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Abstract

:

Open-cast coal mining is one of the most often-debated industries in the world. Due to the significant environmental and health issues it causes, many of these sites have been reclaimed over the years, and many scientific publications and research has followed. In this paper, we have tried to assess the trends in recent research performed on reclaimed coal mining sites (RMS) by analyzing the publications visible on Web of Science (WoS) between 2015 and 2020 and dividing the research into six categories. The results show that there is a trend of rapid increase in research that deals with carbon and its pooling, nutrients, vegetation, and microbiology, and a significant decline in research on RMS soil physical properties, whereas other categories have shown an increasing but relatively steady trend. The application of modern technologies is also discussed. China, the USA, and India are the countries that quantitatively take the lead in coal RMS research, with India slowly overtaking the US in more recent years.






Keywords:


reclamation; coal mining; research; trends; soil; spoil heaps












1. Introduction


Coal mining sites present a serious issue for modern society. Open-cast coal mining significantly changes the landscape and utterly destroys soil functions, making these vast sites practically desolate, thus positioning itself as probably the most disputed industry in the world [1,2,3,4]. Besides disturbing the landscape and soil, it also impacts the integrity of the habitat, environmental flows, and ecosystem functions, as well as water and air quality, thus often leading to human health problems [5].



Many countries have developed legislation about the ways that these sites need to be treated after the excavation process is done [3,6,7,8], and our knowledge expands every year with various research results that we obtain from these localities. Despite the fact that they have been more precisely defined in recent years, the so-called R4 terms (reclamation, rehabilitation, restoration, and remediation) are still a source of confusion for many [5,9]. Many researches have shown that technical reclamation, an approach widely used in the 20th century, might have its flaws, and there are other, in many cases, more feasible and efficient solutions, such as natural succession [8,10]. Technical reclamation is still the most common approach used on post-mining sites, and it is even a mandatory practice in some areas, due to many countries’ legislation [9]. The full effects of the reclamation process can be visible only after some time has passed, usually ranging from several decades to the scale of centuries. As stated by Karan et al. [11], continuous monitoring of reclamation sites should be given emphasis in order to devise a feasible and effective policy for degraded land reclamation and restoration.



In order to observe the research trends on coal mining sites, for the purpose of this research it was decided to split the research into different categories. Although it could roughly be said that research on coal reclaimed mine sites (RMS) is most usually of a physical, chemical, or biological nature, recent technological achievements such as satellite imagery, remote sensing, the use of Unmanned Aerial Vehicles (UAVs), GIS, modelling, and various new theories and equipment which require calibration or testing often demand a section of their own [1,12]. Review papers, as well as the implementation of new technologies with data and measurements from older research, can be considered a separate, although not less important, category, since they often provide more comprehensive information and interconnect various scientific branches. Keeping in mind that soil organic matter (SOM) is one of the segments that is most drastically impacted by open-cast coal mining, and its physical, chemical, and biological properties and functions are deeply interrelated, as well as the fact that it is an unavoidable and very abundant component of much modern soil RMS research, a section of its own is called for. Soil organic carbon (SOC) research, as well as the capability of certain soils to sequester it, is becoming more and more abundant in recent years [13,14,15,16,17,18,19,20]. Since nutrients, most commonly nitrogen, are often investigated together with soil carbon, sometimes it is difficult to divide these as well. Being interested mainly in the direction that research on coal reclamation sites is going towards, the main purpose of this paper is not to compare the effectiveness of one restoration strategy or method over the other, distinguish between the terminology issues mentioned, or compare the vegetation species, age, or effectiveness, but only to point out the general trends and abundance of certain research categories over others. This paper does not provide comprehensive statistical and/or bibliometric analysis, but merely aims to reflect the trends of research performed on these sites over a specified time period, in publications visible in the Web of Science (WoS) online library.




2. Materials and Methods


The materials used were scientific publications from the Web of Science (WoS) website. In order to obtain as many publications related to coal reclamation sites as possible, the input query words were “coal AND soil AND reclama* OR reclaim*.” The search filter was set to “topic,” and the time span was 2015–2020. This search included journal articles and conference proceedings that appeared in the search up until 30 March 2020.



Having in mind current research activities on coal reclamation sites, they were split into 6 categories:




	
C, N, and SOM;



	
Physical;



	
Biological;



	
Chemical;



	
Technology;



	
Review and Metadata.








Each publication from the search query was analyzed, and accredited with one point in total. If the research was precisely focused on only one of the categories, that category received a full 1 point. If the research was split between two categories, each of the categories received 0.5 points if they were equally distributed throughout the research, or an uneven fraction of the point if they were not. Thus, several categories could have equally or unequally distributed points, but the sum of all fractions of all 6 categories for each single publication had to be one.



