Essential Oils from Different Parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the Yields, Chemical Compositions, and Biological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. EO Extraction by HD Method
2.4. EO Composition Analysis
2.4.1. Gas Chromatography–Flame Ionization Detection (GC–FID)
2.4.2. Gas Chromatography–Mass Spectrometry (GC–MS)
2.5. In Vitro Antimicrobial Activity
2.5.1. Microbial Strains and Culture Media
2.5.2. Disc Diffusion Method (DDM)
2.6. Brine Shrimp Lethality Bioassay
2.7. Statistical Analysis
3. Results and Discussion
3.1. EO Extraction and Yield
3.2. EO Chemical Composition
3.3. In Vitro Antimicrobial Activity
3.4. Brine Shrimp Lethality Bioassay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Dias, E.; Araújo, C.; Mendes, J.; Elias, R.; Mendes, C.; Melo, C. Espécies Florestais das Ilhas—Açores. In Árvores e Florestas de Portugal; Silva, J.S., Ed.; Público, Comunicação Social, SA/Fundação Luso-Americana/Liga para a Protecção da Natureza: Lisboa, Portugal, 2007; Volume 6, pp. 199–254. [Google Scholar]
- Nagakura, J.; Shigenaga, H.; Akama, A.; Takahashi, M. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content. Tree Physiol. 2004, 24, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Mizushina, Y.; Kuriyama, I. Cedar (Cryptomeria japonica) Oils. In Essential Oils in Food Preservation, Flavor and Safety, 1st ed.; Preedy, V.R., Ed.; Academic Press: London, UK, 2016; pp. 317–324. [Google Scholar]
- Farjon, A. Plate 371. Cryptomeria japonica. Curtis’s Bot. Mag. 1999, 16, 212–228. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Ueno, S.; Wei, F.J.; Matsumoto, A.; Uchiyama, K.; Ujino-Ihara, T.; Hakamata, T.; Fujino, T.; Kasahara, M.; Bino, T.; et al. Identification and genetic diversity analysis of a male-sterile gene (MS1) in Japanese cedar (Cryptomeria japonica D. Don). Sci. Rep. 2021, 11, 1496. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-González, C.; Zas, R.; Erbilgin, N.; Ferrenberg, S.; Rozas, V.; Sampedro, L. Resin ducts as resistance traits in conifers: Linking dendrochronology and resin-based defences. Tree Physiol. 2020, 40, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Arruda, F.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Variations in essential oil chemical composition and biological activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from different geographical origins—A critical review. Appl. Sci. 2021, 11, 11097. [Google Scholar] [CrossRef]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological activities of organic extracts and specialized metabolites from different parts of Cryptomeria japonica (Cupressaceae)—A critical review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef] [PubMed]
- Ruas, A.; Graça, A.; Marto, J.; Gonçalves, L.; Oliveira, A.; Nogueira da Silva, A.; Pimentel, M.; Moura, A.M.; Serra, A.T.; Figueiredo, A.C.; et al. Chemical characterization and bioactivity of commercial essential oils and hydrolates obtained from Portuguese forest logging and thinning. Molecules 2022, 27, 3572. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Arruda, F.; Rosa, J.S.; Rodrigues, A.; Oliveira, L.; Lima, A.; Barroso, J.G.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 1: Color, yield and chemical composition analysis. Appl. Sci. 2022, 12, 452. [Google Scholar] [CrossRef]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Moiteiro, C.; Esteves, T.; Ramalho, L.; Rojas, R.; Alvarez, S.; Zacchino, S.; Bragança, H. Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations. Nat. Prod. Commun. 2013, 8, 1785–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arruda, F.; Lima, A.; Oliveira, L.; Rodrigues, T.; Janeiro, A.; Rosa, J.S.; Lima, E. Essential oil variability of Azorean Cryptomeria japonica leaves under different distillation methods, Part 2: Molluscicidal activity and brine shrimp lethality. Separations 2023, 10, 241. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, P.S.; Yiap, B.C.; Ping, H.C.; Lim, S.H. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol, J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Council of Europe. European Directorate for the Quality of Medicines. In European Pharmacopoeia, 7th ed.; Council of Europe: Strasbourg, France, 2010; p. 241. [Google Scholar]
- ISO 7609; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. ISO: Geneva, Switzerland, 1985.
