysis 2018 [21]√
Fuzzy Cognitive Maps + Artificial Neural Networks 2022 [22]√
- 2022 [23]√
SVM + SNN + RNN + CNN 2022 [24]

1.2. Research Gap, Contirbutions, and Objectives

The Kalman filtering method for power prediction can reduce the impact of data noise
on the prediction results, but the method can not achieve the optimal prediction effect in
non-linear scenarios. The regression analysis method is simple, easy to operate, and covers
multiple factors affecting the load, but it requires complete historical data without large
errors, and the method does not take into account factors such as the decreasing influence
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of time and lacks the ability to learn on its own. The time series model requires a small
amount of historical data, which effectively improves the work efficiency, but the method
is not sensitive to climate, environment, and other influencing factors.

The regression prediction model compared to the function statistical model accuracy
and processing data speed has been improved, but there are still some problems. For
example, [13] it is easy to fall into local optimal solutions [15,16] which are only applicable
to small datasets.

Most of the existing deep learning algorithms are used for predicting power loads from
non-renewable energy sources [17,18,20,22], while there is not enough research related to
predicting renewable energy power based on weather data. Refs. [23,24] mainly considered
the physical information factors related to PV power load prediction, which makes the
prediction model only applicable to PV power prediction and the use of the model relatively
limited.

To address the aforementioned issues, this paper introduces a digital twin power
forecasting platform for AI Grids. This platform utilizes digital twin technology to create
a highly realistic simulation environment while accurately forecasting wind and PV (PV)
power loads. The objective is to achieve precise monitoring, optimal control, and decision
support for power system operation states. The main elements of this work are outlined
below:

(1) Construction of a digital twin visualization platform for AI Grids: this platform
enables real-time monitoring of the grid’s status, ensuring safe, reliable, and stable grid
operation.

(2) A wind energy and PV power load forecasting model called WPNet, based on
deep learning, has been developed. This model is capable of predicting the power output
of wind energy and PV power generation at specific future time points. It enhances the
power forecasting accuracy from daily to hourly intervals, ensuring real-time performance
in model predictions.

(3) A data set for wind energy and photovoltaic power loads is constructed by using
real data, and the effectiveness of the lightweight model for power load forecasting pro-
posed in this paper is verified. Through this platform, more accurate and reliable decision
support can be provided for power market participants, and more efficient, intelligent, and
reliable operation management of the power system can be realized.

1.3. Paper Structure

In Section 2, the creation of the dataset, the wind and PV power prediction models and
the digital twin platform are presented. In Section 3, the results of simulation experiments
are presented and in Section 4, the work of this paper is summarized with the shortcomings
of the current work.

2. Materials and Methods

This study focuses on constructing power forecasting models for two renewable
energy sources: wind and PV. To enhance the analysis and visualization process, digital
twin technology is utilized to build 3D models and visualization interfaces. Figure 1
illustrates the overall implementation of this study, which consists of three main steps:
dataset creation, power forecasting model construction, and the digital twin visualization
module. Among them, Figure 1a indicates the creation of the dataset part: Elia Open
Renewable Energy Generation Data [25] is used as the original data, and the wind and PV
power dataset is constructed by integrating and cleaning the data; Figure 1b indicates the
power prediction module: wind and PV power prediction models are established by using
deep learning algorithms, and predicting the power data in a; Figure 1c represents the
digital twin visualization module: establishing digital twin 3D models and a digital twin
visualization platform, which can provide more accurate and reliable decision support for
power market participants and realize more efficient, intelligent, and reliable operation and
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management of power systems. Each module of the method is described in detail in this
section.
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Figure 1. Overall Architecture of Wind Energy and PV Power Forecasting.

2.1. Creating a Dataset

The raw data used in this study comprises PV power, wind power, generation impact
factor, and weather conditions data. The PV generation, wind generation, and generation
impact factor are sourced from the Elia Open Data Portal [25], while the weather conditions
data is based on Brussels.

To ensure the relevance of the weather data, the renewable energy generation impact
factor [25] is utilized as a criterion for filtering out irrelevant weather data. Among the
weather variables, the following variables are retained in the dataset: T (temperature), Po
(atmospheric pressure), P (precipitation), Pa (air pressure at sea level), U (relative humidity),
DD (wind direction), Ff (mean wind speed), ff3 (maximum wind speed), N (cloud cover),
H (average number of cloud layers), and TD (dew point temperature). For the specific
meaning of each variable, see Table A1 in Appendix A.