The category C, N, and SOM comprises all the research that deals with soil organic matter, soil carbon (both organic and inorganic), and macronutrients, mainly nitrogen. If the topic of the research deals with nutrients in greater detail, it can be commonly interrelated with the Chemical section. The Physical category encompasses soil physical and hydrological research, including bulk density, soil structure, soil texture, porosity, water retention and transport, compaction, etc. The Biological category deals with topics of soil micro- and macro-fauna and its activities, as well as vegetation and its establishment. The Chemical category is related to mine soil’s chemical characteristics and its changes, acidification, element toxicity, etc. The category Technology has been introduced in order to fill the gap for the research that is related to the introduction and use of new technologies, models, statistical methods, and equipment, and their research, development, calibration, etc. The Review and Metadata category deals with reviews, state-of-the-art papers, and processing metadata.



The results with distributed category points are presented in a tabular form, together with references and the country a particular study originates from, as well as in the form of graphs showing the trends in the observed period.




3. Results


The Web of Science search engine, searching before the date of 30 March 2020, has given 153 search results for the parameters given in the query. Out of those, eight publications needed to be removed from the analysis for not complying with the topic (different type of mining, oriented solely to mining engineering, its process and techniques, etc.), for being an administrative mistake such as multiple appearances of the same publication, or, in two cases, for being a reprint of an older publication.



The list of publications processed, with the points accredited to them, as well as research locations (countries of origin), can be seen in Table 1:



After processing the results and excluding the six publications from 2020, which had yet to yield their other publications, it is noticeable that, for this topic and these search results, 2018 was the year with the largest number of publications (32) visible on the WoS website, followed by 2017 (30) and 2019 (28). The year 2015 had a slightly lesser number of visible publications (26), with 2016 being at the list’s rear with 23 (Table 2).



The Biological category gained the largest number of overall points, 34.14, closely followed by the C, N, and SOM category, with 34.04, Chemical with 30.78., Physical with 24.31 points, followed by Technology with 11.08, and Review & Metadata with 4.66. The results of the individual and summary values for all categories over the years are presented in Table 2.



The overall share and distribution of points over the years for the six mentioned categories are presented in Figure 1. After the observation of this distribution, as well as each category’s respective linear trend lines (not shown), it can be said that there is noticeable growth in categories Biological and C, N, and SOM (which also obtained the greatest number of overall points). The categories Chemical, Technology, and Review and Metadata have shown some, but not as significant, growth, whereas the category Physical has shown a drastic decline during these five years.



The research encompassed in these publications came from 14 different countries all across the globe, with the greatest number of publications originating from China, the USA, and India, with 39, 21, and 16% shares of the total number of publications, respectively. These values are presented in Table 3.



Another visible trend is the increase in the overall number of publications coming from China and India in more recent years compared to those coming from the USA. The USA was equal to China in 2015 in its number of publications, and was leading in 2016. Since then, in the last three years, it has shown a significant decline, whereas India’s values caught up with it, and China’s, in some cases, more than doubled.




4. Discussion


Ever since the Intergovernmental Panel on Climate Change (IPCC) was held in 1988, the sequestration of carbon in terrestrial and non-terrestrial ecosystems has been one of the strategies for mitigating the negative effects of climate change, and has been recognized as an effective and viable method for the reduction of greenhouse gases under the Kyoto Protocol [156]. Since then, many projects have been developed to fund research and strategies related to carbon sequestration.



Reclaimed mine lands offer significant potential for carbon sequestration in terrestrial ecosystems, according to some sources, up to the rate of one ton per hectare per year [157,158]. If the reclaimed land is converted to forests, it is stated that these values can reach up to roughly 2.5 tons per hectare per year, due to the ability of forests to store more carbon in their vegetative parts compared to other land use types, although the soil carbon levels among them can be similar [158]. Since organic carbon and organic matter levels on coal mining spoil heaps are usually severely depleted, these sites present big natural laboratories for monitoring the changes in carbon levels. It was also noticed that reclamation sites have shown great potential as soil organic carbon sinks [159,160] and that the pre-mining levels of soil organic carbon can be achieved after only 20 years [161]. These are some of the reasons that explain the results of the C, N, and SOM category and its trends.



Keeping in mind the fact that China, the USA, and India combined, according to the BP Statistical Review of World Energy [162], accounted for more than two thirds of the global increase in energy demand in 2018, and that, along with the Russian Federation and Australia, have the greatest coal reserves in the world, it is no wonder that these three countries have had such a share of research performed on reclaimed mine sites.