- Ascensão, L.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Schripsem, J.; Deans, S.G.; Scheffer, J.C.J. Plectranthus madagascariensis: Morphology of the glandular trichomes, essential oil composition and its biological activity. Int. J. Plant Sci. 1998, 159, 31–38. [Google Scholar] [CrossRef]
- Salgueiro, L.R.; Vila, R.; Tomi, F.; Figueiredo, A.C.; Barroso, J.G.; Cañigueral, S.; Casanova, J.; Cunha, A.P.; Adzet, T. Variability of essential oils of Thymus caespititius from Portugal. Phytochemistry 1997, 45, 307–331. [Google Scholar] [CrossRef]
- Cavaleiro, C.; Salgueiro, L.; Barroso, J.G.; Figueiredo, A.C.; Pedro, L.G.; Fontinha, S.S.; Bighelli, A.; Casanova, J.; Looman, A.; Scheffer, J.J.C. Composition of the essential oil of Juniperus cedrus Webb & Berth. grown on Madeira. Flavour. Fragr. J. 2002, 17, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, A.C.; Moiteiro, C.; Rodrigues, M.C.S.M.; Almeida, A.J.R.M. Essential oil composition from Cryptomeria japonica D. Don grown in Azores: Biomass valorization from forest management. Nat. Prod. Commun. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Samson, R.A.; Hoekstra, E.S.; Frisvad, J.C.; Filtenborg, O. Introduction to Food- and Airborne Fungi, 6th ed.; Centraalbureau voor Schimmelcultures: Utrecht, The Netherlands, 2002; p. 389. [Google Scholar]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 2nd; CBS–KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2010; p. 390. [Google Scholar]
- André, S.; Vallaeys, T.; Planchon, S. Spore-forming bacteria responsible for food spoilage. Res. Microbiol. 2017, 168, 379–387. [Google Scholar] [CrossRef]
- Zhu, M.; Zhu, Q.; Yang, Z.; Liang, Z. Clinical characteristics of patients with Micrococcus luteus bloodstream infection in a chinese tertiary-care hospital. Pol. J. Microbiol. 2021, 70, 321–326. [Google Scholar] [CrossRef]
- Khater, D.F.; Lela, R.A.; El-Diasty, M.; Moustafa, S.A.; Wareth, G. Detection of harmful foodborne pathogens in food samples at the points of sale by MALDT-TOF MS in Egypt. BMC Res. Notes 2021, 14, 112. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef]
- Garcia, G.; Garcia, A.; Gibernau, M.; Bighelli, A.; Tomi, F. Chemical compositions of essential oils of five introduced conifers in Corsica. Nat. Prod. Res. 2017, 31, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Vel, E.; Sampers, I.; Raes, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, R.; Li, L.; Zhou, X.; Li, Z.; Jia, R.; Song, X.; Zou, Y.; Yin, L.; He, C.; et al. The antibacterial mechanism of terpinen-4-ol against Streptococcus agalactiae. Curr. Microbiol. 2018, 75, 1214–1220. [Google Scholar] [CrossRef]
- Cordeiro, L.; Figueiredo, P.; Souza, H.; Sousa, A.; Andrade-Júnior, F.; Medeiros, D.; Nóbrega, J.; Silva, D.; Martins, E.; Barbosa-Filho, J.; et al. Terpinen-4-ol as an antibacterial and antibiofilm agent against Staphylococcus aureus. Int. J. Mol. Sci. 2020, 21, 4531. [Google Scholar] [CrossRef]