Renewable energy generation power was selected from the historical generation data
of Flanders and Walloon regions, respectively, with 28,460 and 28,419 historical records of
wind power generation and 18,366 historical data of photovoltaic power generation each.

The above cleaned data were divided into four datasets: Flanders_PV, Wallonia_PV,
Flanders_wind, and Wallonia_wind. Each data entry consists of 11 weather variables and a
historical record of power generation, and the details of the datasets are shown in Table 2.
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Table 2. Data set details.

Name Region Types Quantity Start Time End Time

Flanders_PV Flanders PV 18,366 4 March 2021 14 April 2023
Wallonia_PV Wallonia PV 18,366 4 March 2021 14 April 2023
Flanders_wind Flanders Wind 28,460 1 January 2020 13 April 2023
Wallonia_wind Wallonia Wind 28,419 1 January 2020 12 April 2023

2.2. Wind Energy and PV Prediction Model

The model structure of the proposed WPNet model in this study is illustrated in
Figure 2. The model comprises three main layers: a data processing layer, a GRU layer, and
a Dense layer. The specific structure and algorithm of the model are as follows:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 18 
 

Renewable energy generation power was selected from the historical generation data 

of Flanders and Walloon regions, respectively, with 28,460 and 28,419 historical records of 

wind power generation and 18,366 historical data of photovoltaic power generation each. 

The above cleaned data were divided into four datasets: Flanders_PV, Wallonia_PV, 

Flanders_wind, and Wallonia_wind. Each data entry consists of 11 weather variables and 

a historical record of power generation, and the details of the datasets are shown in Table 

2. 

Table 2. Data set details. 

Name Region Types Quantity Start Time End Time 

Flanders_PV Flanders PV 18,366 4 March 2021 14 April 2023 

Wallonia_PV Wallonia PV 18,366 4 March 2021 14 April 2023 

Flanders_wind Flanders Wind 28,460 1 January 2020 13 April 2023 

Wallonia_wind Wallonia Wind 28,419 1 January 2020 12 April 2023 

2.2. Wind Energy and PV Prediction Model 

The model structure of the proposed WPNet model in this study is illustrated in Fig-

ure 2. The model comprises three main layers: a data processing layer, a GRU layer, and 

a Dense layer. The specific structure and algorithm of the model are as follows: 

GRU

GRU

GRU

GRU

Ti
me

Min-Max

Data Processing Layer GRU Layer Dense Layer

GRU

GRU

GRU

GRU

6.4,747.7,757.0, ,74.04

7.3,747.4,756.7, ,78.99

8.0,746.8,756.1, ,58.89

9.2,746.8,746.2, ,44.67

21.1,747.5,756.4, ,19.00

22.9,747.7,756.5, ,12.10

23.8,747.7,756.4, ,7.90

3.1,765.7,775.3, ,34.39

3.2,765.4,775.0, ,25.71

0.4,763.5,773.2, ,10.44

24.8,747.7,756.5, ,0.92

22.3,747.8,756.7, ,3.25

0.250,0.799,0.798, ,0.109

0.252,0.794,0.792, ,0.081

0.191,0.758,0.759, ,0.033

0.663,0.467,0.456, ,0.010

0.340,0.441,0.456, ,0.251

0.355,0.448,0.445, ,0.187

0.381,0.448,0.594, ,0.142

0.637,0.461,0.451, ,0.060

0.676,0.465,0.453, ,0.038

0.696,0.465,0.451, ,0.025

0.717,0.465,0.453, ,0.003

0.321,0.465,0.462, ,0.235 24 24

24

1

, , ,...,X X X XT Po P M , , ,...,I I I IT Po P M

0t

outM

4M

3M

1kM +

2kM +

kM

3kM +

1iM −

iM

1iM +
it

1t

1it +

2iM −

1M

2M

1T

kT

1iT −

 

Figure 2. Wind and PV power prediction model WPNet. Among them, Min-Max is the normaliza-

tion process, t  is the time series, T  is the time step, and outM  is the prediction result. 