Around the world, RMS research topics can vary due to many reasons, depending not only on current scientific interests, but also, on a broader scale, on geographical, geological, socio-economic, financial, cultural, and other factors. In some European countries and the USA, for example, where some reclamation sites and strategies are close to a century old, the tendencies are to further improve and research the good techniques used, and suppress the ones that might, in the long run, cause certain risks. A good example of this would be the decline in choosing non-native afforestation species, like black locust (Robinia pseudoacacia) or red oak (Quercus rubra) in many developed European countries [9,10,163], due to their potential invasiveness, and despite their many benefits (in case of R. pseudoacacia, anti-erosion potential, nitrogen fixation, honey production, tolerance to various environmental factors, etc.), whereas, in many Asian, and even some developing European countries, it is still a common practice due to their mentioned benefits, low mortality rate, and, above all, low cost. The same applies for creating monoculture forest stands instead of mixed forests on RMS. On the other hand, in certain areas, where it is difficult to establish vegetation for various reasons (e.g., parent or overburden material which can be eco-toxic, compacted, or overly clayey, severe climatic conditions or erosion, the presence of water, etc.), this can direct the way that measures are taken and the course of action and subsequent research practices that are prioritized. The creation of younger RMS, especially in developing countries where the energy demand is great and funds for post-mining reclamation/restoration are scarce, can be limited due to these reasons.



The declining trends in research on soil’s physical and hydrological properties in more recent years can be, among other things, explained by the recent tendencies of trying to make a change from technical reclamation practices to ecological restoration [5,9,164]. During the second half of 20th century, when technical reclamation was most widely used, some of the main goals of this approach were to create a stable landscape and support establishing vegetation. Thus, geotechnical, mining, and forestry engineering methods and research were more common. Nowadays, with tendencies towards ecological restoration, a vast number of developing sub-sciences from the field of ecology is involved, gathering scientists from many different branches and making the field much broader than before.



A potential problem when trying to assess research performed on coal mine sites can be defining the key words to use in the search, since sometimes the results encompass some other types of mining activity. Also, defining the R4 (reclamation, rehabilitation, restoration, and remediation) term that you want to use is a problem of greater significance, dating more than a few decades back, and is still an ever-present issue, as explained in a paper by Lima and associates [5,9]. In the mentioned paper, the definitions of each of the R4 terms are updated and more clearly given. This problem was more recently also explained by Gerwing et al. [164], where a new term, “ecological reclamation”, was also introduced, and some other SER (Society for Ecological Restoration) standards and recommendations were also discussed. In everyday practice, these terms are still often considered as synonyms for each other, thus making precisely defined searches more difficult.



New advances in technology are not easy to assess and compare amongst one another, since, due to rapid information exchange, it often happens that a piece of equipment or a method that was experimentally used at some point becomes a standard or even a requisite in a very short period of time, especially if it proves to be a more feasible solution. Thus, it can be very demanding to decide what one might consider a “new” or “modern” solution, and what has already shown good results and is being widely used in practice, although it might still be considered new.



Another potential problem worth addressing is the delay of certain publications in their appearing in scientific databases on the internet, which can sometimes take months [165]. This was noticed during our research as well, where, as days passed, the number of search results with the same input parameters became greater, mostly due to a number of publications from 2019 appearing as late as the end of March 2020, when we stopped further revisions of the results. Thus, it can be stated that the number of publications, especially in later years such as 2019, is not yet certain, and will probably increase as time passes, providing us with yet more information. Some authors mentioned that one “should be cautious when using engines like WoS and Scopus as a measuring device for changes in research performance from an international perspective” [166]. Since the time data for this review were obtained, a change in the WoS database search algorithm occurred, and prohibited us from updating it with more recent information in early 2023. The input query words used before now give a much broader list of publications, most of which are completely off-topic, compared to the very narrow-focused results we obtained in 2020. When modified slightly and still using similar keywords (coal, soil, recla*), some of the most recent publications from 2023 visible in the WoS database related to the matter mainly originate from China [167,168,169,170,171,172,173], India [174,175,176], and Poland [177,178,179,180], with research coming from China definitely being the most abundant.



However, having in mind the presented trends from the processed period, the number of papers processed, and the most recently published publications visible in the WoS database, the expectations are not in favour of very significant trend changes, although the number and the research area might still vary slightly.




5. Conclusions


Although research on coal reclaimed sites can be very complex and comprehensive, thus inducing complications in the assessment process, and each research branch can have its own issues that can be addressed, the results have shown that much research has been performed in the five-year period between 2015 and 2019 on these localities, which provides us with much needed information on the direction in which certain reclamation/restoration strategies are heading and the results being or not being achieved. The vast majority of publications come from China, the USA, and India, which is understandable due to the fact that these countries have shown the greatest energy demands lately, and have vast coal reserves. It is presumed that, as time passes, China and India will, slowly or rapidly, take the lead in these research activities. New technological achievements are being incorporated into these activities, making them less expensive and more efficient. Research activities which dealt with the analysis of soil carbon, nitrogen, and organic matter have shown a significant increase in recent years, as well as those related to vegetation and micro- and macro-fauna. Research on reclaimed mine soil’s chemical properties has shown a somewhat lesser but steady increase. Review papers and publications that deal with the processing of metadata were not as abundant in numbers visible on the Web of Science search engine, so their trends are not easily assessed. Research on reclaimed mine soil’s physical properties has shown a decline in publishing. However, this paper’s goal was only to assess the general trends in reclamation site research, and the overall direction it is going in. A greater time span would probably provide us with more comprehensive information for most of the categories processed here, but the trend of a rapid increase in research that deals with carbon and its pooling, nutrients, vegetation, and microbiology is visible even in a period as short as five years.
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Figure 1. Trends of categories’ number of points in publications from 2015 to 2019. 
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Table 1. Distribution of points across categories.
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No.