- Morcia, C.; Malnati, M.; Terzi, V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niksic, H.; Becic, F.; Koric, E.; Gusic, I.; Omeragic, E.; Muratovic, S.; Miladinovic, B.; Duric, K. Cytotoxicity Screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021, 11, 13178. [Google Scholar] [CrossRef] [PubMed]
Essential Oil | Plant Part | |||
---|---|---|---|---|
FCs | MCs | Leaves | Foliage | |
Yield (%, w/d.w.) | 0.67 ± 0.03 a | 0.70 ± 0.04 a | 2.63 ± 0.16 b | 2.11 ± 0.14 b |
Components | RI | Sample | |||
---|---|---|---|---|---|
FC EO | MC EO | Leaf EO | Foliage EO | ||
Tricyclene | 921 | 0.1 | 0.3 | 0.3 | 0.2 |
α-Thujene | 924 | 0.7 | 2.1 | 1.6 | 0.9 |
α-Pinene | 930 | 44.6 | 37.6 | 25.8 | 17.0 |
Camphene | 938 | 1.0 | 1.8 | 2.1 | 1.4 |
Sabinene | 958 | 3.9 | 6.1 | 14.1 | 8.1 |
β-Pinene | 963 | 1.6 | 1.3 | 1.4 | 1.1 |
1,2,4-Trimethyl benzene | 975 | t | t | t | t |
β-Myrcene | 975 | 1.7 | 4.7 | 3.4 | 2.9 |
α-Phellandrene | 995 | t | 0.4 | t | t |
δ-3-Carene | 1000 | 1.3 | 1.6 | 0.8 | 0.9 |
α-Terpinene | 1002 | 0.6 | 3.4 | 1.1 | 1 |
p-Cymene | 1003 | 0.9 | 1.0 | t | 0.2 |
β-Phellandrene | 1005 | 0.8 | 1.1 | 0.5 | 0.4 |
Limonene | 1009 | 1.0 | 3.2 | 1.1 | 1.3 |
cis-β-Ocimene | 1017 | t | t | t | t |
trans-β-Ocimene | 1027 | t | t | t | t |
γ-Terpinene | 1035 | 0.8 | 4.9 | 1.9 | 1.8 |
trans-Sabinene hydrate | 1037 | t | t | t | 0.1 |
Fenchone | 1050 | t | t | t | t |
2,5-Dimethyl styrene | 1059 | 0.1 | t | t | t |
Terpinolene | 1064 | 0.5 | 1.3 | 0.8 | 0.7 |
cis-Sabinene hydrate | 1066 | t | t | t | t |
Linalool | 1074 | t | t | t | t |
trans-Thujone | 1081 | t | t | t | t |
1-Octen-3-yl acetate | 1086 | t | t | t | t |
trans-p-2-Menthen-1-ol | 1099 | 0.2 | t | t | t |
Camphor | 1102 | t | t | t | t |
cis-p-2-Menthen-1-ol | 1114 | t | 0.3 | t | 0.1 |
Borneol | 1134 | 0.5 | 0.1 | t | t |
Terpinen-4-ol | 1148 | 3.7 | 11.8 | 2.7 | 3.5 |
α-Terpineol | 1159 | 0.8 | 0.9 | t | 0.3 |
α-Fenchyl acetate | 1200 | t | t | t | t |
Geraniol | 1236 | t | t | t | t |
Bornyl acetate | 1265 | 0.2 | 1.3 | 1.4 | 1.4 |
cis-Verbenyl acetate | 1266 | t | t | t | t |
α-Terpenyl acetate | 1334 | 0.3 | 0.1 | t | 0.1 |
α-Cubebene | 1345 | t | t | t | t |
α-Copaene | 1375 | t | t | t | t |
β-Elemene | 1388 | 0.4 | t | t | 0.1 |
β-Caryophyllene | 1414 | 0.2 | t | 0.2 | 0.2 |
β-Copaene | 1426 | 0.4 | t | t | t |
α-Humulene | 1447 | t | t | t | t |
γ-Muurolene | 1469 | 0.3 | t | t | 0.4 |
Germacrene D | 1474 | 0.9 | t | 0.5 | t |
β-Selinene | 1476 | t | t | t | t |
α-Muurolene | 1494 | 0.3 | t | 0.3 | 0.2 |
γ-Cadinene | 1500 | 0.4 | t | 0.4 | 0.3 |
trans-Calamenene | 1505 | t | t | t | t |
δ-Cadinene | 1505 | 0.4 | 0.2 | 1.3 | 0.9 |
α-Cadinene | 1529 | t | t | t | t |
Elemol | 1530 | 3.9 | 2.0 | 11.5 | 13.6 |
Germacrene D-4-ol 1 | 1557 | 0.2 | t | 0.4 | 0.7 |
β-Caryophyllene oxide | 1561 | t | t | t | t |
Anhydrooplopanone | 1576 | t | t | 0.1 | t |
10-epi-γ-Eudesmol | 1593 | t | 1.0 | t | 0.4 |
γ-Eudesmol | 1609 | 3.5 | 1.2 | 3.5 | 3.6 |
T-Cadinol | 1616 | 0.1 | t | 0.6 | 1.2 |
β-Eudesmol | 1620 | 7.1 | 1.0 | 3.8 | 5.2 |
δ-Cadinol | 1621 | t | t | t | t |
α-Cadinol | 1630 | 0.1 | t | 0.1 | 0.4 |
α-Eudesmol | 1634 | 5.9 | 1.2 | 5.1 | 6.3 |