We changed it to be italics to match with Equation (1). Please confirm and check full 

text carefully. 

(1) Data processing layer: The input data is weather characteristic data and the cor-

responding renewable energy power generation X , and the Min-Max function is used 

to normalize the raw data X  to generate I , and after data normalization, the features 

of different dimensions (T, Po, ..., Td and M) have the same measurement scale, and the 

gradient decline rate have been improved. The calculation equation is shown below: 

X Min
I

Max Min

−
=

−
 (1) 

Figure 2. Wind and PV power prediction model WPNet. Among them, Min-Max is the normalization
process, t is the time series, T is the time step, and Mout is the prediction result.

We changed it to be italics to match with Equation (1). Please confirm and check full
text carefully.

(1) Data processing layer: The input data is weather characteristic data and the cor-
responding renewable energy power generation X, and the Min-Max function is used
to normalize the raw data X to generate I, and after data normalization, the features of
different dimensions (T, Po, . . . , Td and M) have the same measurement scale, and the
gradient decline rate have been improved. The calculation equation is shown below:

I =
X−Min

Max−Min
(1)

It = [TI , PoI , PI , PaI , UI , DDI , F f I , f f 3I , NI , HI , TdI , MI ]t (2)

where Min and Max are the minimum and maximum values of the corresponding features,
respectively, t represents a certain moment, TI ,PoI ,PI , . . . ,TdI are the data corresponding
to 11 weather features, and MI is the amount of electricity generated by the corresponding
renewable energy sources at this moment.

(2) GRU Layer: This layer consists of 24 GRU units in two layers, which can extract
time series information and data feature information. Each GRU unit contains a reset gate
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and an update gate to control the flow and retention of information. The details of the
algorithm of GRU units are shown below:

rt = σ(Wxixt + Whiht−1 + bi) (3)

zt = σ(Wx f xt + Wh f ht−1 + b f ) (4)

h̃t = tanh(Wxcxt + Whc(rt � ht−1) + bc) (5)

ht = (1− zt)� ht−1 + zt � h̃t (6)

σ represents the sigmoid function,� represents the element-by-element multiplication,
W and b represent the weight matrix and bias vector, respectively, xt represents the input at
the current moment, ht−1 represents the hidden state at the previous moment, h̃t represents
the candidate hidden state, ht represents the updated hidden state, rt represents the reset
gate, which controls which information in the hidden state at the previous moment needs
to be reset, zt represents the update gate, which controls the extent to which the previous
state information is incorporated into the current state.

(3) Fully connected layers: Multiple fully connected layers (also called Dense layers)
are used for feature fusion and output, and finally a linear activation function is used as the
activation function of the output layer to output the predicted wind and PV power load
values.

The model takes the time series of wind and PV load forecasts, along with the corre-
sponding weather condition data at moment t, as inputs. These inputs are then processed
by the model, which subsequently generates wind and PV generation forecasts for pre-t + 1
moments through multi-layer processing.

2.3. Digital Twin Visualization Module

This section introduces the process of building a digital twin visualization module for
PV (PV) and wind power generation plants. The specific steps are illustrated in Figure 3.
Firstly, relevant data is collected, and a complete three-dimensional digital twin model
is established. Secondly, the power data is preprocessed to filter out weather data that
impacts wind and PV power generation. Next, the power forecasting model WPNet is
utilized to predict the power generation for future time intervals. Finally, a visualization
platform is constructed to display the information from the database and the digital twin
model. This platform provides data analysis and forecasting capabilities, assisting users in
managing and optimizing the operation of the power generation plants.
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Here, we show a data update process as an example. First, the local server imports
the results of the prediction model into the database, as depicted in Figure 4a, Second, the
cloud server periodically retrieves data from the database for hot updates. The specific
meanings of each parameter in the database can be found in Table A1 in Appendix A, as
shown in Figure 4b. Once the latest data is retrieved, it is sent to the visualization platform
where it is displayed, as demonstrated in Figure 4c, with these steps, a complete round of
data updating is concluded.
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3. Simulation Experiments

Due to the increasing consumption of non-renewable energy and the growing empha-
sis on energy independence and low-carbon development, the focus of power generation
in the 21st century is gradually shifting towards renewable energy sources. Among them,
wind and PV energy are the most prominent representatives. However, the generation of
renewable energy is highly influenced by weather conditions, and the existing forecasting
methods often fall short in accurately predicting the future power generation of wind and
PV power. This inadequacy poses challenges to the efficiency and reliability of power
systems.