	
Author and Reference Number

	
Year

	
Category

	
Location




	
C, N and SOM

	
Physical

	
Biological

	
Chemical

	
Technology

	
Review & Metadata






	
1

	
Guan et al. [21]

	
2020

	
0.80

	
0.00

	
0.10

	
0.10

	
0.00

	
0.00

	
China




	
2

	
Feng et al. [22]

	
2020

	
0.00

	
0.50

	
0.00

	
0.00

	
0.50

	
0.00

	
China




	
3

	
Ezeokoli et al. [23]

	
2020

	
0.00

	
0.17

	
0.67

	
0.17

	
0.00

	
0.00

	
South Africa




	
4

	
Yan et al. [24]

	
2020

	
0.67

	
0.00

	
0.33

	
0.00

	
0.00

	
0.00

	
China




	
5

	
López-Marcos et al. [25]

	
2020

	
0.17

	
0.17

	
0.50

	
0.00

	
0.17

	
0.00

	
Spain




	
6

	
Block et al. [26]

	
2020

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
USA




	
7

	
Jambhulkar & Kumar [27]

	
2019

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
India




	
8

	
Mylliemngap & Barik [28]

	
2019

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
India




	
9

	
Yang Chen & Zhang [29]

	
2019

	
0.67

	
0.00

	
0.17

	
0.17

	
0.00

	
0.00

	
China




	
10

	
Jianhua Li et al. [16]

	
2019

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
China




	
11

	
Bao et al. [30]

	
2019

	
0.00

	
0.33

	
0.00

	
0.00

	
0.67

	
0.00

	
China




	
12

	
X. Yang et al. [31]

	
2019

	
0.33

	
0.00

	
0.33

	
0.33

	
0.00

	
0.00

	
China




	
13

	
Detheridge et al. [15]

	
2019

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
UK




	
14

	
Min Zhang et al. [32]

	
2019

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
China




	
15

	
Pihlap et al. [33]

	
2019

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
Germany




	
16

	
Hall et al. [34]

	
2019

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
USA




	
17

	
Kumari & Maiti [35]

	
2019

	
0.50

	
0.00

	
0.50

	
0.00

	
0.00

	
0.00

	
India




	
18

	
Brooks et al. [36]

	
2019

	
0.00

	
0.25

	
0.50

	
0.25

	
0.00

	
0.00

	
USA




	
19

	
Z. Zhang, Wang, & Feng [37]

	
2019

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
China




	
20

	
Agus et al. [38]

	
2019

	
0.17

	
0.17

	
0.50

	
0.17

	
0.00

	
0.00

	
Indonesia




	
21

	
Cheng & Sun [39]

	
2019

	
0.00

	
0.00

	
0.00

	
0.00

	
1.00

	
0.00

	
China




	
22

	
Franke et al. [40]

	
2019

	
0.00

	
0.17

	
0.67

	
0.17

	
0.00

	
0.00

	
USA




	
23

	
Lei et al. [41]

	
2019

	
0.33

	
0.33

	
0.00

	
0.33

	
0.00

	
0.00

	
China




	
24

	
Feng et al. [42]

	
2019

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
1.00

	
China




	
25

	
Desai et al. [43]

	
2019

	
0.00

	
0.00

	
0.33

	
0.67

	
0.00

	
0.00

	
UK




	
26

	
Yang et al. [18]

	
2019

	
0.67

	
0.00

	
0.17

	
0.00

	
0.17

	
0.00

	
China




	
27

	
Qiu et al. [44]

	
2019

	
0.25

	
0.00

	
0.50

	
0.25

	
0.00

	
0.00

	
China




	
28

	
Z. Zhang, Wang, & Li [45]

	
2019

	
0.33

	
0.11

	
0.11

	
0.11

	
0.33

	
0.00

	
China




	
29

	
Adeli et al. [46]

	
2019

	
0.20

	
0.40

	
0.40

	
0.00

	
0.00

	
0.00

	
USA




	
30

	
Atanassova et al. [47]