Rimuene | 1814 | t | t | t | t |
Isopimara-9(11), 15-diene | 1821 | t | t | 0.2 | 0.2 |
Isokaurene 1 | 1951 | t | 0.1 | 1.0 | 0.5 |
Sandaracopimara-8(14), 15-diene | 1956 | t | 0.7 | 0.2 | 0.5 |
Isophyllocladene 1 | 1956 | t | t | t | t |
Phyllocladene | 2006 | 2.0 | 4.5 | 7.4 | 11.6 |
Kaurene | 2044 | t | t | t | 0.6 |
Abietatriene | 2045 | t | t | t | 0.1 |
Abietadiene | 2060 | t | t | t | t |
Nezukol 1 | 2176 | 0.6 | 0.4 | 1.0 | 3.3 |
% Identification | 92.0 | 97.6 | 96.6 | 93.7 | |
% Grouped components | |||||
Monoterpene hydrocarbons | 59.6 | 70.8 | 54.9 | 37.9 | |
Oxygen-containing monoterpenes | 5.7 | 14.5 | 4.1 | 5.5 | |
Sesquiterpene hydrocarbons | 3.3 | 0.2 | 2.7 | 2.1 | |
Oxygen-containing sesquiterpenes | 20.8 | 6.4 | 25.1 | 31.4 | |
Diterpene hydrocarbons | 2.0 | 5.3 | 8.8 | 13.5 | |
Oxygen-containing diterpenes | 0.6 | 0.4 | 1.0 | 3.3 |
EO/Compound | Growth Inhibition Zone (mm) | ||||||
---|---|---|---|---|---|---|---|
Bacillus subtilis | Bacillus licheniformis | Micrococcus luteus | Serratia marcescens | Enterobacter cloacae | Escherichia coli | Penicillium chrysogenum | |
FC EO 1 | 13 ± 4 bc | 11 ± 2 c | 11 ± 2 c | na | na | na | 7 ± 0 a |
MC EO 1 | 9 ± 1 c | 10 ± 3 c | 7 ± 1 cd | na | na | na | 7 ± 0 a |
Leaf EO 1 | 9 ± 1 c | 9 ± 2 c | 7 ± 1 cd | na | na | na | na |
Foliage EO 1 | 10 ± 2 c | 9 ± 1 c | 11 ± 1 c | na | na | na | na |
α-Pinene 1 | 14 ± 1 b | 15 ± 1 b | 18 ± 1 b | 8 ± 1 c | 7 ± 1 c | 8 ± 1 c | 14 ± 1 b |
Terpinen-4-ol 1 | 11 ± 1 c | 11 ± 1 c | 7 ± 1 d | 21 ± 2 b | 31 ± 3 a | 19 ± 5 b | 14 ± 1 b |
Kanamycin 2 | 39 ± 2 a | 34 ± 2 a | 30 ± 0 a | 24 ± 2 a | 21 ± 1 b | 24 ± 1 a | - |
Nystatin 3 | - | - | - | - | - | - | 8 ± 1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.; Arruda, F.; Janeiro, A.; Rodrigues, T.; Baptista, J.; Figueiredo, A.C.; Lima, E. Essential Oils from Different Parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the Yields, Chemical Compositions, and Biological Properties. Appl. Sci. 2023, 13, 8375. https://doi.org/10.3390/app13148375
Lima A, Arruda F, Janeiro A, Rodrigues T, Baptista J, Figueiredo AC, Lima E. Essential Oils from Different Parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the Yields, Chemical Compositions, and Biological Properties. Applied Sciences. 2023; 13(14):8375. https://doi.org/10.3390/app13148375
Chicago/Turabian StyleLima, Ana, Filipe Arruda, Alexandre Janeiro, Tânia Rodrigues, José Baptista, Ana Cristina Figueiredo, and Elisabete Lima. 2023. "Essential Oils from Different Parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the Yields, Chemical Compositions, and Biological Properties" Applied Sciences 13, no. 14: 8375. https://doi.org/10.3390/app13148375
APA StyleLima, A., Arruda, F., Janeiro, A., Rodrigues, T., Baptista, J., Figueiredo, A. C., & Lima, E. (2023). Essential Oils from Different Parts of Azorean Cryptomeria japonica (Thunb. ex L.f.) D. Don (Cupressaceae): Comparison of the Yields, Chemical Compositions, and Biological Properties. Applied Sciences, 13(14), 8375. https://doi.org/10.3390/app13148375