To tackle these challenges, we have developed four power prediction datasets based
on actual weather conditions and wind and PV power data from the Flanders and Wallonia
regions of EILA. These datasets serve as the foundation for evaluating our power prediction
model. Additionally, we have constructed a digital twin visualization platform for wind
and PV power generation. By utilizing real wind and PV power generation equipment
as examples, this platform enables more efficient, intelligent, and reliable operation and
management of power systems.

3.1. Dataset

In this paper, four datasets, namely Flanders_PV, Wallonia_PV, Flanders_wind, and
Wallonia_wind, are utilized for conducting simulation experiments. The training set in this
paper consists of 80% of the data, while the remaining 20% is reserved as the test set.

For Flanders_PV, the dataset includes a total of 18,366 PV power generation records
and corresponding weather conditions from 4 March 2021, 19:45 to 14 April 2023, 23:45 in
the Flanders region. Similarly, Wallonia_PV encompasses 18,366 PV power generation
records and weather conditions from the same period in the Wallonia region. Flan-
ders_wind selects a total of 28,460 wind power generation records and weather conditions
in Flanders from 1:45 on 1 January 2020 to 23:45 on 13 April 2023, and Wallonia_wind
selects Wallonia on 1 January 2020 from 1:45 to 5:45 on 12 April 2023: a total of 28,419 wind
power generation records and weather conditions. Figure 5 displays the visualization
results of hourly PV and wind power sequences for both the Flanders and Wallonia regions
after preprocessing the data.
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Taking the Flanders PV power generation dataset as an example, Figure 6 shows the
data visualization results of T, Po, P, Pa, U, DD, Ff, ff3, N, H, and Td, respectively.
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Figure 6. Visualization results of weather conditions in Flanders_wind.

3.2. Experimental Setup

The wind energy and PV power prediction model WPNet, proposed in this paper, is
implemented using the Keras framework. The model is trained and tested on a Windows
environment using a 1080 Ti GPU with 8 GB of video memory. During the training process,
the Adam optimizer is utilized for optimization. The batch size is set to 8, and the initial
learning rate is lr = 1× 10−3. To enhance the efficiency and convergence speed of the model
prediction, a total of 50 epochs are trained. The time step is set to 2, and the weather data at
time t, power generation data, and weather data at time t + 1 are used as inputs to predict
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the power generation at time t + 1. This approach ensures both accuracy and real-time
performance of the model.

3.3. Evaluation Indicators

To ensure a scientific and comprehensive evaluation of the wind and PV power load
forecasting model proposed in this study, we have selected mean square error (MSE), mean
absolute error (MAE), and root mean square error (RMSE) as the evaluation metrics. These
metrics are commonly used to assess the accuracy of forecasting models, and a smaller
value indicates that the forecasting results are closer to the true values. The calculation
formulas for these evaluation metrics are as follows:

1
m

m

∑
i=1

(yi − ŷi)
2 (7)

√
1
m

m

∑
i=1

(yi − ŷi)
2 (8)

1
m

m

∑
i=1
|(yi − ŷi)| (9)

where, ŷi is the predicted data, yi is the original data, and m is the total sample size.

3.4. Analysis of Simulation Experiment Results
3.4.1. Experimental Analysis of Power Load Forecasting Model

In this section, a comparative analysis was conducted to compare the performance of
the existing mainstream power load forecasting models, including LSTM, CNN, Attention,
and Transformer models, with the proposed model WPNet in terms of MSE, MAE, and
RMSE values. The input for the models was the weather conditions and power load values
at the previous time step, and the output was the predicted power load value for the next
time step. By comparing the MSE, MAE, and RMSE values with those of LSTM, CNN,
Transformer, and Attention models, the following analysis results were obtained:

(1) As shown in Figure 7a, the proposed model WPNet in this paper outperforms other
models in the Flanders_PV test dataset. As shown in Table 3, the model achieves MSE,
MAE, and RMSE values of 1.399 × 10−3, 2.5164 × 10−2, and 3.7409 × 10−2, respectively.