	
2019

	
0.00

	
0.25

	
0.00

	
0.75

	
0.00

	
0.00

	
Bulgaria




	
31

	
Miller et al. [48]

	
2019

	
0.20

	
0.00

	
0.00

	
0.80

	
0.00

	
0.00

	
Indonesia




	
32

	
Petrov [49]

	
2019

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
1.00

	
Bulgaria




	
33

	
Bandyopadhyay & Maiti [50]

	
2019

	
0.00

	
0.00

	
0.33

	
0.67

	
0.00

	
0.00

	
India




	
34

	
M. Zhang & Zhang [20]

	
2019

	
0.80

	
0.00

	
0.10

	
0.00

	
0.10

	
0.00

	
China




	
35

	
Badenhorst et al. [51]

	
2018

	
0.00

	
0.25

	
0.50

	
0.25

	
0.00

	
0.00

	
South Africa




	
36

	
Jinman Wang et al. [52]

	
2018

	
0.00

	
0.67

	
0.00

	
0.00

	
0.33

	
0.00

	
China




	
37

	
Priyono et al. [53]

	
2018

	
0.00

	
0.50

	
0.25

	
0.25

	
0.00

	
0.00

	
Indonesia




	
38

	
Bandyopadhyay et al. [54]

	
2018

	
0.00

	
0.00

	
0.33

	
0.67

	
0.00

	
0.00

	
India




	
39

	
Duo & Hu [55]

	
2018

	
0.33

	
0.33

	
0.00

	
0.33

	
0.00

	
0.00

	
China




	
40

	
Hu et al. [56]

	
2018

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
China




	
41

	
Haigh et al. [57]

	
2018

	
0.25

	
0.00

	
0.50

	
0.25

	
0.00

	
0.00

	
UK




	
42

	
Ahirwal et al. [58]

	
2018

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
India




	
43

	
Valenzuela et al. [59]

	
2018

	
0.33

	
0.33

	
0.33

	
0.00

	
0.00

	
0.00

	
Chile




	
44

	
Rawlik, Kasprowicz, Jagodziński, et al. [60]

	
2018

	
0.00

	
0.00

	
0.67

	
0.33

	
0.00

	
0.00

	
Poland




	
45

	
Guo et al. [61]

	
2018

	
0.13

	
0.13

	
0.13

	
0.13

	
0.50

	
0.00

	
China




	
46

	
Skousen et al. [62]

	
2018

	
0.00

	
0.00

	
0.67

	
0.33

	
0.00

	
0.00

	
USA




	
47

	
Franke et al. [63]

	
2018

	
0.00

	
0.00

	
0.80

	
0.20

	
0.00

	
0.00

	
USA




	
48

	
Hou et al. [64]

	
2018

	
0.00

	
0.10

	
0.70

	
0.20

	
0.00

	
0.00

	
China




	
49

	
Ahirwal & Maiti [65]

	
2018

	
0.40

	
0.20

	
0.20

	
0.20

	
0.00

	
0.00

	
India




	
50

	
Ye Yuan, Zhao, Niu, et al. [66]

	
2018

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
China




	
51

	
Kumar et al. [67]

	
2018

	
0.50

	
0.00

	
0.50

	
0.00

	
0.00

	
0.00

	
India




	
52

	
Sun et al. [17]

	
2018

	
0.50

	
0.00

	
0.00

	
0.00

	
0.50

	
0.00

	
China




	
53

	
Sena et al. [68]

	
2018

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
USA




	
54

	
Rana & Maiti [69]

	
2018

	
0.00

	
0.00

	
0.50

	
0.50

	
0.00

	
0.00

	
India




	
55

	
S. Li & Liber [70]

	
2018

	
0.00

	
0.10

	
0.50

	
0.30

	
0.10

	
0.00

	
China




	
56

	
Jing et al. [71]

	
2018

	
0.80

	
0.00

	
0.00

	
0.00

	
0.20

	
0.00

	
China




	
57

	
Angst et al. [72]

	
2018

	
0.70

	
0.10

	
0.10

	
0.10

	
0.00

	
0.00

	
USA




	
58

	
Tang et al. [73]

	
2018

	
0.00

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
China




	
59

	
Rawlik, Kasprowicz, & Jagodziński [74]

	
2018

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
Poland




	
60

	
Ye Yuan, Zhao, Li, et al. [19]

	
2018

	
0.70

	
0.00

	
0.10

	
0.10

	
0.10

	
0.00

	
China




	
61

	
T. Li et al. [75]

	
2018

	
0.50

	
0.00

	
0.00

	
0.50

	
0.00

	
0.00

	
China




	
62

	
Y. Huang et al. [76]

	
2018

	
0.50

	
0.00

	
0.00

	
0.50

	
0.00

	
0.00

	
China




	
63

	
J. F. Qu et al. [77]

	
2018

	
0.50

	
0.50

	
0.00

	
0.00

	
0.00

	
0.00

	
China




	
64

	
Nedyalkova et al. [78]

	
2018

	
0.00

	
0.33

	
0.67

	
0.00

	
0.00

	
0.00

	
Bulgaria




	
65

	
Merrill et al. [79]

	
2018

	
0.00

	
0.50

	
0.25

	
0.25

	
0.00

	
0.00

	
USA




	
66

	
Ahirwal & Maiti [14]

	
2018

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
India




	
67

	
Liu, Cao, et al. [80]

	
2017

	
0.50

	
0.00

	
0.50

	
0.00

	
0.00

	
0.00

	
China




	
68

	
Williams et al. [81]

	
2017

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
USA




	
69

	
Padmanaban et al. [82]

	
2017

	
0.00

	
0.00

	
0.00

	
0.00

	
1.00

	
0.00

	
Germany




	
70

	
Karan et al. [83]

	
2017

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
India




	
71

	
Swab et al. [84]

	
2017

	
0.10

	
0.10

	
0.70

	
0.10

	
0.00

	
0.00

	
USA




	
72

	
G. Bell et al. [85]

	
2017

	
0.10

	
0.10

	
0.40

	
0.40

	
0.00

	
0.00

	
USA




	
73

	
Pan et al. [86]

	
2017

	
0.00

	
0.67

	
0.33

	
0.00

	
0.00

	
0.00

	
China




	
74

	
Ahirwal & Maiti [87]

	
2017

	
0.50

	
0.17

	
0.17

	
0.17

	
0.00

	
0.00

	
India




	
75

	
Ahirwal, Maiti, & Satyanarayana Reddy [13]

	
2017

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
India




	
76

	
Majee et al. [88]

	
2017

	
0.00

	
0.00

	
0.00

	
0.50

	
0.50

	
0.00

	
India




	
77

	
Gang et al. [89]

	
2017

	
0.00

	
0.67

	
0.17

	
0.17

	
0.00

	
0.00

	
China




	
78

	
Plamping et al. [90]

	
2017

	
0.00

	
0.17

	
0.50

	
0.17

	
0.17

	
0.00

	
UK




	
79

	
Ye Yuan et al. [91]

	
2017

	
0.90

	
0.10

	
0.00

	
0.00

	
0.00

	
0.00

	
China




	
80

	
J. F. Qu et al. [92]

	
2017

	
0.50

	
0.17

	
0.17

	
0.17

	
0.00

	
0.00

	
China




	
81

	
Ahirwal, Maiti, & Singh [93]

	
2017

	
0.50

	
0.00

	
0.30

	
0.20

	
0.00

	
0.00

	
India




	
82

	
Yongchun Chen et al. [94]

	
2017

	
0.10

	
0.00

	
0.00

	
0.90

	
0.00

	
0.00

	
China




	
83

	
Bao et al. [95]

	
2017

	
0.33

	
0.00

	
0.00

	
0.00

	
0.67

	
0.00

	
China




	
84

	
Frouz [96]

	
2017

	
0.67

	
0.00

	
0.33

	
0.00

	
0.00

	
0.00

	
Czech Republic




	
85

	
Q. Zhang et al. [97]

	
2017

	
0.00

	
0.00

	
0.00

	
0.00

	
1.00

	
0.00

	
USA




	
86

	
Maiti & Rana [98]

	
2017

	
0.10

	
0.00

	
0.10

	
0.80

	
0.00

	
0.00

	
India




	
87

	
Bauman et al. [99]

	
2017

	
0.00

	
0.00

	
0.50

	
0.50

	
0.00

	
0.00

	
USA




	
88

	
Atanassova et al.

	
2017

	
0.25

	
0.00

	
0.00

	
0.75

	
0.00

	
0.00

	
Bulgaria




	
89

	
Jing Wang et al. [100]

	
2017

	
0.00

	
0.00

	
0.00

	
0.00

	
0.67

	
0.33

	
China




	
90

	
Shi et al. [101]

	
2017

	
0.13

	
0.00

	
0.13

	
0.75

	
0.00

	
0.00

	
China




	
91

	
Jinman Wang et al. [102]

	
2017

	
0.00

	
0.33

	
0.00

	
0.33

	
0.33

	
0.00

	
China




	
92

	
Liu, Bai, et al. [103]

	
2017

	
0.33

	
0.33

	
0.00

	
0.33

	
0.00

	
0.00

	
China




	
93

	
Y. Yuan et al. [91]

	
2017

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
China




	
94

	
Darmody & McSweeney [104]

	
2017

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
1.00

	
USA




	
95

	
Hou et al. [105]

	
2017

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
China




	
96

	
Maiti & Ahirwal [106]

	
2017

	
0.50

	
0.00

	
0.13

	
0.25

	
0.00

	
0.13

	
India




	
97

	
Mukhopadhyay & Masto [107]