Table 3. Flanders_PV accuracy comparison.

Models
Flanders_PV

MSE MAE RMSE

LSTM 0.001687 0.027910 0.041070
CNN 0.001888 0.028735 0.043455

Transformer 0.021449 0.094731 0.146457
Attention 0.001951 0.028327 0.044174
WPNet 0.001399 0.025164 0.037409

(2) As shown in Figure 7b, the proposed model WPNet in this paper outperforms other
models in the Wallonia_PV test dataset. As shown in Table 4, the model achieves MSE,
MAE, and RMSE values of 1.833 × 10−3, 2.7854 × 10−2, and 4.2808 × 10−2, respectively.

(3) As shown in Figure 7c, the proposed model WPNet in this paper outperforms other
models in the Flanders_wind test dataset. As shown in Table 5, the model achieves MSE,
MAE, and RMSE values of 0.704 × 10−3, 1.8529 × 10−2, and 2.6541 × 10−2, respectively.

(4) As shown in Figure 7d, the proposed model WPNet in this paper outperforms other
models in the Wallonia_wind test dataset. As shown in Table 6, the model achieves MSE,
MAE, and RMSE values of 2.708 × 10−3, 3.2501 × 10−2, and 5.2042 × 10−2, respectively.
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Table 4. Wallonia_PV accuracy comparison.

Models
Wallonia_PV

MSE MAE MSE

LSTM 0.002091 0.030860 0.045723
CNN 0.002110 0.030323 0.045937

Transformer 0.021149 0.095309 0.145428
Attention 0.002336 0.031742 0.048332
WPNet 0.001833 0.027854 0.042808

Table 5. Flanders_wind accuracy comparison.

Models
Flanders_Wind

MSE MAE MSE

LSTM 0.000723 0.018949 0.026885
CNN 0.000823 0.020550 0.028685

Transformer 0.019000 0.098155 0.137844
Attention 0.000838 0.020566 0.028950
WPNet 0.000704 0.018592 0.026541

Table 6. Wallonia_wind accuracy comparison.

Models
Wallonia_Wind

MSE MAE MSE

LSTM 0.002878 0.034731 0.053646
CNN 0.003148 0.036817 0.056104

Transformer 0.062681 0.171094 0.250362
Attention 0.002993 0.035948 0.054709
WPNet 0.002708 0.033501 0.052042
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To further demonstrate the effectiveness of the proposed model in predicting wind
and PV power loads, the predicted values for the last 500 data points in the test set were
visualized. Figure 8 presents a detailed comparison of each model’s performance across
the four datasets. The thick blue line represents the ground truth data, while the other
colored lines represent the predictions of each algorithm. Figure 8a,b represent the PV
power generation data for Flanders and Wallonia regions, respectively, while Figure 8c,d
represent the wind power generation data for Flanders and Wallonia regions, respectively.
The black boxes in Figure 8a–c indicate that the predictions of the Transformer model have
significant deviations from the actual results. In the black box of Figure 8d, the predictions
of both CNN and Transformer do not match the actual results. Overall, the performance of
LSTM, Attention, and the proposed method WPNet is highly stable and accurate. However,
compared to the predictions of LSTM and Attention, the proposed method WPNet exhibits
the closest resemblance to the ground truth across all four datasets.
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In summary, the above analysis results demonstrate that the proposed wind and PV
power load prediction model WPNet in this paper can accurately forecast the renewable
energy generation power for the next time step. For the complete training process, see
Figure A1 in Appendix A.

3.4.2. Digital Twin AI Grid Simulation Experiments

In this study, a real wind and PV power plant was utilized as the research scenario. A
corresponding digital twin was constructed using data graphing, dynamic model changes,
and separate front-end and back-end development modes. The client periodically sends
polling requests to the server to retrieve data and update the view in real-time. The
simulation results are presented in Figure 9. The left image illustrates the physical entities of
the wind and PV plants in the actual space, while the right image depicts the corresponding
digital twin 3D model in the digital space. For overall power plant digital twin (3D model)
visualization results, see Figure A2 in Appendix A.
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Figure 9. Digital twin of wind and PV plants. The left image shows the wind and PV power
generation equipment in real space, while the right image shows the corresponding digital twin 3D
model of the equipment.

Figure 10 showcases the digital twin visualization platform. The platform retrieves
real-time updated database data and presents it in the visualization interface. Text-based
data is transformed into intuitive and effective chart types, effectively reducing the data
volume while highlighting data trends and future directions. The data is segmented into
multiple time points, and the date selection module in the upper left corner simplifies
the process of selecting the desired forecasting date. The generation details page offers a
comprehensive overview of the projected daily power generation for the upcoming period.
Additionally, it allows users to monitor generator details such as failures, shutdowns,
maintenance, and more, facilitating improved management and optimization of power
plant operations.
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4. Summary

To apply digital twin technology in the AI Grid and renewable energy power fore-
casting domain, this paper proposes a digital twin power forecasting platform for the AI
Grid. The platform utilizes weather conditions and historical power load data to predict
future wind and PV power generation. It then maps the power generation information
from the physical world to the digital space, enabling precise monitoring, optimal control,
and decision support for power system operations. Subsequently, a simulation experiment
was conducted using wind and PV power generation data from Flanders and Wallonia in
Belgium. The experimental results validate the effectiveness of the proposed study.

This study has achieved milestones through a digital twin-based approach to wind
and photovoltaic power forecasting, but there are still some limitations and shortcomings.
Specifically, the current study has not yet addressed the impacts of cross-region forecasting,
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cross-system forecasting, and equipment issues. Therefore, future work will focus on the
following two aspects: (1) Cross-region or cross-system forecasting: by comprehensively
analyzing weather conditions and power system operation data in different regions, we
will strive to achieve a wider range of power system operation optimization and planning
decision support. (2) Impact of equipment failures or changes in scale: We will take into
account the impact of equipment failures and the challenges posed by changes in the scale
of equipment in order to provide more accurate and reliable forecasts of power production.

With these improvements in our future work, we expect to further improve the
accuracy and reliability of renewable power forecasts and provide stronger support for
smart grid operation optimization and planning decisions.
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Appendix A

Table A1. Specific meaning of weather variables.

Weather Variables Specific Meaning

T Atmospheric temperature at 2 m above ground level (degrees Celsius)
Po Atmospheric pressure at weather station level (mmHg)
P Atmospheric pressure at mean sea level (mmHg)

Pa Change in atmospheric pressure (mmHg) during the three hours prior to
the observation

U Relative humidity at ground height 2 m (%)

DD Wind direction (compass bearing) at a ground height of 10~12 m within
10 min before observation

Ff Average wind speed (m/s) at a ground height of 10~12 m during the
10 min before the observation

ff3 Maximum gust at 10–12 m ground level between two observations (m/s)
N Total Cloud Volume
H Height of the lowest cloud base (m)
Td Dew point temperature at ground level 2 m (Celsius)

Figure A1 shows the transformation curve between training loss and test loss value of the
model during training on four different data sets, where blue represents training loss, orange
represents test loss, and the loss function uses cross entropy loss. Figure A1a,b, respectively
represent the loss value transformation curves of PV power generation data in the Flanders
and Wallonia regions, while Figure A1c,d, respectively represent the loss value transformation
curves of wind power generation data in the Flanders and Walloon regions.
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Flanders_PV. (b) Demonstration of the training process for the dataset Wallonia_PV. (c) Demonstration
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the dataset Wallonia_Wind.

In the process of modeling, in order to achieve a better presentation effect, we have
planned the deployment of power generation equipment and plants according to the layout of
a real power plant. By using 3DSMAX modeling tool, the basic framework of the model was
constructed according to the standard parameters, and at the same time, Blender 3.4 was used
to refine the model. For the power generation equipment, models of inverters, transformers,
power lines, generators, control systems and monitoring equipment were created through
the investigation of actual wind and solar power stations. To ensure the quality of the model,
Blender3.4 was used to strictly limit the scale of the model, so that it can correctly express the
effect while restoring the real scale. After completing the overall model design, the texture of
the fan blades of the real wind turbine and the combination of the solar panels are used to
further improve the overall framework, so that the final rendering effect has a clearer reference
significance. Among them, the overall simulation results of the inverter, transformer, power
lines and other connecting components are shown in Figure A2.
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