	
2016

	
0.67

	
0.17

	
0.00

	
0.17

	
0.00

	
0.00

	
India




	
98

	
Ye Yuan et al. [108]

	
2016

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
China




	
99

	
Kołodziej et al. [109]

	
2016

	
0.11

	
0.67

	
0.11

	
0.11

	
0.00

	
0.00

	
Poland




	
100

	
Nash et al. [110]

	
2016

	
0.17

	
0.33

	
0.17

	
0.33

	
0.00

	
0.00

	
USA




	
101

	
Russell et al. [111]

	
2016

	
0.00

	
0.17

	
0.67

	
0.17

	
0.00

	
0.00

	
USA




	
102

	
Stumpf et al. [112]

	
2016

	
0.10

	
0.50

	
0.30

	
0.10

	
0.00

	
0.00

	
Brazil




	
103

	
Jinman Wang et al. [113]

	
2016

	
0.00

	
0.33

	
0.00

	
0.00

	
0.67

	
0.00

	
China




	
104

	
Maiti et al. [114]

	
2016

	
0.00

	
0.00

	
0.25

	
0.75

	
0.00

	
0.00

	
India




	
105

	
Wick et al. [115]

	
2016

	
0.40

	
0.50

	
0.00

	
0.10

	
0.00

	
0.00

	
USA




	
106

	
Das & Maiti [116]

	
2016

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
India




	
107

	
Ahirwal & Maiti [117]

	
2016

	
0.33

	
0.33

	
0.00

	
0.33

	
0.00

	
0.00

	
India




	
108

	
Clark & Zipper [118]

	
2016

	
0.00

	
0.75

	
0.25

	
0.00

	
0.00

	
0.00

	
USA




	
109

	
Gypser et al. [119]

	
2016

	
0.25

	
0.50

	
0.25

	
0.00

	
0.00

	
0.00

	
Germany




	
110

	
Brown et al. [120]

	
2016

	
0.00

	
0.00

	
0.50

	
0.50

	
0.00

	
0.00

	
USA




	
111

	
Dutta et al. [121]

	
2016

	
0.75

	
0.13

	
0.13

	
0.00

	
0.00

	
0.00

	
USA




	
112

	
Mukhopadhyay et al. [122]

	
2016

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
India




	
113

	
Frasson et al. [123]

	
2016

	
0.00

	
0.00

	
0.75

	
0.25

	
0.00

	
0.00

	
Brazil




	
114

	
Cudlín et al. [124]

	
2016

	
0.33

	
0.00

	
0.33

	
0.33

	
0.00

	
0.00

	
Czech Republic




	
115

	
Hu et al. [125]

	
2016

	
0.00

	
0.00

	
0.00

	
0.00

	
0.50

	
0.50

	
China




	
116

	
X. R. Zhang et al. [126]

	
2016

	
0.25

	
0.50

	
0.25

	
0.00

	
0.00

	
0.00

	
China




	
117

	
Nadłonek & Cabala [127]

	
2016

	
0.25

	
0.00

	
0.00

	
0.75

	
0.00

	
0.00

	
Poland




	
118

	
Klojzy-Karczmarczyk et al. [128]

	
2016

	
0.00

	
0.33

	
0.00

	
0.67

	
0.00

	
0.00

	
Poland




	
119

	
Junjian Li et al. [129]

	
2016

	
0.10

	
0.10

	
0.10

	
0.70

	
0.00

	
0.00

	
China




	
120

	
Frouz et al. [130]

	
2015

	
0.17

	
0.00

	
0.00

	
0.67

	
0.17

	
0.00

	
Czech Republic




	
121

	
Kumar et al. [131]

	
2015

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
India




	
122

	
Lanham et al. [132]

	
2015

	
0.33

	
0.33

	
0.00

	
0.33

	
0.00

	
0.00

	
USA




	
123

	
Evans et al. [133]

	
2015

	
0.00

	
0.67

	
0.00

	
0.00

	
0.00

	
0.33

	
USA




	
124

	
Bauman et al. [134]

	
2015

	
0.00

	
0.00

	
0.67

	
0.00

	
0.17

	
0.17

	
USA




	
125

	
Weber et al. [135]

	
2015

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
Poland




	
126

	
Zhen et al. [136]

	
2015

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
China




	
127

	
Macdonald et al. [137]

	
2015

	
0.00

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
Canada




	
128

	
Jinman Wang, Yang, et al. [138]

	
2015

	
0.75

	
0.00

	
0.00

	
0.00

	
0.25

	
0.00

	
China




	
129

	
Saminathan et al. [139]

	
2015

	
0.00

	
0.00

	
0.75

	
0.25

	
0.00

	
0.00

	
USA




	
130

	
Dutta et al. [140]

	
2015

	
0.33

	
0.33

	
0.00

	
0.33

	
0.00

	
0.00

	
USA




	
131

	
Bartuška et al. [141]

	
2015

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
Czech Republic




	
132

	
Mathiba & Awuah-Offei [142]

	
2015

	
0.75

	
0.00

	
0.00

	
0.00

	
0.25

	
0.00

	
USA




	
133

	
Niu et al. [143]

	
2015

	
0.00

	
0.00

	
0.00

	
1.00

	
0.00

	
0.00

	
China




	
134

	
L. Zhang et al. [144]

	
2015

	
0.00

	
0.67

	
0.00

	
0.33

	
0.00

	
0.00

	
China




	
135

	
Shouqin et al. [145]

	
2015

	
0.00

	
0.50

	
0.25

	
0.25

	
0.00

	
0.00

	
China




	
136

	
Haigh et al. [146]

	
2015

	
0.00

	
0.50

	
0.25

	
0.00

	
0.25

	
0.00

	
UK




	
137

	
Jinman Wang, Zhang, et al. [147]

	
2015

	
0.13

	
0.50

	
0.00

	
0.13

	
0.25

	
0.00

	
China




	
138

	
Pallavicini et al. [148]

	
2015

	
0.11

	
0.11

	
0.67

	
0.11

	
0.00

	
0.00

	
Spain




	
139

	
Y. Li, Chen, & Wen [149]

	
2015

	
0.17

	
0.00

	
0.67

	
0.17

	
0.00

	
0.00

	
China




	
140

	
Sena et al. [150]

	
2015

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
USA




	
141

	
Hoomehr et al. [151]

	
2015

	
0.00

	
1.00

	
0.00

	
0.00

	
0.00

	
0.00

	
USA




	
142

	
Y. Li, Chen, Zhang, et al. [152]

	
2015

	
0.33

	
0.00

	
0.67

	
0.00

	
0.00

	
0.00

	
China




	
143

	
C. Huang et al. [153]

	
2015

	
0.33

	
0.33

	
0.00

	
0.33

	
0.00

	
0.00

	
Germany




	
144

	
Gruchot et al. [154]

	
2015

	
0.25

	
0.25

	
0.25

	
0.25

	
0.00

	
0.00

	
Poland




	
145

	
Hlava et al. [155]

	
2015

	
0.13

	
0.25

	
0.50

	
0.13

	
0.00

	
0.00

	
Czech Republic
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Table 2. Number of points over the categories per year.






Table 2. Number of points over the categories per year.





	
Years

	
Categories

	
Number of Papers/Total Points




	
C, N and SOM

	
Physical

	
Biological

	
Chemical

	
Technology

	
Review & Metadata






	
2015

	
4.98

	
6.89

	
6.12

	
5.73

	
1.58

	
0.70

	
26




	
2016

	
5.96

	
5.56

	
4.30

	
5.51

	
1.17

	
0.50

	
23




	
2017

	
7.51

	
3.80

	
6.42

	
6.48

	
4.33

	
1.46

	
30




	
2018

	
8.14

	
5.04

	
9.69

	
7.39

	
1.73

	
0.00

	
32




	
2019

	
7.45

	
3.01

	
7.61

	
5.66

	
2.27

	
2.00

	
28




	
2020

	
1.63

	
0.83

	
2.60

	
0.27

	
0.67

	
0.00

	
6




	
2015–2019

	
34.04

	
24.31

	
34.14

	
30.78

	
11.08

	
4.66

	
139




	
2015–2020

	
35.67

	
25.14

	
36.74

	
31.04

	
11.75

	
4.66

	
145
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Table 3. Distribution of publications over the selected years, relative to the country of origin.






Table 3. Distribution of publications over the selected years, relative to the country of origin.





	Country
	No. of Papers
	2015
	2016
	2017
	2018
	2019
	2020





	China
	56
	8
	5
	13
	14
	13
	3



	USA
	30
	8
	6
	6
	5
	4
	1



	India
	23
	1
	5
	7
	6
	4
	0



	Poland
	7
	2
	3
	0
	2
	0
	0



	Czech Republic
	5
	3
	1
	1
	0
	0
	0



	UK
	5
	1
	0
	1
	1
	2
	0



	Germany
	4
	1
	1
	1
	0
	1
	0



	Bulgaria
	4
	0
	0
	1
	1
	2
	0



	Indonesia
	3
	0
	0
	0
	1
	2
	0



	South Africa
	2
	0
	0
	0
	1
	0
	1



	Spain
	2
	1
	0
	0
	0
	0
	1



	Brazil
	2
	0
	2
	0
	0
	0
	0



	Chile
	1
	0
	0
	0
	1
	0
	0



	Canada
	1
	1
	0
	0
	0
	0
	0
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